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Spatial transcriptomics
technology in cancer research
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In recent years, spatial transcriptomics (ST) technologies have developed

rapidly and have been widely used in constructing spatial tissue atlases and

characterizing spatiotemporal heterogeneity of cancers. Currently, ST has been

used to profile spatial heterogeneity in multiple cancer types. Besides, ST is a

benefit for identifying and comprehensively understanding special spatial areas

such as tumor interface and tertiary lymphoid structures (TLSs), which exhibit

unique tumor microenvironments (TMEs). Therefore, ST has also shown great

potential to improve pathological diagnosis and identify novel prognostic

factors in cancer. This review presents recent advances and prospects of

applications on cancer research based on ST technologies as well as

the challenges.

KEYWORDS

spatial transcriptomics (ST), tumor microenvironment, prognostic factor, spatial

heterogeneity, tertiary lymphoid structure (TLS), tumor interface
Introduction

Cancer is the leading cause of death worldwide (1). A series of studies have shown

that high cellular heterogeneity is one of the main causes that make cancer difficult to

cure (2). Therefore, it is of vital importance to characterize the heterogeneity of tumor.

Single-cell sequencing technologies, especially single-cell RNA sequencing (scRNA-seq),

provides useful tools for uncovering cellular heterogeneity (3–6). However, they always

lose spatial histology information while cell dissociation, hence difficult to characterize

spatial cellular interactions and organization of tumors.

The spatial structure of tumors is closely related to tumorigenesis, progression, and

treatment response. Histologically similar tumors from different regions are molecularly

distinct and have different tumorigenicities, showing the association of tumor initiation

and the spatial location (7). In addition, spatially adjacent cells have stronger interactions,

which could functionally remodel the TME and promote tumor progression (8, 9) and

evolution (10). The tumor cells at different positions may exhibit heterogeneous

metastatic potential (5), while the site of lymphocyte infiltration usually indicates

specific treatment response (11). Scientists have used immunohistochemistry (IHC)

and immunofluorescence (IF) staining etc. technologies to locate the cells and proteins in
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flash-frozen or formalin fixed paraffin-embedded (FFPE) tissue

sections. However, these approaches are low-throughput and

can only label limited number of pre-selected proteins in a

specific section, thus incapable of discovering the distribution of

novel proteins or cell types. By contrast, ST technologies have

much higher throughput and can capture the whole

transcriptome, showing its power in constructing spatial cell

atlas in embryo, brain, heart, etc. (12). In the meanwhile, an

increasing number of studies used ST to profile spatial

heterogeneity of cancers (13, 14). Currently, ST has been used

to distinguish tumor and non-tumor tissues, special spatial areas

such as tumor interface and tertiary lymphoid structures (TLSs)

(15–17), and identify spatial-specific prognostic factors in cancer

(18, 19).

In this article, we first made a brief introduction of ST

techniques, and reviewed recent studies on cancer research using

ST. Then, we proposed our insights into the challenges and

prospects of applying ST into cancer research.
Categories of ST

ST technology could be divided into two main categories

according to detection methods, including imaging-based

methods and sequencing-based methods (20). Imaging-based

ST methods consist of in situ hybridization (ISH) and in situ

sequencing (ISS) (Table 1). In ISH, RNA molecules from

individual parts (or cells) within the tissue were achieved by

hybridizing a labeled probe complementary to the target of

interest. This technique was first used for visualizing gene

expression in 1982 (21). Single-molecule RNA fluorescence in

situ hybridization (smFISH) has a stronger and more robust

signal compared with initial ISH (22). Afterwards, seqFISH (23),

seqFISH+ (24), multiplexed error-robust FISH (MERFISH) (25),

MERFISH+ (26) et al. further improved smFISH in the aspect of

target throughput. Nevertheless, ISH-based methods are not

transcriptome-wide, which always need prior knowledge to

design probes and obstruct comprehensive expression analysis

in a single experiment (27–29). In ISS, RNA molecules from a

cell are sequenced directly in its tissue context. The first ISS

technique was published in 2013, using padlock probes to target

known genes (30). Later, BaristaSeq (31) and STARmap (32)

improved sensitivity and/or number of detected genes. In short,

most ISS-based ST techniques have subcellular resolution.

However, they usually have a limited number of targeted genes

or low detection efficiency (33), thus restricting their

applications in the specific scenarios (Table 1).

The sequencing-based ST techniques include laser capture

microdissection (LCM)-based methods and in situ barcoding

(ISB)-based methods (Table 1). LCM-based methods, such as

geographical position sequencing (Geo-seq) (34), TIVA (35) and

NICHE-seq (36), utilize a laser beam to cut out specific tissue

regions identified under a microscope (37, 38). Compared with
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initial LCM method, Geo-seq improved sensitivity but with

lower resolution. TIVA can be performed on live cells but with

low throughput, while NICHE-seq has higher throughput but

not applicable to human samples. Generally, LCM-based ST

techniques are labor-intensive and low-throughput, thus

inapplicable of processing samples in batches. ISB-based ST

techniques capture RNA molecules in situ, then perform cDNA

sequencing ex situ. In terms of barcoding, it can be subdivided

into two groups. The first group uses solid phase-based capture

(SPBC) methods (13), and the tissue is transferred to a substrate

bearing a pre-arranged set of DNA barcodes, which includes 10x

Genomics Visium (39), Slide-seq (40), Slide-seq2 (41), HDST

(42), Stereo-seq (43) etc. The second group, including

NanoString digital spatial profiling (DSP) (44) and ZipSeq

(45), uses selective barcoding methods, which means DNA

barcodes are either collected from or delivered to selected

tissue locations. ISB-based ST techniques have been used to

study mouse olfactory bulb, gingival tissue, adult human heart

tissue as well as multiple cancers (12). Most ISB-based

techniques are transcriptome-wide with relative higher

throughput, and some of them have subcellular resolution

including Seq-Scope (46), HDST (42), APEX-seq (47), PIXEL-

seq (48) and Stereo-seq (43) etc.

Apart from the above-mentioned two ST categories, there

also exists bioinformatic methods for reconstructing spatial

positions of cells using scRNA-seq data. For example,

novoSpaRc allows for de novo spatial reconstruction of single-

cell gene expression with no inherent dependence on any prior

information (49). Though many tools are available for the

reconstruction of spatial positions of cells currently, their

effectiveness remains to be validated in the future (50).
ST provides new insights in
cancer research

Spatial heterogeneity of the tumor cell

Tumor tissues roughly consist of various cell types, including

tumor cells, stromal cells, and immune cells (51) (Figure 1A).

The differential cell composition induces the diversity and

heterogeneity of TME. The heterogeneity confers different

abilities of proliferation, immune resistance, immune escape,

and survival etc. on tumor cells, which is reflected in many

aspects, such as cell composition, gene expression pattern and

cell spatial positions. Thus, tumor cells can be divided into

several subpopulations in terms of genotype, phenotype, or

spatial position.

Currently, neoplastic spatial heterogeneity has been reported

in multiple malignant tumors, such as invasive micropapillary

carcinoma (IMPC), gastric cancer (GC), glioblastoma (GBM),

primary liver cancer and melanoma (19, 52–55) (Table 2). For

instance, ERBB2, the receptor of HER2, differentially expressed in
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TABLE 1 Current ST technologies.

