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The efficacy of radiotherapy, a mainstay of cancer treatment, is strongly

influenced by both cellular and non-cellular features of the tumor

microenvironment (TME). Tumor-associated macrophages (TAMs) are a

heterogeneous population within the TME and their prevalence significantly

correlates with patient prognosis in a range of cancers. Macrophages display

intrinsic radio-resistance and radiotherapy can influence TAM recruitment and

phenotype. However, whether radiotherapy alone can effectively “reprogram”

TAMs to display anti-tumor phenotypes appears conflicting. Here, we discuss the

effect of radiation on macrophage recruitment and plasticity in cancer, while

emphasizing the role of specific TME components which may compromise the

tumor response to radiation and influence macrophage function. In particular,

this reviewwill focus on soluble factors (cytokines, chemokines and components

of the complement system) as well as physical changes to the TME. Since the

macrophage response has the potential to influence radiotherapy outcomes this

population may represent a drug target for improving treatment. An enhanced

understanding of components of the TME impacting radiation-induced TAM

recruitment and function may help consider the scope for future therapeutic

avenues to target this plastic and pervasive population.

KEYWORDS

radiotherapy, tumor microenvironment, hypoxia, extracellular matrix, macrophage
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Introduction

Within neoplastic lesions, immune and mesenchymal cells interact with malignant

tumor cells and influence many facets of tumor progression (1–3). Tumor-associated

macrophages (TAMs) often make up a large proportion of the immune cell population

within the TME. Macrophages are a highly plastic immune cell population, and their
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phenotypes are shaped by the microenvironments in which they

reside (4, 5). In the context of cancer, macrophages are exploited

by the tumor cells to adopt phenotypes which counterintuitively,

help facilitate disease progression through providing a suitable

microenvironment for the progression of multiple carcinomas

(6). It is possible to consider the role of TAMs in tumor

progression as occurring in phases (Figure 1) which include

initial recruitment of TAM progenitors, subsequent polarization

to an immunosuppressive phenotype and prevention of anti-

tumor immune responses. TAMs can also facilitate angiogenesis

to meet the metabolic demands of the cancer while assisting the

passage of tumor cells into circulation and setting up the site for

secondary tumor growth (7–9). Interestingly, the TAM

population is phenotypically diverse to the extent that both

pro- and anti-tumoral phenotypes of these cells can reside in the

same tumor (10, 11). The prevalence of the TAM population

correlates with poor patient prognosis in all cancers (except

colorectal) (12–14) highlighting this population as a potential

therapeutic target in cancer.

Radiotherapy is still a mainstay of cancer treatment for

approximately 50% of all cancer patients. It is increasingly

recognized that radiotherapy is a strong immune modulator,

with the capacity to induce both pro- and anti-inflammatory

processes (15, 16). As such, radiation can elicit macrophage

recruitment into the tumor (17–20). TAM polarization away

from tissue-protect ion and towards ant i- tumoral /

immunostimulatory functions could be a potential approach to

boost the anti-cancer effects of radiotherapy and capitalize on

the immune-stimulating effects of this treatment (16, 19). Here,

the effect of radiation on TAM recruitment and polarization will
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be described. We will particularly focus on changes to soluble

and physical components of the tumor microenvironment

(TME) which may limit the positive effects of radiation on

macrophage plasticity and highlight key examples that could

be therapeutically targeted to improve radiation response.
Phase 1: Recruitment of TAMs

Recruitment overview

TAMs within the tumor are either present as tissue-resident

macrophages or are formed after circulating monocytes are

recruited and subsequently polarized into mature TAMs (21,

22). Resident macrophages are present during embryonic

development and tend to exist in specific tissues such as

Kupffer cells in the liver, and alveolar macrophages in the

pulmonary alveolus of the lungs (23). These macrophages can

provide a pro-tumorigenic niche and assist with initial tumor

growth from a very early stage (24).
Soluble factors impacting TAM
recruitment following radiotherapy

