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Yue Wang1,2,3, Guohai Shi1,2,3, Yuanyuan Qu1,2,3*,
Hailiang Zhang1,2,3* and Dingwei Ye1,2,3*

1Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan
University, Shanghai, China, 2Department of Oncology, Shanghai Medical College, Fudan University,
Shanghai, China, 3Shanghai Genitourinary Cancer Institute, Shanghai, China
Background: Renal cancer is one of the most lethal cancers because of its

atypical symptoms and metastatic potential. The metabolism of amino acids

and their derivatives is essential for cancer cell survival and proliferation. Thus,

the construction of the amino acid metabolism-related risk signature might

enhance the accuracy of the prognostic model and shed light on the

treatments of renal cancers.

Methods: RNA expression and clinical data were downloaded from Santa Cruz

(UCSC) Xena, GEO, and ArrayExpress databases. The “DESeq2” package

identified the differentially expressed genes. Univariate COX analysis selected

prognostic genes related to the metabolism of amino acids. Patients were

divided into two clusters using the “ConsensusClusterPlus” package, and the

CIBERSORT, ESTIMATE methods were explored to assess the immune

infiltrations. The LASSO regression analysis constructed a risk model which

was evaluated the prediction accuracy in two independent cohorts. The

genomic alterations and drug sensitivity of 18-LASSO-genes were assessed.

The differentially expressed genes between two clusters were used to perform

functional enrichment analysis and weighted gene co-expression network

analysis (WGCNA). Furthermore, external validation of TMEM72 expression

was conducted in the FUSCC cohort containing 33 ccRCC patients.

Results: The amino acid metabolism-related genes had significant correlations

with prognosis. The patients in Cluster A demonstrated better survival, lower

Treg cell proportion, higher ESTIMATE scores, and higher cuproptosis-related

gene expressions. Amino acid metabolism-related genes with prognostic

values were used to construct a risk model and patients in the low risk

group were associated with improved outcomes. The Area Under Curve of

the risk model was 0.801, 0.777, and 0.767 at the first, second, and third year

respectively. The external validation cohort confirmed the stable prognostic

value of the risk model. WGCNA identified four gene modules correlated with
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immune cell infiltrations and cuproptosis. We found that TMEM72 was

downregulated in tumors by using TCGA, GEO datasets (p<0.001) and the

FUSCC cohort (p=0.002).

Conclusion: Our study firstly constructed an 18 amino acid metabolism

related signature to predict the prognosis in clear cell renal cell carcinoma.

We also identified four potential gene modules potentially correlated with

cuproptosis and identified TMEM72 downregulation in ccRCC which

deserved further studies.
KEYWORDS

clear cell renal cell carcinoma, amino acid metabolism, cuproptosis, risk signature,
transmembrane protein 72
Introduction

Renal cell carcinoma is the third most frequent genitourinary

tumor in urology (1). It is estimated that there are 79,000 new

patients diagnosed with renal tumors and 13,920 related deaths in

the United States in 2022 (1). Clear cell renal cell carcinoma

(ccRCC) is the most common type of kidney malignant tumor.

Due to the atypical clinical symptoms in the early stage of ccRCC,

nearly 30% of patients are diagnosed with advanced ccRCC and

usually have a worse prognosis (1). Although immunotherapy has

made enormous progress in prolonging the survival of metastatic

ccRCC patients and becomes the first line of advanced ccRCC (2),

the efficacy still needs to be improved. Thus, it is urgent to develop

novel reliable biomarkers to predict the prognosis, tumor

progression, and drug sensitivity and to guide personal

precision therapy.

Metabolism reprogramming that supports cancer cells

proliferating at a high rate has been identified as a hallmark of
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cancer (3). The alteration in glucose metabolism was known as the

“Warburg Effect” (4). Besides, amino acids, lipids, and nucleotides

metabolic processes affected by glycolysis also demonstrated

aberrant dysregulations due to complicated crosstalk within the

tumor microenvironment (TME). Amino acid metabolism not only

participates in the synthesis of proteins but also involves in the

regulation of the proliferation of cancer cells (5). Glutamine, a

metabolic substance second only to glucose, provides carbon and

nitrogen for the biosynthesis of biomacromolecules that are

required for rapid tumor growth. In addition, amino acid

metabolism is also correlated with drug resistance (6), ferroptosis

(7), epigenetic modifications (8), and so on. Cuproptosis is a new

form of regulated cell death induced by copper (9). The underlying

link and regulatory network between amino acid metabolism and

cuproptosis might provide new therapeutic strategies. An increasing

number of studies has confirmed the irreplaceable role of amino

acid metabolism-related genes in tumorigenesis (10–12). For

example, CB-839, the inhibitor of glutaminase (GLS) could exert

strong anti-tumor effects alone or in combination with targeted

therapy in ccRCC cell lines (13). The following clinical trial

confirmed the anti-tumor effects of CB-839 (14). Nicotinamide

N-Methyltransferase (NNMT) could catalyze methyl transfer from

S-adenosyl methionine (SAM) to nicotinamide (NAM). In ccRCC,

NNMT protein was higher in tumor tissue and ectopic expression

of NNMT promoted cancer cell proliferation (15). Nevertheless, the

integral analysis of amino acid metabolism-related gene set has not

been systematically investigated in ccRCC.

