
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Hongzan Sun,
Shengjing Hospital of China Medical
University, China

REVIEWED BY

XS Zhao,
Southern Medical University, China
Wei Wei,
Xi’an Polytechnic University, China

*CORRESPONDENCE

Mark Kriegsmann
mark.kriegsmann@med.uni-
heidelberg.de

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed
equally to this work and share
last authorship

SPECIALTY SECTION

This article was submitted to
Skin Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 19 August 2022
ACCEPTED 24 October 2022

PUBLISHED 22 November 2022

CITATION

Kriegsmann K, Lobers F, Zgorzelski C,
Kriegsmann J, Janßen C, Meliß RR,
Muley T, Sack U, Steinbuss G and
Kriegsmann M (2022) Deep learning
for the detection of anatomical tissue
structures and neoplasms of the skin
on scanned histopathological
tissue sections.
Front. Oncol. 12:1022967.
doi: 10.3389/fonc.2022.1022967

TYPE Original Research
PUBLISHED 22 November 2022

DOI 10.3389/fonc.2022.1022967
Deep learning for the detection
of anatomical tissue structures
and neoplasms of the skin on
scanned histopathological
tissue sections

Katharina Kriegsmann1†, Frithjof Lobers2†,
Christiane Zgorzelski3, Jörg Kriegsmann4,5, Charlotte Janßen6,
Rolf Rüdinger Meliß7, Thomas Muley8, Ulrich Sack2,
Georg Steinbuss1‡ and Mark Kriegsmann3*‡

1Department of Hematology, Oncology and Rheumatology, Heidelberg University,
Heidelberg, Germany, 2Department of Clinical Immunology, Medical Faculty, University of Leipzig,
Leipzig, Germany, 3Institute of Pathology, Heidelberg University, Heidelberg, Germany, 4MVZ
Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany, 5Proteopath Trier, Trier,
Germany, 6Center for Industrial Mathematics (ZeTeM), University of Bremen, Bremen, Germany,
7Institute for Dermatopathology, Hannover, Germany, 8Translational Lung Research Centre (TLRC)
Heidelberg, Member of the German Centre for Lung Research (DZL), Heidelberg, Germany
Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma

are among the most common cancer types. Correct diagnosis based on

histological evaluation after biopsy or excision is paramount for adequate

therapy stratification. Deep learning on histological slides has been

suggested to complement and improve routine diagnostics, but publicly

available curated and annotated data and usable models trained to

distinguish common skin tumors are rare and often lack heterogeneous non-

tumor categories. A total of 16 classes from 386 cases were manually

annotated on scanned histological slides, 129,364 100 x 100 µm (~395 x 395

px) image tiles were extracted and split into a training, validation and test set. An

EfficientV2 neuronal network was trained and optimized to classify image

categories. Cross entropy loss, balanced accuracy and Matthews correlation

coefficient were used for model evaluation. Image and patient data were

assessed with confusion matrices. Application of the model to an external set

of whole slides facilitated localization of melanoma and non-tumor tissue.

Automated differentiation of BCC, SqCC, melanoma, naevi and non-tumor

tissue structures was possible, and a high diagnostic accuracy was achieved in

the validation (98%) and test (97%) set. In summary, we provide a curated

dataset including the most common neoplasms of the skin and various

anatomical compartments to enable researchers to train, validate and
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improve deep learning models. Automated classification of skin tumors by

deep learning techniques is possible with high accuracy, facilitates tumor

localization and has the potential to support and improve routine diagnostics.
KEYWORDS

deep learning, pathology, artificial intelligence, dermatopathology, digital pathology,
deep learning - artificial neural network
1 Introduction

Skin cancer is the most common cancer type in the United

States (1). Patient management and prognosis is variable and

depends on the entity, molecular changes, as well as on the

clinical stage at the time of diagnosis (2). Skin cancer is a highly

heterogeneous group composed of non-melanotic and melanotic

neoplasms (3). Among the non-melanotic neoplasms, basal cell

carcinoma (BCC) and squamous cell carcinomas (SqCC) are the

most common (4) and usually well treatable. Despite major

advances in treatment, most deaths from skin cancer are still due

to melanoma (5). Thus, the correct diagnosis is paramount for

treatment selection and prognosis.