Soluble factors that mediate mobilization are critically

associated with recruiting monocytes/macrophages to the TME

(Figure 1). A well-documented signaling molecule involved in

this process is chemokine (C-C motif) ligand 2 (CCL2, also

known as monocyte chemoattractant protein 1; MCP1) (25–27).
FIGURE 1

Schematic representation of the role of TAMs in tumor progression. Radiation can contribute to recruitment and polarization as indicated by the
yellow arrows. Figure created in Biorender. Agreement number: RO24DGQPW4.
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Radiotherapy is known to induce the expression of CCL2 within

the TME (28, 29). Increased CCL2 expression can also be

regulated by components of the humoral arm of innate

immunity such as the complement system (30–32) and the

long pentraxin PTX3 (33). Both of these innate immunity

components appear to work in concert since PTX3 deficiency

results in complement-dependent TAM recruitment in 3-

Methylcholanthrene carcinogenesis models (33). Signaling of

complement anaphylatoxins C3a and C5a through their

respective receptors, C3aR and C5aR1, has been further

demonstrated to result in TAM recruitment and polarization

towards an immunosuppressive phenotype (30, 31). This

includes reduced CD206 expression and upregulation of

CD11c, major histocompatibility complex class II, CD80 and

CD86 in TAMs from C3 and C3aR1-/- mice (32). Interestingly,

expression of C3a, C5a and their receptors C3aR and C5aR1 is

induced in melanoma murine tumors following irradiation (20

Gy) (34). Furthermore, complement inhibition at the level of C3

(with a CR2-Crry fusion protein) in combination with radiation

has been demonstrated to enhance the numbers of macrophages

with an M1-like phenotype (F4/80+, CD11c+, CD206-) in

lymphoma tumor models (35).

In addition to chemokines and complement soluble factors,

cytokines are also involved in the recruitment of monocytes/

macrophages to the TME. Colony-stimulating factor 1 (CSF-1,

also known as macrophage colony stimulating factor; M-CSF),

which typically is associated with a differentiation/survival signal

for monocyte/macrophages, also has chemotactic properties for

the recruitment of these cells to a site of inflammation (36, 37).

In several tumor types and murine models, radiation has been

demonstrated to induce CSF-1 production which can facilitate

macrophage recruitment (17, 18). Following irradiation of

tumors the DNA damage-induced kinase ABL1 (c-Abl) is

recruited into the nuclei of tumor cells to enhance CSF1

transcription (38). CSF-1 production is also induced in

response to IL-8, which can be secreted by the macrophages

themselves, contributing to a positive feedback axis further

perpetuating macrophage recruitment. However, this axis is

not necessarily macrophage-specific as cancer cells can also

produce IL-8 themselves post-irradiation (39). IL-34 is a

cytokine that shares its receptor with CSF-1, binding CSF1-R,

and as such they have similar biological properties. Like CSF-1,

IL-34 expression is induced after irradiation (40). This induction

has also been demonstrated to promote monocyte recruitment

to the TME and subsequen t po l a r i z a t i on to an

immunosuppressive phenotype (41).

Furthermore, tumor cells produce IL-6 in response to

radiation-induced damage which promotes monocytes/

macrophage recruitment to the TME (42–44). In a double-

edged role for IL-6, once monocyte recruitment occurs, the

cytokine also blocks dendritic cell differentiation and promotes

monocytes to differentiate towards a TAM-like cell with an

immunosuppressive phenotype (6, 45).
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Physical changes in the TME affecting
TAM recruitment following radiotherapy

Hypoxia (low oxygen tension) is a common physical feature

of the TME that arises due to insufficient oxygen supply to

support rapidly growing tumors. Hypoxia is particularly relevant

to radiotherapy since cells irradiated under reduced oxygen

levels are more resistant to the lethal effects of radiation (46).