In this study, we thoroughly performed systematic and

profound investigations of amino acid metabolism-related genes

in ccRCC. First, we identified the differentially expressed genes

between tumor and normal tissue related to amino acid metabolism

with prognostic value. Two different clusters with different amino

acid metabolism characteristics showed significant differences in

survival, immune cell infiltrations, and cuproptosis-related genes.

Then, we constructed an 18-LASSO-genes risk model in TCGA
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cohort and validated it in E-MTAB-1980 cohort. To explore the

differences between two clusters in survival, we explored the

differentially expressed genes (DEGs) between two clusters.

Functional enrichment analyses of these DEGs were conducted.

Lastly, we identified four gene modules that showed associations

with immune cell infiltrations and cuproptosis-related genes, and

validated TMEM72 expression in ccRCC patients. These discoveries

might promote the development of precision treatment for ccRCC

and expand new research strategies.
Methods

ccRCC samples from FUSCC cohort

The tumor samples and paired normal tissues of 33 patients

with ccRCC from the Department of Urology at FUSCC

(Shanghai, China) were collected during surgery and recruited

for the studies. All patients consented to the examination and

signed an informed consent form. The Helsinki Declaration II

was followed in the design of the study and the testing

techniques. The Fudan University Shanghai Cancer Center’s

ethical committee approved the study methods utilized in this

research (FUSCC, Shanghai, China).
Data acquisition, processing and amino
acid metabolism-related genes

The RNA expression and clinical data of primary ccRCC were

downloaded from UCSC Xena (xenabrowser.net) (16). The FPKM

(Fragments Per Kilobase of transcript per Million mapped reads)

was converted to TPM (Transcripts Per Million) and subsequently

normalized in the log(X+1) algorithm. E-MTAB-1980 was

considered as an external validation cohort and downloaded from

the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/).

The GEO datasets (https://www.ncbi.nlm.nih.gov/geo/) including

GSE40435, GSE53757, and GSE36859 cohorts were downloaded to

analyze TMEM72 mRNA expression in ccRCC. The normalized

gene expression profiles were downloaded and annotated. Probes

were averaged if the multiprobes were mapped to the same gene.

After excluding the patients without follow-up data, there were 522

tumor samples, 71 normal samples in TCGA cohort, and 101 tumor

samples in E-MTAB-1980. The amino acid metabolism genes of

REACTOME_METABOLISM_OF_AMINO_ACIDS_AND

_DERIVATIVES were obtained from the Molecular Signatures

Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb).

The list of the gene set was presented in Table S1. The

cuproptosis-related genes were obtained from previous research (9).
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Differential gene expression and
Univariate COX regression analysis

The normalized transcriptional profiles were used to find

differentially expressed genes (DEGs) between tumor and

normal tissue using “DESeq2” package (|LogFoldchange|>1

and p <0.05 ). The Protein-Protein interaction (PPI) network

of the 100 DEGs were retrieved from the STRING database

(https://string-db.org/) (17). The DEGs and the gene set of

amino acid metabolism intersected genes that were

subsequently performed to Univariate Cox regression analysis

with p <0.05. In total, the prognostic DEGs related to amino acid

metabolism (aamRDEG) were identified.
Subcluster analysis

Based on the prognostic amino acid metabolism-related

DEGs (aamRDEGs), “ConsensusClusterPlus” package divided

ccRCC patients into two subclusters (reps=50; pItem=0.8;

clusterAlg=“km”; distance=“Euclidean”). The survival analysis

was applied using “survival” package. “CIBERSORT” and

“ESTIMATE” packages were used to evaluate the immune cell

infiltrations in KIRC. The LM22 was obtained from the

CIBERSORT website (https://cibersort.stanford.edu/). Then,

we compared the immune cells infiltrations and cuproptosis-

related genes between subclusters.
Construction of amino acid metabolism-
related risk signature

The least absolute shrinkage and selection operator (LASSO)

regression analysis was applied in aamRDEGs to establish a risk

model using “glmnet” package. The smallest l is chosen to

construct the model to ensure accuracy of the risk siganture

(lmin=18). Thus, an 18-LASSO-genes risk signature was

constructed and the risk scores were calculated: Risk

score=SCoefficients×LASSO-genes. To ensure the universality of

our risk model, we selected the median of the risk score as the cutoff

value. Then the patients were divided into 2 groups (high risk VS.

low risk). The survival analysis was performed to compare the

outcomes of these two groups. The Area Under Curve (AUC) of the

ROC curves were calculated to evaluate the accuracy of the risk

signature. The E-MTAB-1980 cohort served as an external

validation cohort to confirm the stability and accuracy of the risk

model in ccRCC patients.
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Clinicopathological features
correlation analysis

The patients without complete clinicopathological

information were excluded in this section analysis. After that,

there were 245 ccRCC patients in KIRC cohort and 99 ccRCC

patients in E-MTAB-1980 cohort. The heatmaps of two cohorts

were plotted using “pheatmap” package. We next performed

Univariate and Multivariate Cox regression analyses to evaluate

the predictive value of the risk signature model. The correlations

between risk score and clinical phenotypes were conducted to

assess the changes of the risk score in the process of tumor

progression. The Sankey picture was used to identify the

distribution of patients using “ggalluvial” package.
Pan-cancer analysis of the
18-LASSO-genes

The Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.

hust.edu.cn/GSCA/) database was an integrated platform for

gene set cancer analysis (18). Single nucleotide variation (SNV),

copy number variation (CNV), methylation, and drug sensitivity

(Genomics of Drug Sensitivity in Cancer, GDSC, https://www.

cancerrxgene.org/; Cancer Therapeutics Response Portal, CTRP,

https://portals.broadinstitute.org/) of the 18-LASSO-genes were

investigated in human cancers. The top ten most altered genes of

SNV were presented in the oncoplot. Pearson correlation tests

were applied and p<0.05 was considered statistically significant.
Functional enrichment analysis

To investigate the underlying mechanism of different

outcomes between two clusters (Cluster B VS. Cluster A). The

differentially expressed genes (DEGs) between two clusters were

identified (|LogFoldchange|>1 and p<0.05). The DEGs were

subsequently performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways

analysis in the DAVID (https://david.ncifcrf.gov/) database. The

functional enrichment results were filtered by p<0.05 and

FDR<0.1. Gene set enrichment analysis (GSEA) was used to

identify potential biological process (BP) (c5.go.bp.v7.

5.symbols.gmt) and KEGG pathways (c2.cp.kegg.v7.5.

symbols.gmt) of DEGs between two different clusters using

GSEA 4.1.0 software. The GSEA results were filtered by p<0.05.
Frontiers in Oncology 04
Weighted gene co-expression
network analysis

The DEGs between two clusters (Cluster B VS. Cluster A) of

522 patients from the KIRC cohort were used to construct a co-

expression network using the “WGCNA” package. Then, a

weighted adjacency matrix was constructed to identify correlation

strength between nodes using a power function. After choosing the

best soft power of 6, the adjacency matrix was transformed into a

topological overlap matrix (TOM), and the corresponding

dissimilarity (1-TOM) was calculated. The average linage

hierarchical clustering was performed based on a TOM-based

dissimilarity measure with at least ten genes dendrogram to

identify similar gene modules. The result of the cluster tree was

displayed in the plots. The Pearson correlations between gene

modules and ESTIMATE scores and cuproptosis-related genes

were investigated to detect underlying impacts on immune

infiltrations and programmed cell death procedures.

GeneMANIA (http://genemania.org/) was applied to explore the

PPI network of the gene module. GO analysis of yellow and brown

gene modules was applied to determine where these genes

enriched in.
Real-time quantitative PCR analysis

The total RNA of 33 patients was extracted using TRIzol

reagent (Invitrogen Life Technologies, USA). The reverse

transcription was performed using EZBioscience 4× EZscript

Reverse Transcription Mix II (EZBioscience, USA). The Real-

Time Quantitative PCR (RT-qPCR) experiment was conducted

using EZBioscience 2× SYBR Green qPCR master mix

(EZBioscience, USA) and detected using QuantStudio™ Real-

Time PCR Software. All the experiments were conducted

according to the manufacturer’s instructions. The primers for

TMEM72 were as follows: forward, 5′- AGG GGC CTA CTT

TGT GGC T-3′ and reverse, 5′- TTC TCC CTT ACT CTG TCT

GCC-3′. The TMEM72 expressions were calculated relative to

that of GAPDH. Each sample was repeated three times and the

average value was performed. The TMEM72 mRNA expression

was determined as 2-DCt = 2-(Ct (TMEM72) - Ct(GAPDH)). The Wilcox

test was used for the comparisons of the means of tumor and

normal tissue. In addition, TMEM72 of renal cancer cell lines

were downloaded from the Cancer Cell Line Encyclopedia

(CCLE) (https://sites.broadinstitute.org/ccle). Expression charts

were performed using GraphPad Prism 9.0.0 software.
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Validation of TMEM72 protein expression

The immunohistochemistry staining was obtained from the

Human Protein Altas (https://www.proteinatlas.org) (19). The

TMEM72 protein expression levels of tumor and normal tissue

were assessed by HPA039894 and HPA062907 independently.

In addition, we utilized Proteomic Data Commons (PDC)

(https://pdc.cancer.gov/pdc/) website to investigate TMEM72

protein expression and prognostic value using CPTAC data.

We also explored the correlation between TMEM72 mRNA

expression and protein expression.
Statistical analysis

The analysis has been performed using R 4.1.1 software and R

packages. The figures were produced by Adobe Illustrator (CC

2020). The distinctions between these two groups were analyzed

using the Wilcoxon rank sum test. The correlation test was

performed in the Pearson correlation algorithm and survival

analysis was performed in the log-rank algorithm. All of the

hypothetical tests had a significant p value of 0.05 and were

two-sided.
Results

Identification of amino acid metabolism-
related prognostic genes

The complete workflow of our study was present in Figure 1.