ST method Category Sample type Resolution Approach* Advantages (+)/drawbacks (–) Ref.

LCM-seq LCM Fresh-frozen Cellular WT, >16,000 genes in total (+) Robust; full-length mRNA capture
(-) Low throughput

(59)

TIVA LCM Live cells Cellular WT, >16,000 genes per cell (+) Full-length mRNA capture from single live cells
(-) Low throughput and limited analysis of clinical
samples

(35)

tomo-seq LCM Fresh-frozen Anatomical
features

WT, ~23,000 gene in total (+) Robust and high sensitivity; construction of 3D
profiles
(-) Limited applicability to clinical samples

(60)

Geo-seq LCM Fresh-frozen Multicellular WT, >8000 genes/20 cells (+) Full-length mRNA capture; construction of 3D profiles
(-) Low throughput

(34)

NICHE-seq LCM Live cells Cellular/
multicellular

WT, thousands of UMIs per
cell

(+) High throughput
(-) Limited to genetically engineered model organisms, so
that not applicable for clinical samples currently.

(36)

PIC LCM Fresh-frozen/
FFPE

Subcellular WT, ~8000 genes/cell (+) Relatively lower cost; Subcellular resolution
(-) Limited field of view; Require manual choice of regions

(61)

immuno-LCM-
RNAseq

LCM Snap-frozen/
RNAlater
preserved

Multicellular WT, >15,000 genes in total (+) Compatible with low-quality samples; full-length RNA
capture.
(-) Low throughput

(62)

par-seqFISH ISH Cell cultures Cellular Targeted, 105 genes (+) Applicable to bacteria.
(–) Cannot be applied to human samples

(27)

smFISH ISH FFPE/Fresh-
frozen

Subcellular Targeted, several genes (+) High sensitivity
(–) Low throughput

(63)

seqFISH ISH Fresh-frozen Subcellular Targeted, 249 genes (+) Subcellular resolution
(-) Need costly equipment; Limited field of view

(29,
64)

MERFISH ISH Fresh-frozen Subcellular Targeted, 135 genes (+) Highly multiplex; combined with IF for protein
detection
(-) Need costly equipment; Limited field of view

(25,
65)

smHCR ISH Fresh-frozen Subcellular Targeted, 40 probes (+) mRNAs detection in thick (0.5mm) slices.
(-) Low throughput; Limited field of view

(66)

RollFISH ISH FFPE Subcellular Targeted, several genes (+) Applicable to FFPE samples
(-) Low throughput

(67)

osmFISH ISH Snap-frozen Subcellular Targeted, 33 genes (+) Large range of detectable gene expression levels
(-) Relatively low throughput

(68)

RNAscope ISH FFPE Subcellular Targeted, 4 genes (+) High sensitivity. Applicable to FFPE samples
(-) Low throughput

(69)

seqFISH+ ISH Fresh-frozen Subcellular Targeted, 10,000 genes (+) Ultrahigh multiplex; Subcellular resolution
(-) Limited field of view

(23)

SABER ISH Frozen Subcellular Targeted, 18,000 probes (+) High sensitivity. Relatively low cost.
(-) Limited field of view

(70)

Split-FISH ISH Fresh-frozen Subcellular Targeted, 317 genes (+) High specificity.
(-) Low throughput

(28)

DNA microscopy ISH Cell cultures Cellular Targeted, 106 UMIs (+) Relatively low cost.
(-) Low throughput; Limited applicability to clinical
samples

(71)

GeoMX WTA ISH FFPE Cellular Targeted, 18,190 genes (+) Ultrahigh multiplex
(-) Limited field of view; Require manual choice of regions

(72)

BOLORAMIS ISH Fresh-frozen Subcellular Targeted, 96 genes (+) High sensitivity.
(-) Low throughput

(73)

ISS using barcode
padlock probes

ISS FFPE/Fresh-
frozen

Subcellular Targeted, 31 transcripts (+) Subcellular resolution; ability to detect SNVs
(-) Limited number of target genes; low throughput

(30)

FISSEQ ISS FFPE/Fresh-
frozen

Subcellular WT, 8102 genes in total (+) Subcellular resolution; Applicable to FFPE samples
(-) Low sensitivity; limited field of view; low experimental
throughput

(33)

BaristaSeq ISS Cell cultures Subcellular Targeted, several probes (+) Relatively high amplification efficiency
(-) Limited field of view; low experimental throughput

(31)

(Continued)
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multiple tumor areas on the same ST slide (15). Further analysis

showed these differentially expressed genes (DEGs) were

associated with immune response, mitogenic programs and

tumor invasion pathways, suggesting different areas may have

differential abilities on tumor progression, invasion and immune

resistance (39). Additionally, certain stress may induce certain

new cell populations, which adapt to the specific TME. For

instance, a functional subgroup was found in mouse pancreatic

cancer model in a hypoxic microenvironment. Furthermore, the

hypoxia-induced tumor tissues had less subpopulations and

simplified functions (53). Intriguingly, though tumor cell
Frontiers in Oncology 04
subpopulations are spatially heterogeneous on the same slide,

the transcriptional profile of each subpopulation is probably

recurrent across tumor slides. Further analysis revealed these

transcriptional programs were independent of cell-cycle states,

thereinto reactive-hypoxia was associated with chromosomal

alterations, indicating potential connection with genome

instability (56). Moreover, tumor epithelial cells also exhibited

specific colocalization with immune cell subpopulations (57, 58).

In bladder cancer, CDH12+ epithelial cells colocalized with

exhausted CD8+ T cells (57) (Figure 1B). In breast cancer (BC),

tumor epithelial cells were negatively correlated with cancer-
TABLE 1 Continued

ST method Category Sample type Resolution Approach* Advantages (+)/drawbacks (–) Ref.

STARmap ISS FFPE/Fresh-
frozen

Subcellular Targeted, 1020 genes (+) High sensitivity. Applicable to FFPE samples
(-) Limited field of view; low experimental throughput

(32)

INSTA-Seq ISS FFPE/Fresh-
frozen

Subcellular Targeted, >820 genes (+) High resolution; cDNA length up to 4750 nt
(-) Limited field of view, low experimental throughput

(74)

BARseq ISS Fresh-frozen Cellular Targeted, 1.5 million barcodes (+) High sensitivity and specificity
(-) Limited field of view

(75)

HybISS ISS Fresh-frozen Subcellular Targeted, 119 genes (+) Robust. High specificity.
(-) Limited number of target genes

(76)

pciSeq ISS Fresh-frozen Cellular Targeted, 99 genes (+) low misdetection rates. Relatively large field of view.
(-) Limited number of target genes

(77)

sci-Space ISS Fresh-frozen 200 mm WT, 1231 genes per cell (+) larges field of view.
(-) Low resolution.