Hypoxia-inducible factors (HIFs) are key to the transcriptional

response to hypoxia. HIF heterodimers consist of an oxygen-

sensitive subunit (HIF-1a, HIF-2a or HIF-3a), and a

constitutively expressed HIF-b subunit. Under ambient oxygen

concentrations, HIF-a subunits are continually degraded by

ubiquitination and proteasomal degradation. However, under

low oxygen tensions, HIF-a subunits are stabilized and trafficked

to the nucleus where they modulate gene expression through

binding hypoxia-responsive elements of specific genes associated

with the hypoxic response (47–49). Both HIF-1a and HIF-2a
can accumulate in macrophages exposed to hypoxic conditions

in vitro (50, 51). In vivo, HIF-1a has been found to be essential

for maintenance of appropriate cellular ATP pools necessary for

myeloid cell motility and function (52). Furthermore, following

tumor irradiation, nitric oxide (NO) generation in TAMs results

in s-nitrosylation of HIF-1a at its oxygen-dependent

degradation domain which prevents its destruction.

Pharmacological inhibition of NO production is associated

with reduced tumor growth following irradiation (53).

Furthermore, studies using mice specifically lacking HIF-2a in

myeloid cells have demonstrated reduced TAM infiltration in

hepatocellular and colitis-associated colon carcinoma models

through regulation of cytokine receptor CSF-1R and chemokine

receptor CXCR4. Interestingly, this observed reduction in TAM

infiltration was associated with reduced tumor cell proliferation

(54). HIF-dependent induction of CCL2 also further supports

monocyte/macrophage recruitment (55). A recent study has

demonstrated that vascular endothelial growth factor-A

(VEGF-A), another HIF-regulated gene, also plays a key role

in both the recruitment of macrophages and the polarization

toward an immunosuppressive phenotype as shown by the

increase of the marker CD163 (56).
Extracellular matrix

The extracellular matrix (ECM), which constitutes the

protein scaffold around the tumor and stromal cells, has a role

in providing a platform for innate immune cell infiltration, with

many of its components and post-degradation fragments

sharing the ability to recruit monocytes. Much focus has been

directed to proteolytic fragments of the ECM which have been

demonstrated to represent endogenous ligands for binding and

activating toll-like receptors (TLRs). The release of

glycosaminoglycan hyaluronan (HA) after irradiation of the
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tumor has been documented (57). HA can also play a role in

facilitating macrophage infiltration into the tumor stroma

through an interaction with the HA receptor CD44 expressed

by macrophages (58). Monocytes/TAMs recruited by the CD44:

HA axis have an immunosuppressive phenotype. This is

facilitated by the upregulation of IL-10 expression while

concurrently downregulating NF-kB signaling (59).

In addition to HA, latent TGF-b (an inactive form of the

cytokine) is also released by the ECM post-irradiation. Once

activated, TGF-b has a potent influence on TAM recruitment.

This can occur directly through enhanced integrin expression

and type IV collagenase secretion (60) and indirectly through the

upregulation of CXCR4 on monocytes, with perivascular

fibroblast expression of CXCL12 attracting the monocytes to

the tumor bed (61).

Additionally, damaging the ECM leads to macrophage

recruitment due to the attraction of immunosuppressive

TAMs through the scavenger receptor CD206 (mannose

receptor). This allows the phagocytosis and degradation of

collagen fragments to form a strong chemoattractant for

macrophages (62, 63). This leads to a feedback loop where

initial radiation-induced damage to the ECM leads to

recruitment of TAMs that themselves facilitate a continuous

wound-healing state within the tumor site, further increasing

monocyte/TAM recruitment. In a similar fashion, elastin

fragments generated by the activity of macrophage-derived

MMPs (9 and -12) have been demonstrated to act as

chemotactic factors for monocytes, creating a positive feedback

loop which increases the prevalence of TAMs in the TME (64).
Phase 2: Macrophage polarization

Polarization overview

Previously, monocyte polarization into mature macrophages

was thought to be binary, with TAMs either acting as
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inflammatory or immunosuppressive agents within the stroma

(65). However, it is becoming increasingly clear that, once

polarized, the TAMs phenotypically fall on a spectrum (4).