The details of clinicopathological features of ccRCC patients in two

cohorts were presented in Table 1. The DEGs between tumor and

normal sample and amino acid metabolism gene set had one

hundred intersected genes (Figure 2A). There were 57 genes

upregulated and 43 genes downregulated (Figure 2B). The

Protein-Protein interaction (PPI) network of the 100 DEGs were

investigated from the STRING database to identify the protein

interactions modelues and there were twomain protein interactions

modules (Figure 2C). The 57 prognostic aamRDEGs were obtained

using Univariate Cox regression analysis. The expression and

prognostic value of aamRDEGs were presented in Figures 2D, E.

After Univariate Cox regression, 31 genes including AANAT,

ASMT, CBS, CBSL, CKM, CSAD, HAO1, IL4L1, NNMT, PSAT1,

PSMB10, PYCR1, RPL13, RPL18, RPL22L1, RPL27A, RPL28,

RPL35, RPL36, RPL36A, RPL37, RPLP0, RPS19, RPS2, RPS20,

RPS8, SLC45A2, SLC5A5, SLC6A7, TDO2, and UROC1

demonstrated worse prognosis, while the other 26 genes were

correlated with better outcomes in ccRCC patients (Figure 2E).
Frontiers in Oncology 05
Subclusters correlated with survival,
immune infiltrations, and cuproptosis

The best k value (K=2) of the consensus analysis was selected

from k=2 to k=9. Patients with ccRCC were classed into two

subclusters according to the aamRDEGs expression. Cluster A

had 375 patients and Cluster B had 147 patients (Figure 2F).

Cluster A demonstrated a better prognosis compared to Cluster

B with p<0.001 (Figure 2G). In addition, Cluster B showed a

higher proportion of plasma cells, Tregs, and M0 macrophages

than Cluster A (Figure 2H). Cluster B demonstrated higher

StromalScore, ImmuneScore, and ESTIMATEScore compared

to Cluster A (Figure 2I). Cuproptosis was a novel cell death

induced by Cu2+ and correlated to mitochondria pathways (9).

Amino acid seemed important for cancer cell’s metabolism and

proliferation. Thus, we explored the potential differences

between two clusters based on the amino acid metabolism-

related genes. Of note, except for PDHB, eight genes including

FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, MTF1, and GLS

expressed higher in Cluster A, while CDKN2A expressed higher

in Cluster B (Figure 2J). These data implied that the aamRDEGs

had an underlying mechanism of regulating immune cell

infiltrations and a potential correlation with cuproptosis,

which might contribute to the worse outcomes.
Construction and validation amino acid
metabolism-related risk signature

After LASSO COX regression analysis, the 18-LASSO-genes

risk signature was established based on the lmin=18 (Figures 3A, B).

The details of the risk score were presented in Table 2. The median

value of the risk score was regarded as the cutoff value and divided

patients into two different groups (high risk VS. low risk). The

distribution of the patients was conducted in principal component

analysis (PCA) (Figure 3C). The scatter diagrams of survival status

and risk score of the KIRC cohort were presented in Figures 3D, E.

Next, we explored the whether survival differences that existed

between these two groups. The alive patients had a lower level of

risk score (p<0.001) (Figure 3F). The survival analysis demonstrated

that high risk group demonstrated a worse prognosis compared to

low risk group (p<0.001) (Figure 3G). The AUC of ROC was 0.801,

0.777, and 0.767 at the first, second, and third year respectively

(Figure 3H). The same analysis was performed in the E-MTAB-

1980 cohort (Figures 3I–N). The results confirmed the stability and

accuracy of the risk signature, which stressed the important role of

the metabolism of amino acids in carcinogenesis.
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Correlations between clinicopathological
features and risk score

The patients with complete clinical phenotypes were

incorporated in this section analysis. The clinicopathological

features of 245 patients from KIRC cohort and 99 patients from

E-MTAB-1980 cohort were presented in the heatmap

(Figures 4A, B). Next, we explored the prognostic value of

these clinicopathological features and risk scores. Univariate

and Multivariate Cox regression analyses were performed in

these two independent cohorts. In KIRC cohort, Univariate

Cox analysis showed except for gender, the other indicators

showed correlations with overall survival (OS) (HR>1, p<0.05).

Only the risk score demonstrated independent ability to

predict prognosis in the Multivariate Cox analysis

(HR=2.860, p<0.001) (Figure 4C). The risk score was

correlated with OS using Univariate Cox regression in the E-

MTAB-1980 cohort, but could not be an independent indicator

of prognosis according to the Multivariate COX analysis

(Figure 4D). The inconsistencies could be attributed to the

limited number of patients and other potential confounding

factors. We next explored the risk score alterations in process

of tumor progression. Risk score showed statistically significant

positive correlations with T status, N status, M status, Stage

status, and Grade status in the KIRC cohort (Figure 4E–I). The

distribution of different clusters and different risk groups was

plotted in Figure 4J. These results implied that the risk

signature of metabolism of amino acids could be a stable and

accurate model to predict prognosis and suggested amino acid

metabolism-related genes had an underlying role in

tumor progression.
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Pan-cancer analysis of 18-LASSO-genes

The pan-cancer analyses were conducted in the GSCA

database. The top ten mutant genes and the frequency of 18-

LASSO-genes were investigated in human cancers (Figure 5A).