(78)

ExSeq ISS FFPE/Fresh-
frozen

Subcellular WT/targeted, 3039/297 genes (+) Support targeted and WT sequencing; multi-scale
resolution; allow for AS detection.
(-) Relatively low sensitivity

(79)

10x Genomics
Visium

ISB FFPE/Fresh-
frozen

55 mm WT, >20000 genes in total (+) Robust; matched tools for downstream data analysis
(-) multicellular resolution

(17,
39)

Slide-seq ISB Fresh-frozen 10 mm WT, a median of 59 UMIs
per cell

(+) Cellular resolution
(-) Limited field of view; low sensitivity

(40)

HDST ISB Fresh-frozen 2 mm WT, 63.5 UMIs per cell (+) Ultrahigh resolution; high throughput
(-) Limited field of view; low sensitivity

(42)

Slide-seqV2 ISB Frozen 10 mm WT, a median of 550 UMIs
per cell

(+) Higher sensitivity than Slide-seq and HDST
(-) Limited field of view

(41)

PIXEL-seq ISB Frozen 1 mm WT, >1100 UMIs per cell (+) Ultrahigh resolution; high sensitivity
(-) Limited field of view; not accessible currently

(48)

Seq-Scope ISB Fresh-frozen 0.5-0.8 mm WT, ~4700 UMIs per cell (+) Ultrahigh resolution; ultrahigh sensitivity
(-) Limited field of view

(46)

XYZeq ISB Fresh-frozen Cellular WT, a median of 1596 UMIs
(629 genes) per cell

(+) Centimeter-scale field of view.
(-) Relatively low sensitivity; Customized array

(80)

Stereo-seq ISB FFPE/Fresh-
frozen

0.22 mm WT, 1910 UMIs (792 genes)
per cell

(+) Ultrahigh resolution; ultrahigh sensitivity; multi-scale
field of views (from 0.5 to 174.24 cm2)
(-) Customized array

(43)

ZipSeq ISB Live cells Cellular WT, 3550 genes per cell (+) Single-cell resolution; high sensitivity
(-) Costly reagents; Limited applicability to clinical
samples

(45)

Nanostring DSP ISB FFPE/Fresh-
frozen

Cellular Targeted, 1412 genes or 44
proteins + 96 genes per cell

(+) FFPE compatible; multiomics spatial sequencing
(-) Require manual choice of regions; Limited field of
view;

(44)

APEX-seq ISB Live cells Subcellular WT, >25,000 transcripts in
total

(+) Ultrahigh resolution; allow for AS detection.
(-) Cannot be applied to human clinical samples; low
throughput

(47)
frontiersi
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associated fibroblasts (CAFs), endothelial cells, B cells etc. (15). In

sum, the diverse colocalization of tumor cell and other cell types

inflects potential cell-cell interactions and the complex TME

in tumors.

Tumor cells also showed different gene expression profiles in

tumor core and periphery. Compared with tumor core, the

tumor peripheral area is nearer to adjacent normal tissues,

thus it has different TME (Figure 1A). In a neuroblastoma

mouse model, a tumor cell cluster, which was most enriched

at the tumor core, expressed more cancer-associated genes than

that dispersed all over the tumor area (81). In prostatic cancer

(PC), TAGLN (tumor suppressor) and HLA had higher

expression in the periphery, whereas NUPR1 and KLK4 etc.

were expressed higher in the tumor core (82) (Figure 1C). These

findings jointly indicate the tumor core probably is more

malignant than the periphery.

A series of ST-based studies showed tumor subpopulations

are spatially mutually exclusive on the same slide (Figure 1A). In

BC, the tumor area with high signatures of epithelial-

mesenchymal transition (EMT), interferon (IFN) and major

histocompatibility complex (MHC) was negatively correlated

with that with high signature of proliferation (11). Another

study revealed HER2+ and ESR1+ breast tumor clones had

mutually exclusive localizations (83) (Figure 1D). In primary

pancreatic ductal adenocarcinomas (PDAC), TM4SF1+ tumor

cells had mutually exclusive spatial locations with S100A4+

tumor cells (52). Another study identified three recurrent sub-

TME phenotypes within the same tumor tissue in PDAC, which

also showed clear boundaries with each other (84). The mutually

exclusive locations of tumor cell subpopulations suggest different

clonal origins and potential competition across tumor areas (39).
Spatial heterogeneity
of microenvironment

The stromal cell is an important component of TME, which is

associated with tumor growth, progression, immunosuppression

and metastasis (85–89). ST has uncovered a series of spatial

distribution preference of stromal cells in TME. For example, in

a lung cancer mouse model, loss of Tgfbr2 resulted in a

remodeling of the stroma and induced tumor development (89).

Among stromal cells, fibroblasts showed the most prominent

spatial colocalization features in multiple cancer types. In

bladder cancer, fibroblasts were observed resided in close

proximity to CDH12+ epithelial cells (57). In colorectal cancer

(CRC), tumor-specific FAP+ fibroblasts and SPP1+

macrophages colocalized in the tumor area, which were

proved contributed to desmoplastic TME (90) (Figure 1E). In

PDAC, fibroblasts and terminal ductal cell populations were

significant enrichment in tumor areas, suggesting ductal cells in

the cancer region may express hypoxia-response genes due to

low oxygen content. In diffuse-type GC, CCL2+ fibroblasts and
Frontiers in Oncology 05
endothelial cells were enriched in the deep invasive layer of GC

compared with the superficial layer, suggesting a greater ability

of tumor invasion (91). In addition, CAFs also exhibited well-

preserved colocalization patterns with endothelial cells and

perivascular cells (15), which is consistent with a previous

study in cutaneous squamous cell carcinoma SCC (92).

Interestingly, in cervical SCC, CAFs were enriched around

certain tumor areas. Compared with tumors without

surrounded by CAFs, CAF-surrounded tumors were more

active in metabolism and cell growth and downregulated

cellular adhesion, apoptosis, and immune response, suggesting

a supportive TME for tumor progression and metastasis (93).

On the other hand, fibroblast subpopulations may have mutually

exclusive locations. For example, Wu et al. found spatially

negative correlation between myofibroblast-like CAFs and

inflammatory-like CAFs in estrogen receptor positive and

triple-negative breast cancer (TNBC) samples (11). This

finding was also observed in a HER2+ breast tumor dataset,

suggesting a conserved relationship across BC subtypes (15).

The immune cell infiltration is frequently observed in tumor

tissues, which is closely associated with treatment response (94).

However, not all immune cells can infiltrate into tumors (81),

especially in metastases (95). ST-based studies have shown the

immune cell has a specific preference on the spatial distribution as

well. For instance, in a lung cancer mouse model, immune cells

were more concentrated in the outer area of tumors, particularly

CD4+ and CD11c+ cells. Intriguingly, when Irf1 or Socs1 was

knocked out, immune cells were scattered throughout the tumor

(89). As we know, macrophages can be roughly divided into M1

macrophage and M2 macrophage in terms of encouraging or

decreasing inflammation (96). M1-like macrophage and M2-like

macrophage appeared to have mutually exclusive locations in

PDAC. Of note, a M2-like macrophage subpopulation was

observed colocalized with proliferating cancer cells (83, 90). The

M2-like macrophages were most enriched in the ducts, whereas the

M1 macrophage were enriched in the stroma and cancer regions

(52). Similarly, in BC, two macrophage subpopulations, which were

outside of the conventional M1/M2 classification, displayed a

modest negative spatial correlation (11). In addition, macrophage

subpopulations also colocalized with T cell subpopulations in BC

and neuroblastoma (15, 81). Further analysis revealed the

colocalization might be associated with immune activation and

tumorigenesis. In GBM, the colocalization of immune cells and

stromal cell subpopulation was associated with immunosuppressive

microenvironment (54, 97). Additionally, the presence of certain

tissues may also influence the distribution of T cell subtypes. In liver

cancer, intact continuous fibrous capsule indicated significant

decrease of exhausted T cells and downregulated immune

checkpoint genes, suggesting it may act as a barrier preventing

the infiltration of immune cells (16). In addition, SPP1+ tumor-

associated macrophages (TAMs) were colocalized with proliferating

cancer cells (83), which is consistent with a recent study in

CRC (90).
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Special spatial structures in TME

Tertiary lymphoid structures
TLSs, sometimes also known as tertiary lymphoid organs or

ectopic lymphoid structures, are organized aggregates of

lymphoid cells that arise postnatally in nonlymphoid tissues,

such as tissues subjected to chronic inflammation and cancers

(98). They are characterized by an inner zone of CD20+

follicular B cells surrounded by CD3+ T cells. Recently, more

evidence supported the important function of TLS in delaying or

promoting cancer progression (98–100).