Data, mostly gathered from in vitro studies, has indicated that

polarization on this spectrum may depend on the presence of

specific factors such as IL-4, IL-10, IL-13, IFNg, and

lipopolysaccharide (LPS) (66, 67) (Figure 2). Once these

factors bind to their respective receptor, monocytes undergo

polarization and maturation into more specialised TAM

phenotypes through downstream signal transduction pathways

altering transcription within these cells (68). Recently, it has

been identified that TAM polarization can be refined to a three-

way polarization program in a spontaneous murine model of

breast cancer (11). This three-way program is broadly split into

an alternatively-activated-like, angiogenic/immunosuppressive,

and inflammatory phenotypic specialization of these cells (11).
Pathways involved in radiation-
induced polarization

Following irradiation, macrophage polarization towards

either pro- or anti-inflammatory sides of the spectrum may be

dependent on irradiation dose and which transcription factors

are formed to drive downstream gene expression (69, 70). NF-kB
is a key modulator of macrophage polarization and NF-kB p65-

p50 heterodimers can initiate transcription of pro-inflammatory

genes such as TNFa, IL1b, IL6, IL12, IFNg and CXCL10 (70).

Increased p65/RelA expression following 2 Gy irradiation of the

RAW264.7 macrophage cell line or CD11b+ peritoneal

macrophages, is associated with increased levels of inducible

nitric oxide synthase (iNOS, which is an M1-associated marker)

(71). Low dose (2 Gy) whole body irradiation has also been

demonstrated to induce iNOS, and concurrently reduce M2-

associated markers such as Ym-1 and Fizz-1 in peritoneal

macrophages. iNOS expressing TAMs in turn appear

important for effector T-cell recruitment into the tumor
FIGURE 2

Schematic representation of the effects of radiation on macrophage polarization. Macrophages can adopt both pro- and anti-tumoral
phenotypes across a spectrum of possible polarization states. Shown are the effects of radiation on these phenotypes and effector molecules.
Figure created in Biorender. Agreement number: LH24DGQ49Q.
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through vascular normalization (69). Irradiation of human

monocyte-derived macrophages with 2, 6 or 10 Gy, results in

increased RelB expression which is accompanied by reduced

expression of anti-inflammatory genes (such as CD163, and IL-

10) (72). Conversely, loss of NF-kB p50 expression has been

associated with a pro-inflammatory macrophage phenotype

including enhanced TNFa and reduced IL10 expression in

bone marrow-derived macrophages incubated with both LPS

and irradiated 4T1 cancer cells (10 Gy) (17) (Figure 2).

Enhanced radiation-induced NF-kB signaling can occur

following activation of the apical DNA damage kinase, ATM.

ATM-dependent NF-kB activation occurs following

ubiquitination of NEMO (NF-kB essential modulator) which

releases the cytoplasmic p50-p65 heterodimer allowing its

translocation to the nucleus to act as a transcriptional activator (73).

ATM activation can also occur downstream of reactive

oxygen species (ROS) production. NADPH oxidase 2 (NOX2)-

dependent ROS production was reported to be important in

ATM-dependent polarization of macrophages towards a pro-

inflammatory phenotype through regulation of IRF5 at the

mRNA and post-translational level. Therapeutically targeting

other DNA damage response components, such as poly (ADP-

ribose) polymerase (PARP) also appeared to activate

macrophages towards a pro-inflammatory phenotype following

increased ATM and IRF5 activation (74). Importantly enhanced

expression of iNOS+CD68+ and NOX2+CD68+ TAMs was

observed in resected specimens of rectal cancer patients with

good responses to neoadjuvant radiotherapy (74). A recent study

also suggested that targeting the angiogenic factor, fibroblast

growth factor 2 (FGF2), in combination with radiotherapy can

increase the iNOS+/CD206+ TAM ratio and improve tumor

responses following fractionated radiotherapy (75). These data

suggest that FGF2 could be considered as a therapeutic target to

be exploited in combination with radiotherapy.
Examples of potential barriers to
effective polarization by radiation