UROC1 (21%), HAO1 (15%), and SLC5A5 (14%) were the top

three mutant genes in human cancers. The survival differences

between18-LASSO-genes set mutant and wild type was found in

UCEC (Uterine Corpus Endometrial Carcinoma), STAD

(Stomach Adenocarcinoma), KIRC (Kidney Renal Clear Cell

Carcinoma), DLBC(Lymphoid Neoplasm Diffuse Large B-cell

Lymphoma), and BLCA (Bladder Urothelial Carcinoma)

(Figure 5B). The summary of CNV and survival differences of

the 18-LASSO-genes were investigated (Figures 5C, D). The

methylation analysis demonstrated that the degree of

methylation varied in different tumors. For example, NNMT

showed a lower degree of methylation in tumors compared to

normal tissue in KIRC, which could contribute to the high

expression of NNMT in tumors (Figures 5E, F). The drug

sensitivity from GDSC and CTRP database were presented

(Figures 5G, H). NNMT, UROC1, IL4l1, BCKDHB, RPL22L1,

RPL13, and ACADSB had statistically significant correlations

with the IC50 of chemotherapeutic drugs, suggesting these genes

could serve as potential therapeutic targets.
Functional analysis of differentially
expressed genes between two clusters

Obtained from the Sankey diagram (Figure 4J), we noted

that the different clusters demonstrated close correlations with
FIGURE 1

The complete workflow of the study. (TCGA, The Cancer Genome Atlas; KIRC, Kidney Renal Clear Cell Carcinoma; DEG, Differentially Expressed
Gene; ccRCC, clear cell renal cell carcinoma; WGCNA, Weighted Gene Co-expression Network Analysis).
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live status. To identify the key genes that contributed to the

worse prognosis, we explored the differential expressed genes

(DEGs) between two clusters, and the DEGs were presented in

the volcano plot (Cluster B VS. Cluster A). There were 42

genes upregulated and 250 genes downregulated in Cluster B

compared to Cluster A (Figure 6A). The function enrichment

analysis of 292 DEGs demonstrated that biological process

(BP) mainly enriched in xenobiotic metabolic process,

regulation of microvillus length, urate metabolic process,

and materials transport procession (Figure 6B); cellular

component (CC) mainly enriched in extracellular exosome,
Frontiers in Oncology
 07
and several membranes (Figure 6C); molecular function (MF)

mainly enriched in transmembrane transporter activity,

symporter activity, monocarboxylic acid transmembrane

transporter activity, and amino acid transmembrane

transporter activity (Figure 6D); KEGG pathways mainly

enriched in metabolic pathways, drug metabolism-

cytochrome P450, and metabolism of different amino acids

(Figure 6E). The GSEA results demonstrated that Cluster B

and Cluster A participated in different pathways, which might

be correlated with the progression and prognosis of ccRCC

(Figures 6F, G).
TABLE 1 Clinical phenotypes of the ccRCC patients from TCGA and E-MTAB-1980.

TCGA cohort (%) E-MTAB-1980 cohort (%)

Age

<65 327 (62.64%) 52 (51.49%)

>=65 195 (37.36%) 49 (48.51%)

Gender

Female 183 (35.06%) 24 (23.76%)

Male 339 (64.94%) 77 (76.24%)

T classification

T1 268 (51.34%) 68 (67.33%)

T2 67 (12.84%) 11 (10.89%)

T3 176 (33.72%) 21 (20.79%)

T4 11 (2.11%) 1 (0.99%)

N classification

N0 237 (45.40%) 94 (93.07%)

N1 16 (3.07%) 3 (2.97%)

N2 0 4 (3.96%)

NX 269 (51.53%) 0

M classification

M0 412 (78.93%) 89 (88.12%)

M1 77 (14.75%) 12 (11.88%)

MX 33 (6.32%) 0

Stage

Stage 1 262 (50.19%) 68 (67.33%)

Stage 2 56 (10.73%) 10 (9.90%)

Stage 3 120 (22.99%) 13 (12.87%)

Stage 4 81 (15.52%) 10 (9.90%)

Stage X 3 (0.57%) 0

Grade

G1 14 (2.68%) 13 (12.87%)

G2 221 (42.34%) 59 (58.42%)

G3 205 (39.27%) 22 (21.78%)

G4 75 (14.37%) 5 (4.95%)

GX 7 (1.34%) 2 (1.98%)

Survival status

Alive 351 (67.24%) 78 (77.23%)

Dead 171 (32.76%) 23 (22.77%)
TCGA, The Cancer Genome Atlas.
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FIGURE 2

Consensus clustering of aamRDEGs and differences between two clusters. (A) The intersected genes of DEGs between tumor and normal tissue
and gene set of metabolisms of amino acids. (B) The volcano plot of the 100 DEGs. (C) The PPI network of 100 DEGs. (D) The different
expression levels of aamRDEGs between tumor and normal tissue. Red: upregulation in tumor. Blue: downregulation in tumor. (E) The HRs with
their 95% CI of aamRDEGs with p<0.05 were conducted using Univariate Cox regression analysis. (F) TCGA cohort was divided into two clusters
according to the consensus clustering (K=2). (G) The survival curve showed that Cluster A had a better prognosis compared to Cluster B
(p<0.001). (H, I) The potential differences in immune cell infiltrations between two clusters were investigated by CIBERSORT and ESTIMATE.
(J) The potential differences of cuproptosis-related genes between two clusters. ( ns, no significance; *,p < 0.05; **, P < 0.01; ***, P < 0.001)
(DEG, differentially expressed gene; PPI, Protein-Protein Network; aamRDEG, amino acid metabolism-related gene; HR, HR, hazard ratio; CI,
confidence interval).
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FIGURE 3