Currently, the diagnosis of different cutaneous tumor types

is based on physical examination, dermatoscopy and ultimately

histological evaluation of an excision specimen. While reliable

diagnosis can be made in a substantial number of tissue

specimen on a regular standard stain alone, a significant

subset of neoplastic skin lesions requires additional

immunohistology and molecular studies for definite

classification. In particular, the differentiation between BCC

and SqCC, as well as between naevi and melanoma may be

challenging. As the incidence of skin cancer is increasing, while

the number of pathologists and dermato-pathologists is

decreasing in many countries, the introduction of new

methods to support skin tumor diagnostics is desirable (6).

The use of deep learning methods applied to clinical images,

dermatoscopy images or scanned histopathological slides holds

great promise to support cancer diagnostics in general (7, 8), and

skin cancer diagnostics in particular (5, 9). In the past, the

feasibility and potential to classify different diseases on scanned

histological slides has been demonstrated for automated

localization and diagnosis of melanoma (9, 10), the

differentiation between naevi and melanoma (11), and the

differentiation between basaloid, squamous, melanocytic and

other skin tumors (12).

Major problems identified in previous studies for routine

diagnostic application of such algorithms are: (i) no

consideration of non-tumor skin categories or inclusion of

only one non-tumor skin class, (ii) the need for manual

annotation of the tissue region of interest prior to automated
02
tumor classification, and (iii) non-availability of raw data images

for validation purposes. In the current study, we therefore

annotated major non-tumor anatomical tissue structures of the

skin and major skin tumor categories and subsequently trained a

convolutional neuronal network using an up-to-date workflow.

We localized and categorized skin tumors on whole slides

without prior annotation, validated our data on an external

test set and provide all images and code to enable other

researchers to improve and validate their data.
2 Methods

2.1 Patient data

Whole slides from patients with BCC (n = 93), SqCC (n =

100), naevi (n = 98) and melanoma (n = 87) were extracted from

the archive of the Institute of Pathology, Heidelberg University,

the MVZ for Histology, Cytology and Molecular Diagnostics

Trier and the Institute for Dermatopathology Hannover.

Diagnoses were made according to the World Health

Organization (WHO) Classification of Skin Tumours (13). All

slides with representative tumor regions were scanned using an

automated slide scanner (Aperio AT2, Leica Biosystems,

Nussloch, Germany) with 400 x magnification, as previously

described (14). Image data were anonymized and are provided

along with this manuscript (Link: https://heidata.uni-heidelberg.

de/privateurl .xhtml?token=366931ac-50a2-43f9-880f-

88d63e07d493). Moreover, an independent external dataset of

melanoma whole slides was downloaded from the website of the

Cancer Imaging Archive (CPTAC-CM) (15). After quality

review 62 cases were included as an external test set, while 41

of these cases were melanoma and 21 were tumor-free skin. The

analysis was approved by the local ethics committee of

Heidelberg University.
2.2 Image data

Scanned histopathological slides were imported into QuPath

(16) (v.0.1.2, University of Edinburgh, Edinburgh, UK) and
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annotated (F.L. and M.K.) for the following 16 categories:

chondral tissue, dermis, elastosis, epidermis, hair follicle,

skeletal muscle, necrosis, nerves, sebaceous glands, subcutis,

eccrine glands (sweat glands), vessels, BCC, SqCC, naevi and

melanoma. Image patches 100 x 100 µm (~395 x 395 px) in size

were generated in QuPath, extracted on the local hard drive and

subsequently reviewed. Blurry images were deleted.

Representative image patches are displayed in Figure 1.
2.3 Splitting of datasets

Images from patients were separated into a training,

validation and test set. All image patches from one patient

were used in only one of the respective sets. Since there are

only three cases with elastosis, we assigned the case with most
Frontiers in Oncology 03
elastosis patches to the training, the case with the second most

patches to the test and the remaining case to the validation set.

All other cases were assigned randomly to one of the sets. The

sets were not changed during the analyses. The splits by image

patches and patients are displayed in Table 1.
2.4 Hard- and software

For training we used a p3.2xlarge instance from Amazon

Web Services with a single V100 GPU while for inference we

used a Lenovo P1 Gen 2 laptop. Further we used the Scientific

Data Storage (SDS) service fromHeidelberg University. Training

and inference were performed using a singularity container

image based on the TensorFlow Docker container image. For

random augmentation we used the respective function in the
FIGURE 1

Examples of image patches included in the dataset. Squamous cell carcinoma (A), basal cell carcinoma (B), melanoma (C), naevi (D), epidermis
(E), chrondral tissue (F), dermis (G), nerves (H), necrosis (I), skeletal muscle (J), hair follicles (K), sweat glands/eccrine glands (L), sebaceous
glands (M), vessels (N), subcutis (O) and elastosis (P). All images are 100 x 100 µm (395 x 395 px) in size, scale bar = 20 µm.
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image python module. The code is available at Link: https://

heidata.uni-heidelberg.de/privateurl.xhtml?token=366931ac-

50a2-43f9-880f-88d63e07d493.
2.5 Training and validation of models

Each model is based on the EfficientNetV2 architecture (17),

was trained for a total of 30 epochs and with a learning rate of

either 0.01, 0.001 or 0.001. We used a batch size of 64 for the

smaller S models and 32 for the medium sized M models (cf.