TLS was mostly found in para-tumor tissues (16). However, it

also exists in tumor, leading-edge and para-tumor areas (19, 98)

(Figure 1A). Previous studies generally identify TLS by multiple

IHC or multiplex IF staining (101–103), which is accurate but
Frontiers in Oncology 06
labor-consuming and low-throughput. Mature TLSs are

characterized by the presence of a germinal center containing T

follicular helper (Tfh) cells and follicular dendritic cells in close

contact with B cells (104). TLS could be identified by certain gene

signatures or cell population aggregates using ST (Figure 1F;

Table 2). For example, in BC, Andersson et al. evaluated the

degree of B- and T-cell colocalization by spot deconvolution, ergo

potentially constituting parts of a TLS which they called TL-like

structure. At last, they proposed a TLS signature with 171 genes

for TLS prediction (15). In renal cell carcinoma (RCC), Meylan

et al. proposed a TLS signature with 29 genes (17). A similar gene

signature was also proposed in liver cancer (16). Of note, in BC,

researchers found a negative correlation between B cells and

plasma cells, and colocalization of B cells and T cells (15),

which probably suggested the presence of TLS.
FIGURE 1

Spatial heterogeneity of the tumor. (A) ST techniques have been used to characterize the spatial architecture of tumors. For example, the tumor
core (dark grey) and periphery (light grey) have different tumor cell subpopulations (light bule to dark blue). The TLS was found in or near the
tumor, which aggregates diverse lymphoid cells. (B) CDH12+ tumor epithelial cells colocalized with exhausted CD8+ T cells in bladder cancer.
(C) The tumor core and periphery had different signature genes in PC. (D) HER2+ and ESR1+ breast tumor subclones had mutually exclusive
localizations in BC. (E) Tumor-specific FAP+ fibroblasts and SPP1+ macrophages colocalized in the CRC tissue. (F) TLSs have specific cell
composition and signature genes. (G) The tumor interface has unique TME. Immune cells such as macrophages and NK/T cells were recruited
to the interface and the region nearer to the interface enriched more immune cells in ICC. FDC, follicular dendritic cell; FRC, follicular reticular
cell. PC, prostatic cancer. CRC, colorectal cancer. TME, tumor microenvironment. ICC, intrahepatic cholangiocarcinoma. BC, breast cancer. TLS,
tertiary lymphoid structure.
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TABLE 2 ST-based cancer studies.

Spatial heterogeneity

Cancer type Species Technology Highlights ST data access Ref.
BC human Visium, scRNA-seq HER2+ BC patients have common spatial expression signatures. Defined high-

resolution cell state colocalization patterns
EGA:
EGAD00001008031

(15)

BC human Spatial
transcriptomics,
scRNA-seq, ISH,
smFISH

Developed 'spatial transcriptomics' technique and revealed spatial gene expression
heterogeneity

SRA:
PRJNA316587

(39)

BC human Visium, scRNA-seq,
CITE-seq

Heterogeneous spatial distribution of tumor cell, immune cell, and stromal cell
subpopulations.

https://doi.org/10.
5281/zenodo.
4739739

(11)

BC human Visium, snRNA-seq Tumor cell subclusters with different features and origins are mapped in distinct
tissue regions.

Not publicly
available (108)

TNBC human LCM Proved combining LCM and RNA-seq on archived FFPE blocks is feasible and
allows spatial transcriptional characterization of TME.

Array Express
database: E-
MTAB-8760

(109)

BC and
oropharyngeal
SCC metastasis

human Visium, scRNA-seq Identified colocalization patterns of immune, stromal, and cancer cells in tumor
sections.

GEO: GSE158803 (83)

DCIS of the
breast

human Visium, target RNA-
seq, scDNA-seq,
WES

GATA3 dysfunction upregulates EMT and angiogenesis, followed by PgR
downregulation.

DDBJ:
JGAS00000000202

(110)

DCIS of the
breast

human LCM Characterized spatial heterogeneity of DCIS using Smart-3SEQ. SRA:
PRJNA413176

(111)

IMPC human Visium Characterized the spatial transcriptomic maps of IMPC and revealed extensive
spatial heterogeneity associated with metabolic reprogramming.

GSA: HRA001442
(112)

Liver cancer/
metastasis

human smFISH, LCM,
scRNA-seq

Characterized the spatial distribution and ligand–receptor interaction of cells in
TME.

GEO: GSE146409 (113)

Liver cancer human Visium, WES,
scRNA-seq

The ligand-receptor interactions at the tumor interface contribute to maintaining
intratumor architecture.

GSA: HRA000437 (16)

ICC human stereo-seq, scRNA-
seq, IF

Spatially characterized the immune microenvironment of tumor tissues, adjacent
normal tissues, margin areas, and lymph nodes.

Not available (19)

HCC human Visium Revealed spatial intratumor heterogeneity and gene expression patterns of HCC. Not available (114)

PDAC human LCM, scRNA-seq,
MS

Proposed subTME, which has regional relationships to tumor immunity, subtypes,
differentiation, and treatment response.

EGA:
EGAS00001002543

(84)

PDAC human Visium, scRNA-seq,
IF

Characterized the spatial distribution of cells in TME and identified colocalization of
inflammatory fibroblasts and cancer cells expressing a stress-response gene module.

GEO: GSE111672 (52)

PDAC mouse Visium, IHC, IF The hypoxia group and the control group showed different positional characteristics
and gene signatures.

Not available (53)

GC human DSP, RNAScope,
scRNA-seq, bulk
RNA-seq

The expression level of KLF2 in the tumor epithelial cell depends on its spatial
location.

Not available (58)

GC human RNAscope, scRNA-
seq

Revealed the spatial distribution of the major cell types and CCL2-expressing
endothelial cells and fibroblasts, indicating tumor invasion.

Not available (91)

GC human DSP, targeted DNA-
seq

Superficial subregion profiles were significantly different compared with matched
deep subregions and LNM.

Not publicly
available

(115)

Skin SCC human Visium, scRNA-seq,
MIBI, WES

Characterized the TSK population, which localized to a fibrovascular niche and
served as a hub for intercellular communication. Tregs colocalized with CD8 T cells
in compartmentalized tumor stroma.