Construction and Validation of the Amino Acid Metabolism-Related Risk Signature. (A, B) Construction and validation of the candidate
aamRDEGs using LASSO regression analysis and the lmin =18 was selected. Validations of the risk signature in TCGA cohort were presented in
(C–H). (C) The distribution of two risk groups of TCGA cohort. (D) Survival status of the patients in TCGA cohort. (E) Ordered risk score in TCGA
cohort. (F) The difference in risk score between live status. (G) Survival Analysis between two risk groups (p<0.001) (high risk VS. low risk).
(H) The AUC of the ROC at the first, second, and third year in TCGA cohort. The validation of the risk signature in E-MTAB-1980 cohort were
conducted in the same way and presented in (I–N). (***P < 0.001) (aamRDEG, amino acid metabolism-related gene; LASSO, Least Absolute
Shrinkage and Selection Operator; TCGA, The Cancer Genome Atlas; ROC, Receiver Operating Characteristic; AUC, Area Under Curve).
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Identification hub gene modules

To identify the co-expression gene modules from the DEGs

obtained from different clusters, we performed the WGCNA

analysis. The best soft power for WGCNA was selected as 6

(Figure 7A). Based on this, 292 DEGs were classed into four MEs

(module eigengene) including MEblue, MEturquoise, MEbrown,

MEyellow (Figure 7B). The MEbrown, MEyellow could be

classified into one bigger gene module and MEblue,

MEturquoise could be classified into the other gene module

(Figure 7B). Because of the findings above, we explored the

correlations between different gene modules and ESTIMATE

scores, cuproptosis-related genes. Of note, MEblue gene module

demonstrated negative correlations with ESTIMATEScores,

while MEbrown and MEyellow demonstrated positive

correlations with ESTIMATEScores (Figure 7C). Similar to the

findings above, we found that cuproptosis-related except

CDKN2A showed negative correlations with MEbrown and

MEyel low gene modules (Figure 7C). MEblue and

MEturquoise demonstrated contrary correlations. We next

combine MEbrown and MEyellow as integrity to analyze their

expressions. The results showed that there were 31 genes in total

from MEbrown and MEyellow gene modules and most of the

genes except TMEM72 were higher in Cluster B (Figure 7D). To

define the underlying mechanism that 31 genes might influence,

we explored the PPI network from GeneMania and analyzed the

functional enrichment (Figures 7E, F). Because of the limited

gene number of the MEbrown and MEyellow modules, p<0.05

was considered significantly enriched. These genes enriched in

positive regulation of cell migration, negative regulation of
Frontiers in Oncology 10
canonical Wnt signaling and so on in biological process, which

implied the potential role in carcinogenesis (Figure 7F). The

KEGG pathways demonstrated that the MEbrown and

MEyellow module genes only enriched in the Wnt signaling

pathway. The results above indicated that the genes of MEbrown

and MEyellow modules might be central modules in tumor

development and were associated with immune infiltrations

and cuproptosis.
TMEM72 expression was downregulated
in ccRCC

Due to the specificity of TMEM72 expression, we then explored

the TMEM72 expressions in TCGA, GEO, and the FUSCC cohorts.

In TCGA, TMEM72 was significantly downregulated in tumors

compared to normal tissue (Figure 8A) and lower level of TMEM72

had a worse prognosis in TCGA (p=0.006) and E-MTAB-1980

cohorts (p=0.028) (Figures 8B, C). Three external cohorts

containing GSE40435, GSE53757, and GSE36859 confirmed that

TMEM72 expression was lower in tumors than in normal tissue

(Figures 8D–F). The TMEM72 mRNA expressions of renal cancer

cell lines were presented in Figure 8G. In FUSCC cohort, TMEM72

mRNA expression was higher in adjacent normal tissue than in

tumors (p=0.002) (Figure 8H). Lastly, the immunohistochemical

staining of TMEM72 protein from the HPA database confirmed

that TMEM72 was downregulated in renal cancers at the protein

level (Figure 8I). To further investigate TMEM72 protein

expression, we used PDC database to confirm our findings. As

shown in the Supplementary Figures 1A, B, TMEM72 protein

expression was significantly decreased in ccRCC than in normal

tissue. We next explored the parallel correlation between TMEM72

mRNA and protein expression. The results demonstrated a highly

correlated association between transcription and translation

(R=0.8142) (Supplementary Figure 1C). Thus, we could infer the

protein expression level from the RNA expression level, which was

consistent with the above conclusion in our study. The survival

curve demonstrated that patients with a higher level of TMEM72

protein expression had a better prognosis compared to patients with

a lower level of TMEM72 protein expression (p=0.014)

(Supplementary Figure 1D)
Discussion

Renal cell carcinoma is one of the deadliest cancers around

the world due to its high metastatic potential (20). With the

advanced development of novel treatment strategies, however,

the efficacy of immunotherapy and targeted therapy still needed

to be improved. Hence, to better guide the treatments and

predict the prognosis, novel biomarkers for patients with

ccRCC were urgently in demand. The important role of amino

acids is not only important for the anabolism of biomolecules
TABLE 2 The coefficients of eighteen-LASSO-genes.