Larger Model). We used the AMSGrad optimizer (a variant of

the Adam optimizer (18) with b1 = 0.9, b2 = 0.999 and ϵ^ =

1.0∗10−7). During training the data was sampled such that there

was no class imbalance. We used random augmentation (19)

with n=2 to reduce overfitting (M is different for the models, see

below). Each model configuration (a set of model

hyperparameters, e.g. the learning rate) was trained three

times to account for the randomness involved model training

(e.g. the random weights initialization). We first trained a few

models to find a good learning rate, then tested if a learning rate

schedule, progressive training (17) or a larger model improved

prediction quality.

Hyperparameters for the initial models were as follows:

image input size of 300 x 300 px, a dropout of 0.3 and M=15

for random augmentation. Using the learning rate scheduler, the

learning rate was linearly increased from 0 to its base value (e.g.

0.01) for the first five epochs as in the original EfficientNetV2

publication (so called warm-up) (17) and subsequently

exponentially decayed with a rate of 0.97. In progressive
Frontiers in Oncology 04
training the training set was split in different stages. In each

stage, i.e. after a certain number of epochs, size of input images

and regularization (such as dropout) were increased. The aim of

progressive training was to improve training speed by using

smaller image sizes on early epochs. Hyperparameters for the

first 15 epochs were: image size of 128 x 128 px, top dropout 0.1

and M = 5 for random augmentation. Hyperparameters for the

last 15 epochs were: image size of 300 x 300 px, top dropout 0.3

and M = 15 for random augmentation. For the larger model, we

used the EfficientNetV2 M instead of the EfficientNetV2 S. We

had to decrease the batch size to 32 such that the model and data

fitted into the GPU memory. For all EfficientNetV2 M models,

progressive learning was applied with the following

hyperparameters: for the first 15 epochs: image size of 128 x

128 px, top dropout 0.1 and M = 5 for random augmentation; for

the last 15 epochs: image size of 380 x 380 px, top dropout 0.4

and M = 20 for random augmentation. All models were

subsequently compared and the model with the best

performance was selected.

For each training run we recorded cross entropy loss,

balanced accuracy (BAC) and Matthews correlation coefficient

(MCC) for training as well as validation data (20). While we

recorded and display all three metrics, we used MCC to select the

best model. The validation set results were evaluated using

confusion matrices. To visualize the proximity of the different

classes, the last convolutional layer after the last pooling

operation of the validation data was subjected to dimension

reduction using uniform manifold approximation and

projection (UMAP) computed via the Python package

umap-learn.
TABLE 1 Number of image patches and patients in the training, validation and test set.

Class Training, n (%) Validation, n (%) Test, n (%)

by patches by patient by patches by patient by patches by patient

Chondral tissue 4442 (62) 9 (50) 743 (10) 2 (11) 1992 (28) 7 (39)

Dermis 15878 (70) 134 (69) 1857 (8) 20 (10) 4875 (22) 39 (20)

Elastosis 136 (65) 1 (33) 6 (3) 1 (33) 66 (32) 1 (33)

Epidermis 10419 (74) 130 (70) 1086 (8) 19 (10) 2613 (19) 36 (19)

Hair follicle 1437 (71) 104 (71) 250 (12) 15 (10) 325 (16) 27 (18)

Skeletal muscle 6159 (80) 47 (73) 904 (12) 7 (11) 669 (9) 10 (16)

Necrosis 1641 (54) 24 (67) 468 (15) 5 (14) 924 (30) 7 (19)

Nerves 1201 (64) 93 (68) 219 (12) 13 (10) 464 (25) 30 (22)

Sebaceous glands 7268 (67) 94 (69) 1074 (10) 13 (9) 2565 (24) 30 (22)

Subcutis 7370 (61) 64 (65) 1245 (10) 9 (9) 3438 (29) 26 (26)

Sweat glands 2533 (71) 94 (71) 220 (6) 11 (8) 818 (23) 27 (20)