GEO: GSE144240 (92)

Melanoma human DSP, PickSeq, CyCIF Recurrent cellular neighborhoods change significantly along a progression axis. GEO: GSE171888 (55)

PC human Visium, WGS Investigated tissue-wide spatial gene expression heterogeneity and identified gene
expression gradients in stroma adjacent to tumor regions.

EGA:
EGAS0000100300

(82)

Neuroblastoma mouse,
human

Visium, scRNA-seq,
TCR repertoire

CD4+ and myeloid populations colocalized within the tumor parenchyma, while
CD8+ T cells and B cells were peripherally dispersed.

SRA:
PRJNA662418

(81)

GBM human Visium, MALDI,
IMC, scRNA-seq,
methylation array

Proposed five spatially distinct transcriptional programs. Immunosuppressive tumor-
myeloid cell interactions are enhanced in segregated niches.

https://doi.org/10.
5061/dryad.
h70rxwdmj

(56)
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TABLE 2 Continued

Spatial heterogeneity

Cancer type Species Technology Highlights ST data access Ref.

Gliomas human,
mouse

ISH, scRNA-seq,
WES

Characterized the spatial locations of TAMs and microglia. http://glioblastoma.
alleninstitute.org/

(54)

Bladder cancer human Visium, CODEX,
snRNA-seq

CDH12-enriched cells express PD-L1 and PD-L2 and co-localize with exhausted T
cells.

GEO: GSE171351 (57)

CRC human Visium, scRNA-seq,
IF

Tumor-specific FAP+ fibroblasts and SPP1+ macrophages were colocalized. Their
interaction may contribute to desmoplastic TME. Tumor-specific FAP+ fibroblasts
are associated with colorectal cancer progression.

GSA: HRA000979 (90)

Cervical SCC human stereo-seq, snRNA-
seq, IF

Characterized the spatial distribution of immune cells in cervical SCC. Certain
tumors were surrounded by myofibroblasts, which was associated with growth and
metastasis of tumors.

CNSA:
CNP0002543

(93)

Colorectal
cancer liver
metastasis

human Visium, scRNA-seq Present a spatial atlas of colorectal liver metastasis and found the highly
metabolically activated MRC1+ CCL18+ M2-like macrophages in metastatic sites.

http://www.
cancerdiversity.
asia/scCRLM/

(116)

Metastatic PC human DSP, bulk RNA-seq Found a high level of intra-patient homogeneity with respect to tumor phenotype. Supplementary of
the original paper.

(95)

Melanoma
LNM

human Visium Revealed a complex spatial intratumoral composition of melanoma metastases that
was not evident through morphologic annotation.

Not available (117)

Special spatial area

BC human Visium, snRNA-seq The ERBB4+ LumA cells scarcely existed in the tumor interface, whereas LumB cells
were scattered throughout the tumor.

Not publicly
available

(108)

BC human Visium, scRNA-seq Proposed a method to identify putative TLSs. EGA:
EGAD00001008031

(15)

TNBC human LCM CD8+ T cells of a patient are not located at the tumor core but rather at tumor
margin.

Array Express
database: E-
MTAB-8760

(109)

Liver cancer human Visium, WES,
scRNA-seq

Proposed a TLS-50 signature to locate TLSs. GSA: HRA000437 (16)

ICC human stereo-seq, scRNA-
seq, IF

Enrichment of immune cells, suppressive immune microenvironment and metabolic
reprogramming of tumor cells were identified in the invasive fronts of tumor.

Not available (19)

Liver cancer/
metastasis

human smFISH, LCM,
scRNA-seq

Higher abundance of immune cell types, specifically T cells and SAMs, in the tumor
border.

GEO: GSE146409 (113)

Melanoma human DSP, PickSeq, CyCIF A spatially restricted suppressive environment forms along the tumor-stromal
boundary when tumors are locally invasive.

GEO: GSE171888 (55)

Melanoma zebrafish,
human

Visium, scRNA-seq,
snRNA-seq, IF

Identified a distinct interface cell state where the tumor contacts neighboring tissues. GEO: GSE159709 (107)

Skin SCC human Visium, scRNA-seq,
MIBI, WES

Tumor leading edges were enriched with tumor-specific TSK cells and basal tumor
cells.

GEO: GSE144240 (92)

PDAC mouse Visium, IHC, IF A cell subgroup located at the invasive front showed a higher proliferative ability
under hypoxia.

Not available (53)

GBM human Visium, scRMA-seq.
Bulk RNA-seq, IF

A HMOX1+ myeloid cell subpopulation, spatially located at the TME interface,
contributes to immunosuppressive TME.

https://osf.io/
4q32e/

(97)

RCC human Visium, IHC,IF, bulk
RNA-seq

In situ B cell maturation toward plasma cells in TLSs. Tumor cells are labeled by
locally produced IgG.

GEO: GSE175540 (17)

Cancer treatment response

PDAC mouse Visium, IF Identified a potential treatment target for PDAC. Not available (53)

PDAC human LCM, scRNA-seq,
MS

SubTMEs execute distinct tumor-promoting and chemoprotective functions. EGA:
EGAS00001002543

(84)

PDAC human DSP, snRNA-seq In the increasingly-adopted NAT context, classical-like phenotypes in malignant
cells were depleted.

Controlled access (118)

GBM human RNAscope, targeted
DNA-seq

Inhibitory molecules and infiltration increased after CART-EGFRvIII infusion,
compared to pre-CART-EGFRvIII infusion tumor specimens.

Not publicly
available

(119)

RCC human Visium, IHC, IF,
bulk RNA-seq

Patients with IgG-labeled tumor cells have high response rate to ICI and prolonged
PFS.

GEO: GSE175540 (17)
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TABLE 2 Continued

Spatial heterogeneity

Cancer type Species Technology Highlights ST data access Ref.

BC human,
mouse

Visium, scRNA-seq Neutralization of TGF-b leads to remodeling of CAF dynamics, greatly reducing the
frequency and activity of the myofibroblast subset.

Not publicly
available

(120)

Head and neck
SCC

human RNAscope PD-L1 and PD-L2 positivity significantly predicted clinical response to
pembrolizumab on combined tumor, stromal and immune cells.

Not available (121)

Lung cancer mouse Visium, Perturb-
map, IMC, CyTOF

Tgfbr2 KO on cancer cells promotes TME remodeling and immune exclusion; Socs1
KO made the tumors more responsive to PD-L1 blockade.

GEO: GSE193460 (89)

CRC human Visium, scRNA-seq,
IF

High infiltration of FAP+ fibroblasts and SPP1+ macrophages correlated with
immunotherapy resistance.

GSA: HRA000979 (90)

Colorectal
cancer liver
metastasis

human Visium, scRNA-seq Observed fundamental remodeling of cellular compartment after NAC treatment.
PD/SD tumors and PR tumors had different immune cell changes after NAC.

http://www.
cancerdiversity.
asia/scCRLM/

(116)

Bladder cancer human Visium, CODEX,
snRNA-seq

CDH12-enriched tumors define patients with poor outcome following surgery with
or without NAC, whereas they exhibit superior response to ICI treatment.