Gene Coefficients

ACADSB -0.0464985234558365

BCKDHB 0.0990744929210214

CBS 0.338169768953652

CSAD 0.328087925215322

HAO1 0.0636468902107542

HIBCH -0.0601952071519661

HOGA1 -0.143534860112872

IL4I1 0.272026445233619

IYD -0.245885162590596

NNMT 0.0969328934626091

PSAT1 0.133109807017969

PYCR1 0.265148205286679

RIMKLA -0.210230274880309

RPL13 0.0853813702125398

RPL22L1 0.108528658183546

RPL36A 0.0373366566152849

SLC5A5 -0.000952564512580635

UROC1 0.0771235799115952
frontiersin.org

https://doi.org/10.3389/fonc.2022.1019949
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Su et al. 10.3389/fonc.2022.1019949
needed by tumor cells but also for regulating the function

integrality of immune cells in the tumor microenvironment

(TME) which eventually contributes to the immune evasion

(21, 22). For instance, Yang et al. confirmed the diagnostic value
Frontiers in Oncology 11
of three amino acids including glutamate in oral squamous cell

carcinoma (23). Previous studies identified amino acid

metabolism-related risk signatures to estimate the outcomes of

patients with glioma (10, 24). Jiang et al. developed an amino
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FIGURE 4

Correlations between clinicopathological features and risk score. The heatmap of different clinicopathological features and 18-LASSO-genes
were conducted in TCGA cohort (A) and E-MTAB-1980 cohort (B). Univariate and multivariate COX regression analyses of clinicopathological
features and risk scores were conducted in TCGA cohort (C) and E-MTAB-1980 cohort (D). (E–I) The correlations between clinical features and
risk scores were conducted in TCGA cohort. (J) Distribution of different clusters and different risk groups in TCGA cohort. ( ns, no significance;
*,p < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001) (TCGA, The Cancer Genome Atlas).
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FIGURE 5

Pan-cancer analysis of 18-LASSO-genes. The pan-cancer analyses were conducted in the GSCA database. The summary of SNV of 18-LASSO-
genes and correlations between SNV and survival were presented in (A, B). The summary of CNV of 18-LASSO-genes and correlations between
CNV and survival were presented in (C, D). The degree of methylation and correlations between methylation degree and gene expression of 18-
LASSO-gene were presented in (E, F). The drug sensitivity of 18-LASSO-genes from GDSC and CTRP databases were presented in (G, H). (SNV,
single nucleotide variation; CNV, copy number variation; GDSC, Genomics of Drug Sensitivity in Cancer; CTRP, Cancer Therapeutics Response
Portal) showe.
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acid catabolism-related gene signature associated with prognosis

in pancreatic adenocarcinoma (25). However, the studies

focusing on aberrant metabolism of amino acids still remained

to be investigated in ccRCC, and the correlations between amino

acid metabolism and immune cell infiltrations. In our research,

we utilized TCGA cohort and E-MTAB-1980 cohort to

investigate the prognostic value of amino acid metabolism-

related risk signature, and explored the correlations with

immune cell infiltrations and cuproptosis-related genes.

In total, there were 57 aamRDEGs with the prognostic value

which divided ccRCC patients into two clusters with different

amino acid metabolic traits. Cluster A correlated with better

overall survival (OS), a lower proportion of Tregs cells, higher

levels of Immunescore, Stromalscore, and ESTIMATEScore, and

positively associated with cuproptosis-related genes except for

CDKN2A and PDHB. To eliminate the effect of overfitting, the

LASSO regression analysis finally constructed an eighteen amino

acid metabolism-related risk signature. Risk scores were

calculated and classified patients into two subgroups and

correlated with patients’ outcomes. The high risk group

showed a worse prognosis compared to the low risk group in

TCGA cohort, which was confirmed in the E-MTAB-1980
Frontiers in Oncology 13
cohort. Previous studies had verified the important role of

NNMT in cancer progression. Proteomic analysis revealed that

NNMT played an indispensable role in for the functional

integrity of cancer associated fibroblasts (CAFs), which

indicated the importance role of NNMT in regulating the

stromal crosstalk in ovarian cancer (26). Thus, NNMT could

serve as a potential therapeutic target (27). However, the

literature related to the other LASSO genes in studying the

underlying mechanism was limited. Hence, our study provided

new perspectives to guide future research directions in the

process of carcinogenesis and progression.