As previously mentioned, radiotherapy induces the expression

of CCL2 within the TME (28, 29). CCL2 acts to shift the recruited

monocytes towards a more immunosuppressive phenotypic type

directly by downregulating polarization-related gene expression

and indirectly via T helper 2 cells (Th2) releasing anti-

inflammatory cytokines such as IL-4, IL-6 and IL-10 (76). In a

preclinical pancreatic ductal adenocarcinoma model, the

inhibition of CCL2 in isolation had little impact on tumor

growth unless used in combination with radiotherapy (77). It

was found that irradiation of the tumor caused a significant

increase in CCL2 production and radiation-dependent

recruitment of monocytes/macrophages (77). Inhibiting this

CCL2/CCR2 recruitment axis led to a decrease in tumor growth

and vascularity (77). Additionally, the inhibition of CCL2 led to a
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decrease in TAM presence and a decrease in metastasis (78). This

decrease in metastasis was caused by CCL2 inhibition reducing

the production of CCL3 by immunosuppressive TAMs thereby

reducing the ability of these macrophages to assist with tumor

intravasation (78).

There has also been a lot of interest in therapeutically

targeting CSF-1 signaling to modulate macrophage polarization

following irradiation in a variety of cancers. In glioblastoma

tumor models, CSF-1R inhibition delays recurrence following

irradiation by reducing radiation-induced monocyte recruitment

and differentiation to immunosuppressive TAMs (40).

Interestingly, TAM survival in the context of CSF-1R

inhibition appears to be facilitated by granulocyte-macrophage

CSF (GM-CSF) and IFNg (79). Altered TAM polarization and a

reduction in macrophage migration was also seen in a preclinical

prostate cancermodel (38). Furthermore, in preclinical colorectal

and pancreatic models, macrophage depletion using CSF-1

blocking antibodies, enhances the effectiveness of combined

radiotherapy and immune checkpoint inhibitor (anti-PD-L1)

treatment suggesting that macrophages act to hinder

productive anti-tumor immune functions of radiotherapy (19).

Complement activation and signaling of complement

anaphylatoxins through their respective receptors can also

impact macrophage polarization. This is relevant in the

context of radiotherapy since irradiation has been found to

increase the local tumor expression of several complement

factors in murine models (following 5 and 20 Gy irradiation)

and in patient samples (treated with 1.5-2 Gy) (34). Of note, in

the TME, the presence of stromal CD34high fibroblasts

expressing high levels of central complement component C3

(which when cleaved will result in C3a production) may also

s uppo r t t h e r e c r u i tm en t o f ma c r oph a g e s w i t h

immunosuppressive phenotypes and results in attenuation of

T-cell mediated responses (80). Interestingly, C3aR activation in

TAMs can occur following intracellular production of C3a by

tumor cells; and activation of PI3Kg signaling downstream of

C3aR activation contributes to suppression of anti-tumor

responses (81). The effects of irradiation on intracellular C3a

or C5a levels across tumor cells, however, is still unclear.

Previously published work suggested that the presence of C5a

and C3a might be essential for effective tumor radiation

responses (34). However, the well-documented impact of C3a

and C5a on macrophage recruitment and polarization towards

immunosuppression may indicate that targeting the C3a-C3aR

or C5a-C5aR signaling axes might prove to be beneficial in

certain contexts. In combination with anti-PD-1 blocking

antibodies, blocking C5a/C5aR1 signaling has indeed proven

effective at improving primary and metastatic disease in lung

tumor models (82). Similarly, in the B16-F10 melanoma model,

blocking the PD-1/PDL-1 axis alongside C3a-C3aR or C5a-

C5aR resulted in improved tumor control (83). The effects of

radiotherapy in combination with immune checkpoint and C5a/

C5aR1 inhibition, however, has yet to be determined.
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The use of TGF-b inhibition in combination with PD-1/PD-

L1 inhibition has also found success in a multitude of clinical

trials, with phase two trials commencing in non-small cell lung

(NCT03631706), triple negative breast (NCT03579472),

colorectal (NCT03724851), and pancreatic (NCT02734160)

cancers. A summary of additional recent clinical trials

combining radiotherapy and macrophage targeting is shown in

Table 1. Interestingly, combining TGF-b and PD-1 inhibition

with radiotherapy in a preclinical colorectal cancer model

demonstrated improved survival plus reduced tumor growth

(84). Additionally, this study demonstrated a reduction in TAM

recruitment to both primary tumors as well as non-irradiated

bilateral lesions (84).
Conclusion

Effectively modulating the immunostimulatory effects of

radiation has the enticing potential to improve local and distant

tumor control (85). Given the relatively high numbers of

macrophages in the TME (relative to other cell types) and the
Frontiers in Oncology 06
enhanced macrophage recruitment observed following irradiation,