GEO: GSE171351 (57)

Ovarian
carcinoma

human Visium Excellent and poor responders show different spatial composition of TME. GEO: GSE189843 (122)

PC human Visium, scRNA-seq,
scATAC-seq,
FAIRE-seq

Treatment-persistent cells with high metastatic potential interspersed within the
primary tumors before treatment.

EGA:
EGAS00001000526

(123)

Clinical application

Diagnosis

BC human Visium, scRNA-seq,
CITE-seq

Developed scSubtype for BC subtype classification using scRNA-seq data. https://doi.org/10.
5281/zenodo.
4739739

(11)

BC human ISS OncoMap could spatially reveal intratumoral heterogeneity with regard to tumor
subtype, which supports the identification of novel therapeutical targets and refine
tumor diagnostics.

Not available
(124)

BC human Visium ST-based annotation showed high coincidence with the expert pathologist
annotation for DCIS and IDC.

No raw ST data
(125)

DCIS of the
breast

human Visium, targeted
RNA-seq, scDNA-
seq, WES

Propose a critical marker for a new DCIS classification approach. DDBJ:
JGAS00000000202 (110)

IMPC human Visium The pathologists and ST data were consistent in their annotation of the tumor
tissues.

GSA: HRA001442
(112)

PC human Visium, scRNA-seq,
scATAC-seq,
FAIRE-seq

Identified benign epithelium and adenocarcinoma using ST data. EGA:
EGAS00001000526 (123)

PC human Visium, WGS Compared to pathologist annotations, ST-based annotation delineates the extent of
cancer foci more accurately.

EGA:
EGAS0000100300

(82)

Prognosis factors

Liver cancer human Visium, WES,
scRNA-seq

Higher TLS-50 score was significantly associated with a better prognosis. GSA: HRA000437 (16)

ICC human stereo-seq, scRNA-
seq, IF

The damaged states of hepatocytes with overexpression of SAA in invasive fronts
were associated with worse prognosis.

Not available (19)

HCC human Visium High expression of CCL15 and CD163 respectively predicts poor prognosis of HCC
patients. CCL19 and CCL21, sharing similar spatial expression patterns, indicate a
good prognosis.

Not available
(114)

Bladder cancer human ST, CODEX,
snRNA-seq

Patients stratification by tumor CDH12 enrichment offers better prediction of
outcome than currently established bladder cancer subtypes.

GEO: GSE171351 (57)

GC human DSP, RNAScope,
scRNA-seq, bulk
RNA-seq

INHBA and FAP were coexpressed. CAFs with high expression of INHBA-FAP were
associated with poor prognosis.

Not available (58)

GC human RNAscope, scRNA-
seq

Deep-layer endothelial cells and fibroblasts contributed to poor clinical outcomes. Not available (91)
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Tumor interface has unique ecosystem

The tumor interface, the invasion front for tumor cells to

expand, is a critical region to uncover the tumor invasion and

progression (5, 105–107). The intermediate zone between the

tumor tissue and the non-tumor tissue has unique

microenvironment, thus existing unique characteristics in cell-

cell interaction, cell composition and immune states (Table 2).

The tumor interface exhibits a transitional state between

the tumor and adjacent non-tumor tissues. In a zebrafish

model of melanoma, a distinct cell cluster at the interface was

found histologically resembled the microenvironment, but

transcriptionally resembled tumor, and may function as a

bridge for interaction between tumor and neighboring tissues

(107). This unique interface was also observed in human

melanoma (107). In primary liver cancer, PROM1+ and CD47

+ cancer stem cell (CSC), which was scattered in tumor areas,

was found to be gradually increased from leading-edge to

tumor to portal vein tumor thrombus, and closely related to

TME remodeling and tumor metastasis. The unique

metabolic features at the interface, where may occur sudden

decrease or increase of certain hallmark pathways, suggest it

may serve as a buffer between tumor and normal regions (16).
Frontiers in Oncology 10
The tumor interface has specific cell compositions. In cutaneous

SCC, a tumor-specific keratinocyte (TSK) subpopulation located at

the leading edges functioned as a hub for intercellular

communication, which is probably due to short distance between

the interface and tumor or normal tissues (92). In BC, LumA tumor

cells scarcely existed in the interface of tumor, whereas LumB cells

were scattered throughout the tumor tissue, suggesting heterogeneous

spatial distribution of tumor cell subpopulations (108). In a mouse

pancreatic cancer model, a tumor cell cluster upregulated LDHA (a

hypoxia-related gene) in the interface area compared with that in the

tumor center and had stronger ability for survival and invasion (53).

The tumor interface has unique immunosuppressive TME as

well. In intrahepatic cholangiocarcinoma (ICC), macrophage

and NK/T cells were enriched close to the boundaries. Of

note, immune cells were recruited to the borderline from the

tumor side, and the region nearer to the borderline enriched

more immune cells, showing the heterogeneous distribution of

immune cells in both the axial and lateral directions (Figure 1G).

Additionally, immune checkpoint genes such as BTLA, CTLA4,

CD96 and IDO1 were enriched on the tumor side of the interface

(19, 113). Similar aggregation of macrophage subpopulations

and T cells was also reported in ICC metastases (113). In GBM, a

subset of IL-10-releasing HMOX1+ myeloid cells were identified
TABLE 2 Continued

Spatial heterogeneity

Cancer type Species Technology Highlights ST data access Ref.

GC human,
mouse

LCM A stromal gene signature was associated with poor disease outcome, and HSF1
regulated the signature.

GEO: GSE162301,
GSE165211

(126)

IMPC human Visium The high expression levels of the SREBF1 and FASN indicated a poor prognosis. GSA: HRA001442 (112)

PC human Visium, scRNA-seq,
scATAC-seq,
FAIRE-seq

High PROSGenesis score was associated with good prognosis. EGA:
EGAS00001000526

(123)

Skin SCC human Visium, scRNA-seq,
MIBI, WES

High expression of TSK-specific genes ITGB1 and PLAU correlated with
significantly reduced PFS.

GEO: GSE144240 (92)

Cervical SCC human stereo-seq, snRNA-
seq, IF

Myofibroblasts were associated with poor survival. CNSA:
CNP0002543

(93)

CRC human Visium, scRNA-seq,
IF

High infiltration of FAP+ fibroblasts and SPP1+ macrophages correlated with worse
prognosis.