To explore the hub gene modules which contributed to the

worse prognosis, the DEGs between two clusters were used to

perform GO, and KEGG functional analysis. And the GSEA

results revealed the different potential pathways or biological

processes between these two clusters. Then WGCNA

algorithm classified the 292 DEGs into four hub gene

modules which showed different correlations with immune

cell infiltrations and cuproptosis-related genes. We integrated

MEyellow and MEbrown and found that only TMEM72 from

the 31 genes was downregulated in Cluster B when compared

to Cluster A.
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FIGURE 6

Functional analysis of DEGs between two clusters. (A) The 292 DEGs between Cluster B and Cluster A were presented in the volcano plot.
(B–E) The functional enrichment results of 292 DEGs were conducted. Biological process in (B); cellular component in (C); molecular function
in (D); KEGG pathways in (E). (F, G) The GSEA results of two clusters were presented. (DEG, differentially expressed gene; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSEA, Gene set enrichment analysis).
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TMEM72, also known as C10orf127 or KSP37, is located at

10q11.21 and belonged to the transmembrane proteins (TMEM)

gene family. The TMEM protein family is one type of protein

expressed on the cell surface like anchorage proteins or as

structural proteins (28), but its specific functions were not yet

been well investigated. A growing number of studies revealed

that TMEMs were differentially expressed among human

cancers, including TMEM116 and TMEM229A in lung cancer

(29, 30), TMEM205 in hepatocellular carcinoma (31), TMEM168

in glioblastoma (32), and TMEM180 in colorectal cancer (33). In

addition, the TMEM family also played an essential role

in regulating the metastasis process and immune response in

tumor progression (34). However, the literature about TMEM72

was lacking. The previous study identified ten dysregulated

TMEM family genes in ccRCC and found that TMEM72 was

significantly downregulated in tumors compared to adjacent

normal tissue in ccRCC (p<0.01) (35). Consistent with the

previous study, our study confirmed that TMEM72 was

downregulated in tumors than in normal tissue (p=0.002).
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What’s more, Wrzesiński et al. discovered that TMEM72

expression levels decreased to a greater extent in metastases

than in non-metastases, although no statistical difference was

reached (39.78 fold VS. 5.13 fold, p=0.051) (35). Limited by the

relevant research about TMEM72, it was hard to elucidate the

reason for the TMEM72 aberrant expression in tumor cells.

Future studies should focus on the location and function of

TMEM72 protein, which might reveal the underlying

mechanisms of tumor progression.

There were certain limitations to our research. First, there

are no underlying mechanisms or crosstalk elucidated clearly by

this study. Thus, future studies about mechanism investigations

should be done. The correlations between amino acid

metabolism and cuproptosis-related genes might help discover

new therapeutic targets. Second, multicenter and large-cohort

studies were necessary to verify the risk signature before

applying it in clinical application. Third, with the development

of new technologies, gene expression should be evaluated at the

single-cell level. Lastly, the impact on immune cell infiltrations
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FIGURE 7

Identification of four hub gene modules. (A) Scale-free index analysis and mean connectivity analysis for selecting the best soft power.
(B) Dendrogram of 292 DEGs obtained from 1-TOM (dissimilarity) into four MEs. (C) Heatmap of correlations between ESTIMATE scores,
cuproptosis-related genes, and four MEs in KIRC. MEyellow and MEbrown were selected for the following analysis. (D) The expression levels of
thirty-one genes from MEyellow and MEbrown (Cluster B VS. Cluster A) (E) The PPI network of 31 genes from MEyellow and MEbrown. (F) The
GO enrichment analysis of thirty-one genes from MEyellow and MEbrown. (DEG, differentially expressed gene; TOM, topological overlap matrix;
ME, module eigengene; KIRC, Kidney Renal Clear Cell Carcinoma; PPI, Protein-Protein Interaction GO, Gene Ontology).
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caused by amino acid metabolism differences should be

investigated and studied in the future study.

In conclusion, we discovered 57 amino acid metabolism-

related genes correlated to OS and firstly constructed an 18
Frontiers in Oncology 15
amino acid metabolism-related risk signature for ccRCC

prognosis prediction. In addition, we identified four gene

modules that had significant impacts on patients’ survival. Our

study was based on high-throughput data from TCGA and E-
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FIGURE 8

TMEM72 expression in ccRCC. (A) TMEM72 mRNA expression in KIRC cohort. (B, C) Survival curves suggested the prognostic value of TMEM72
mRNA expression in KIRC and E-MTAB-1980 cohorts. (D-F) TMEM72 mRNA expression in three external validation cohorts (GSE36859,
GSE53757, GSE40435). (G) TMEM72 mRNA expression in renal cancer cell lines. (H) TMEM72 mRNA expression of 33 paired samples in FUSCC
cohort. (I) Immunohistochemistry staining of TMEM72 protein expression from HPA database. (***, P < 0.001) (KIRC, Kidney Renal Clear Cell
Carcinoma; HPA, Human Protein Atlas).
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MTAB-1980 cohorts , provided a unique profound

understanding of ccRCC prognosis and offered the theoretical

groundwork for future investigations on amino acid-related

novel therapeutic strategies.
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SUPPLEMENTARY TABLE 1

The gene l i s t o f REACTOME_METABOLISM_OF_AMINO_

ACIDS_AND_DERIVATIVES.

SUPPLEMENTARY FIGURE 1

TMEM72 protein expression in CPTAC database. (A) The TMEM72 protein

expression of paired samples. (B) The TMEM72 protein expression of
unpaired samples. (C) The positive correlation between TMEM72 mRNA

and protein expression. (R=0.8142) (D) The survival curve showed that

downregulation of TMEM72 was a symbol of poor prognosis.
(p=0.014).(CPTAC, Clinical Proteomic Tumor Analysis Consortium)
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