it is likely that combination therapies will have to consider how to

polarize this immune population to the pro-inflammatory,

tumoricidal side of the spectrum (86). Indeed, investigation into

targeting TAMs is currently at the forefront of cancer

immunotherapies and, a greater understanding of mechanisms of

recruitment and pro-tumor activity of these macrophages may

provide new therapeutic opportunities to improve the efficacy of

existing treatments (39). Targeting the soluble factor-receptor axes

interactions that may pose a barrier to the most effective

polarization could be considered. For example, CSF1-CSF1R,

C5a-C5aR1, FGF2 or TGFb/TGFbR blockade in combination

with immune checkpoint inhibitors such as PD1/PDL-1 could be

promising strategies (19, 84). Further research into the effect of

different radiation doses and fractionation regimes on macrophage

recruitment and plasticity will help optimize the timing and nature

of the most effective combination therapies. A consideration of the

effect of an altered macrophage response to normal tissue toxicity

following radiotherapy will also be important since maximal

therapeutic benefit relies on effective tumor control with minimal

normal tissue toxicity.
TABLE 1 Table summarizing latest clinical trials combining radiotherapy and approaches which may impact macrophage recruitment or function.

Target Drug Combination Cancer Type Phase Year Reference

ATM AZD1390 RT Glioblastoma I 2018 NCT03423628

CD47/SIRPa RRx-001 RT + Temozolomide Gliomas I 2016 NCT02871843

CD40 CDX-1140 RT + Poly-ICLC + FLT3-L Breast I 2020 NCT04616248

CSF-1R Cabiralizumab RT + Nivolumab Pan- I 2018 NCT03431948

Sunitinib RT Head and Neck, Pelvic, Nervous System, Thoracic I 2007 NCT00437372

Sunitinib RT Metastatic I/II 2007 NCT00463060

Sunitinib RT Soft Tissue Sarcoma I/II 2008 NCT00753727

Sunitinib RT Glioblastoma II 2010 NCT01100177

Sunitinib RT + Temozolomide Glioblastoma Multiforme II 2016 NCT02928575

Sunitinib RT + Surgery + Irinotecan + Cisplatin Esophageal II 2006 NCT00400114

Sunitinib RT + Leuprolide + Goserelin + Casodex Prostate I 2008 NCT00631527

Nilotinib RT Chordoma I 2011 NCT01407198

PLX3397 RT + Temozolomide Glioblastoma I/II 2013 NCT01790503

PLX3397 RT + Anti-hormone Therapy Prostate I 2015 NCT02472275

CCR2/CCR5 BMS-813160 RT + Nivolumab + GVAX Pancreatic Ductal Adenocarcinoma I/II 2018 NCT03767582

PI3Kg BYL719 RT + Cetuximab Head and Neck Squamous Cell I 2014 NCT02282371

BYL719 RT + Cisplatin Head and Neck Squamous Cell Carcinoma I 2015 NCT02537223

BKM120 RT + Temozolomide Glioblastoma I 2011 NCT01473901

BKM120 RT + Cisplatin Multiple I 2014 NCT02113878

TLR3 Poly-ICLC RT + Temozolomide Glioblastoma Multiforme II 2005 NCT00262730

TLR7/9 Imiquimod RT + Cyclophosphamide Breast I/II 2011 NCT01421017

TLR9 SD-101 RT B-Cell Lymphoma I/II 2014 NCT02266147

SD-101 RT + Ibrutinib Follicular Lymphoma I/II 2016 NCT02927964

SD-101 RT + Nivolumab Pancreatic I 2019 NCT04050085
f

Search conducted on ClinicalTrials.gov using search criteria “Cancer”, “Radiation” and “Macrophage”. CSF-1R, Colony Stimulating Factor Receptor 1; CCR2, C-C Chemokine Receptor;
PI3Kg, Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma; TLR, Toll-Like Receptor; RT, Radiotherapy.
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