GSA: HRA000979 (90)

PDAC mouse Visium, IF Identified genes associated with good or poor prognosis. Not available (53)
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SRA, Short Read Archive. GSA, Genome Sequence Archive. CNSA, China National GeneBank Sequence Archive. EGA, European Genome-Phenome Archive. DDBJ, the DNA Data Bank
of Japan. IDC, invasive ductal carcinoma. DCIS, ductal carcinoma in situ. IMC, imaging mass cytometry. MS, Mass spectrometry. SCC, squamous cell carcinoma. IMPC, invasive
micropapillary carcinoma. BC, breast cancer. TNBC, triple-negative breast cancer. GC, gastric cancer. GBM, glioblastoma. CRC, colorectal cancer. PDAC, pancreatic ductal
adenocarcinomas. PC, prostatic cancer. LNM, lymph node metastasis. HCC, hepatocellular carcinoma. ICC, intrahepatic cholangiocarcinoma. RCC, renal cell carcinoma. ISS, in situ
sequencing. ISH, in situ hybridization. LCM, laser capture microdissection. IF, immunofluorescence. smFISH, single-molecule RNA fluorescence in situ hybridization. MIBI, multiplexed
ion beam imaging. CODEX, co-detection by indexing. CyTOF, cytometry by time of flight. WES, whole-exome sequencing. WGS, whole-genome sequencing. DSP, digital spatial profiling.
IHC, immunohistochemistry. TCR, T cell receptor. FFPE, formalin fixed paraffin-embedded. TSK, tumor-specific keratinocyte. TAMs, tumor-associated macrophages. TLSs, tertiary
lymphoid structures. SAMs, scar-associated macrophages. CAFs, cancer-associated fibroblasts. NAT, neoadjuvant treatment. ICI, immune checkpoint inhibitor. NAC, neoadjuvant
chemotherapy. PFS, progression free survival. KO, knockout. PD, progressive disease. SD, stable disease, PR, partial response.
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in the direct neighborhood of mesenchymal-like tumor regions,

which drove T cell exhaustion and thus facilitated the

immunosuppressive TME (97). In TNBC, a CD8+ T cell

population was identified at the interface instead of tumor

core, but their functions need further elucidation (109).
Treatment response

It is very important to predict the response of cancer patients

for specific cancer therapy clinically. However, it is quite difficult

due to complex tumor heterogeneity (2, 123). ScRNA-seq has

revealed specific cell components could influence treatment

response in diverse cancers (127). ST further revealed the specific

spatial aggregation and cell-cell interactions of certain cell

subpopulations could induce differential treatment responses. For

instance, the TLS, which aggregates immune cells in or near the

tumor, provides a niche that promotes in situ B cells maturation

toward plasma cells in RCC (17). These plasma cells disseminate

into the tumor tissue and can produce IgG. The tumors with high

percentages of IgG-labeled tumor cells were more infiltrated with

CD68+ macrophages, which is one of the main effectors of

antibody-dependent cellular cytotoxicity (17). This process may

promote immunoreactivity and results in better response to ICI

treatment. Additionally, the tumor invasive front was found

enriched with specific cell subpopulations, which differ in

metabolic states and functions from those elsewhere. SAA+

hepatocyte subpopulations near the invasive front are associated

with recruitment of M2-like macrophages in ICC, which may form

a niche with impaired immune response and promote further

tumor invasion and a worse treatment response (19). Moreover,

ST also uncovered the connection between specific cell-cell

interaction and treatment response. Most FAP+ fibroblasts and

SPP1+ macrophages were colocalized in CRC (90, 121). These FAP

+ fibroblasts enhanced the recruitment and the proinflammatory

activity of SPP1+ macrophages through WNT5A-FZD2 pairs and

the expression of TGF-b superfamily genes (immunosuppressive

molecules) etc., respectively. In addition, FAP+ fibroblasts and SPP1

+ macrophages upregulated genes of extracellular matrix (ECM)-

related pathways, suggesting their role in facilitating the generation

of desmoplastic structures, which further limited the immune cell

infiltration and induced diminished ICI treatment response (90,

121). Interestingly, the interaction of macrophage subpopulations

also affects the treatment response in colorectal cancer liver

metastasis (116).
Clinical application of ST

Diagnosis

The IHC technique has long been used by physicians and

pathologist to diagnose a tissue as benign or malignant, determine
Frontiers in Oncology 11
the grade and stage of a tumor, identify the cancer cell types, and

find the origin of metastasis (128–130). Compared with IHC- and

IF-based methods, ST has comparable resolution and is almost

transcriptome wide, indicating an enormous potential in cancer

pathology (20, 131). Through spot deconvolution and prior cell

marker genes, researchers can estimate the cell composition of

spots and further divide the ST sections into several spatially

different areas i.e., tumor area, tumor leading-edge area and para-

tumor area. Several pilot studies have shown ST-based

pathological annotations displayed comparable or even higher

accuracy than that from pathologists (38, 82, 110, 112, 123)

(Table 2). Moreover, ST can distinguish cancer subtypes as well

(108). For example, Svedlund et al. developed an ISS-based tool

called OncoMaps for identification of BC subtypes and predicting

recurrence risk (124). Yoosuf et al. trained a machine learning

model based on the expert annotation of hematoxylin and eosin

(H&E)-stained images and ST data to classify BC tissues into non-

malignant, ductal carcinoma in situ (DCIS) and invasive ductal

carcinoma (IDC) regions with precision up to 96 – 100%. This

classification method may provide clinical support for

pathologists in the future (125).
Prognosis associated factors

Prognostic factors can indicate the clinical outcomes of various

kinds of diseases (132) (Table 2). Currently, three kinds of

prognostic factors identified by ST have been reported in multiple

cancer types. The first is gene markers. In melanoma, in the tumor

compartment, high expression levels of CD8, CD3, TIM3, IDO1

etc. suggested longer progression free survival (PFS), whereas high

levels of B2M and PD-L1 in macrophage compartment were

associated with longer overall survival (OS) (18). In ICC,

hepatocytes close to invasive fronts with high expression level of

SAA1 and SAA2 were correlated with worse prognoses (19).

Moreover, many gene markers were identified in PDAC, liver

cancer, BC, bladder cancer, SCC and GC (53, 92, 112, 114, 121,

126, 133). Cell subpopulations were also potential markers of

prognosis. For example, CCL2+ endothelial cells and fibroblasts

in the deep invasive layer were associated with poor clinical

outcomes (91). Similarly, in bladder cancer, CDH12+ epithelial

cell was associated with poor prognosis (57). Additionally, FAP+

and INHBA+ CAFs, and high expression of HSF1 were reported

negatively correlated with survival in GC (58, 126). In glioma,

blood-derived TAMs indicated poor prognosis (54). A gene

signature usually consists of tens to hundreds of genes, which can

serve as a prognostic factor as well. For instance, in PC, Taavitsainen

et al. proposed a gene signature called PROSGenesis score and

further demonstrated high PROSGenesis score was associated with

good prognosis (123). In HCC, Wu et al. proposed high TLS-50

signature score was associated with good prognosis (16).

Unsurprisingly, higher CAF signature predicted unfavourable PFS

and OS in cervical SCC (93) and GC (126).
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Challenges of ST

ST has displayed its advantages in characterizing tumor

heterogeneity in gene expression patterns and cell compositions,

and potential in clinical studies (12, 134). Though powerful, the

cost will limit its wide application. More importantly, two aspects

of technical issues also need to concern.

On the one hand, the performance and applicability of ST

need to be further improved. First, the detection efficiency of ST is

relatively low compared with scRNA-seq (29), which can hardly

capture RNA molecules with low expression levels, leading to

missing of potential genes that play a role in tumor progression,

metastasis, or relapse. Since for most high-resolution SPBC

techniques, the area with barcode to capture molecules is less

than 30%, thus more than 70% of the mRNA molecules will be

missing. Second, most ST approaches only obtain single-end

transcripts instead of the full-length transcripts. Thus, it is hard

to investigate immune cell receptor repertoires and alternative

splicing events, which are important for cancer research.

Furthermore, full-length transcripts will make it possible for

variant calling across the transcriptome and differential

expression analysis at the isoform level as well (135). Third, ST

is not exactly suitable for FFPE samples. FFPE tissue blocks, which

are the gold standard method of preservation of human tissue for

diagnosis, are usually stored for a long time. Consequently, RNA

molecules in these blocks are often degraded seriously, hence it is a

great challenge to utilize these samples. NanoString DSP and 10x

Genomics Visium have shown their compatibility for FFPE tissue

blocks (17, 18, 136). However, the quality of data probably varies

with specific samples and is much lower than using the fresh one.

On the other hand, the bioinformatic tools for ST data analysis

do not meet current needs. Generally, extracting valuable

information from raw ST data requires several steps of data

processing, including imaging processing, reads mapping, gene

expression mapping, followed by downstream analysis such as

spot deconvolution, clustering, detection of spatially variable

genes, cellular interaction inference, and trajectory inference et al.

(137) (Supplementary Table 1). Some of these steps, such as

deconvolution and clustering, are also frequently used in bulk

RNA-seq and/or scRNA-seq data processing, hence many tools

initially designed for RNA-seq or scRNA-seq are compatible with

ST data. However, their power will unavoidably decrease due to

neglect of spatial location and data structure features (50). Thus, it is

essential to take features exclusive to ST data into consideration.

First, for ST with multicellular resolution, there are plenty of tools

for deconvolution of spots, such as SPOTLight (138), SpatialDWLS

(139), CARD (140) and Stdeconvolve (141) etc., yet it is difficult to

affirm the precise number of cells within a spot but for H&E-stained

images. In addition, for ST with subcellular resolution such as

HDST (42) and Stereo-seq (43), few tools could identify the

individual cell by merging multiple adjacent spots. To distinguish

an individual cell from ST is quite important if we want to make full

use of this ultra-high-resolution technology. Second, tools for
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integrating spatial data from multiple batches, platforms, omics,

and species are scanty. In this aspect, Spacemake (142), BASS (143)

and MAPLE (144) claimed their capacity of multi-platform data

integration of ST, but it is essential to further confirm

their effectiveness.

Previous studies have shown the prevalent existence of

heterogeneity in genomics, transcriptomics, proteomics, and

epigenomics (145). However, single-omics technology can only

profile the tumor heterogeneity from a specific angle, which

ineluctably loses a large amount of information about the other

omics. To handle this problem, scientists have developed a series

of multi-omics techniques parallel sequencing of single-cell

genomes and transcriptomes (146–152). At present, spatial

multi-omics technology such as MOSAICA (153), DbiT-Seq

(154), SM-Omics (155), NanoString CosMx™ SMI platform

(156) and spatial protein and transcriptome sequencing

(SPOTS) (157) etc., can quantify the transcriptome and

multiple proteins and retain the spatial coordinates. The

multi-modal spatial genomics approach provides a promising

platform for studying the intrinsic and extrinsic factors

contributing to spatial heterogeneity in gene expression and

genomic variants (158). Currently, spatial multi-omics has been

used in cancer research (41). Another study tried to integrate

protein subcellular localization, affinity proteomics, mass

spectrometry (MS) data sets and RNA-seq information in a

human lymphoma cell line. Their work helps to deepen the

knowledge on the architecture of the cells and the complexity of

cancer heterogeneity (159). In sum, multi-omics technology has

shown its unprecedented value in cancer biology.

Prospects of ST in cancer research
and clinical application

ST techniques have ultrahigh resolution and retain the spatial

information of genes and cells, which make them capable of solving

many outstanding biological questions. As we know, most current

ST can only display gene expression profile and organization of cells

on the plane, which is two-dimensional, and does not truly

recapitulate the spatial, cellular, and chemical environment of

highly complex tumors and their stroma (160). The real spatial

atlas should be three-dimensional (3D), which can restore the most

realistic spatial environment of cells in tumors, and further provides

a more precise atlas and solid basis for research on the mechanism

of tumorigenesis and progression, cancer heterogeneity, and clinical

applications. Currently, there are bioinformatic tools for

reconstruction of 3D ST atlas using multiple sequential adjacent

slices and the 3D architecture of human heart (161), cardiac

organoid (162), and mouse brain (163, 164) etc. have been

reconstructed (Supplementary Table 1). However, few studies

characterized the 3D structure of tumor tissues (165). We believe

the reconstruction and characterization of the 3D architecture of

tumors based on ST will revolutionize our knowledge of cancer. In

addition, ST may shed light on the role of organelles in cancer.
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Compared with normal cells, cancer cells display alterations in

energy metabolism, which are closely associated with mitochondrial

activities (166). Subcellular ST techniques could help to precisely

locate the genes that involve in the abnormal energy metabolism

and further reveal the mechanism of how they contribute to cancer

growth. Previous research also revealed lysosomal related to the

dysregulation of tumorigenesis-associated pathways in cancer (166).

Interestingly, the intracellular positioning of lysosomes has close

connection with the function of cells. For example, the lysosomal

subpopulations at the edges of the cancer cell could regulate cell

adhesion, exocytosis, and invasion (167). However, it is not clear

how the spatial position affects the functions of lysosomes. In this

respect, ST techniques such as APEX-seq (47), show great potential

for discovering the genes and pathways involved in the functional

transition within the organelle. Moreover, ST also shows great

potential in premalignant disease research. Currently, the

aggressiveness of a premalignant lesion is primarily evaluated by

cell morphology (168). However, cell morphology alone is not

always sufficient for predicting the evolutionary trajectory of a

premalignant lesion. ST remains spatial information as

morphology, and it has higher resolution and could predict the

differentiation directions of tumor cells based on gene expression

profiles and splicing events (169, 170). The additional information

provided by ST allows it to identify the precancerous lesions

more accurately.

Tumorigenesis, tumor progression and metastasis usually

accompany with genomic, transcriptomic, and metabolic changes,

which can serve as a basis for diagnosis and identification of

subtypes of cancer (171, 172). Recent studies proved ST could

obtain these variations (16, 56, 172–175), suggesting ST has great

potential in cancer clinical application, especially for digital

pathology (DP). In addition, the combination of ST and other

information, i.e. pathological imageology and spatial proteasome,

may bring new insights into DP (176).
Concluding remarks

Currently, there are two major kinds of ST techniques in term

of the experimental principle, thereinto ISB-based ST technique is

among the most promising one due to high resolution and

throughput, as well as the ability of whole transcriptome

profiling. ST has shown its power in characterizing spatial

heterogeneity and clinical applications in cancer. Researchers

have profiled the TME in PDAC, BC, CRC, GC, PC, lung

cancer, liver cancer, skin cancer, gliomas etc. based on ST. In

addition, an increasing number of studies have shown the strength

of ST in pathological diagnosis. Many novel potential prognostic

markers were also discovered recently. These results jointly

suggest ST is a promising technology for comprehensively

elucidating spatial heterogeneity, discovering specific spatial

structures in tumor tissues as well as for applications in clinical

such as pathological diagnosis and prognostic prediction.
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With the development of ST techniques and matched

bioinformatic tools, the challenge in cost, sensitivity, and

automation will be overcome in a few years. In addition, spatial

multi-omics technology further integrates transcriptome with

other omics such as proteomics, providing more comprehensive

landscape of cancer, which may revolutionize our knowledge on

cancer. In conclusion, ST technology is progressing rapidly, and it

is promising for cancer research and clinical application.
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