Vessels 1068 (65) 109 (71) 136 (8) 14 (9) 439 (27) 31 (20)

BCC 6919 (78) 71 (76) 1063 (12) 12 (13) 941 (11) 10 (11)

SqCC 6793 (61) 61 (61) 919 (8) 10 (10) 3470 (31) 29 (29)

Naevi 7923 (75) 72 (73) 944 (9) 8 (8) 1762 (17) 18 (18)

Melanoma 7784 (67) 59 (68) 1220 (10) 9 (10) 2678 (23) 19 (22)
fro
BCC, basal cell carcinoma; SqCC, squamous cell carcinoma.
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2.6 Evaluation of the test set and on the
external set

The best performing model (cf. Section 2.5) was applied to

the test set. As all data were scanned with one scanner system

and all cases were derived from institutions in Germany, we

additionally applied our algorithm on an external set of

melanomas where preprocessing of the tissue and most

scanning conditions were unknown and staining properties

were different. As the external test data had a high burden of

artefacts, all slides were manually reviewed and only cases that

passed a quality control were used for further analysis.

However, remaining slides still had a relatively high burden

of artefacts such as blurry areas, tissue tears, variation in tissue

thickness, dust particles, high amount of necrosis and overall

low tissue and staining quality. In addition, the magnification

of the external slides was 200x which was different compared to

the magnification of our data which was 400x. We decided to

still test our algorithm on this set to evaluate suboptimal

input data.
3 Results

3.1 Model training and optimization

In total 129,364 image tiles from 386 cases were used for

training.Within all broader categories of models, a learning rate of

0.001 seemed to perform best regarding MCC on the validation

data. The initial models (Supplementary Figure 1), the models

trained with a learning rate scheduler (Supplementary Figure 2),

models trained using progressive learning (Supplementary

Figure 3) and larger models (Supplementary Figure 4) are

depicted in the supplementary materials.
Frontiers in Oncology 05
We compared the best performing models to choose the final

model (Figure 2). The best performing model based on either

loss, BAC or MCC are shown in Table 2. We decided for the

model performing best in terms of MCC which was trained

using the following configuration: EfficientNetV2 S, batch size of

64, progressive learning and learning rate of 0.001.
3.2 Evaluation on the validation data

A confusion matrix shows generally high concordance

between actual and predicted classes on the validation set

based on image patches (Figure 3A). Within the tumor

category, naevus was mostly misclassified as melanoma

(2.75%) and vice versa (4.18%). Moreover, SqCC was most

commonly misclassified as BCC (8.81%) and vice versa

(1.51%). Among the non-tumor categories, the classes with

misclassifications of > 5% were elastosis (33.33%), vessels

(9.56%) and nerves (5.94%), that were misclassified as dermis.

The non-tumor category that had highest misclassification rates

was epidermis which was misclassified as SqCC (5.43%) and vice

versa (3.70%, Figures 3B, C).

To render a final diagnosis on a whole slide in the routine

diagnostic scenario, the image patch-based result may not be

very informative. Thus, we evaluated the proportion of the

tumor image tiles that were correct on the case level

(Figure 4). Overall, only two out of 81 (2.5%) tumor patients

had very low proportions of image tiles that voted for the correct

diagnosis. Interestingly, in both cases the correct diagnosis was

squamous cell carcinoma. When examining both cases in detail

(Supplementary Figure 5), one case would have finally been

misclassified based on a majority vote for the final tumor class.

In the other case, misclassifications in the non-tumor category

would have luckily led to the correct diagnosis based on a
FIGURE 2

Matthews correlation coefficient (MCC) for the best models. MCC increases with the initial model, the model with learning rate scheduler, the
model with progressive training and the larger model across the training process in the training as well as in the validation set. Models which
used progressive learning show a drop at epoch 15 which corresponds to the changing hyperparameter settings at this point of time. MCC,
Matthews correlation coefficient.
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majority vote for the final diagnosis, which would result in a final

diagnostic accuracy of 98.7% (80/81).
3.3 Evaluation on the test data

For test data a confusion matrix showed a high degree of

concordance between actual and predicted classes based on

image patches (Supplementary Figure 6). The test data

generally exhibited the same misclassifications as described on

the validation data. Likewise, on the case level (Supplementary

Figure 7) the diagnostic accuracy regarding the tumor classes

was high with 74 out of 76 (97.4%) correct classifications. The

respective confusion matrices of the two misclassified cases are

provided in Supplementary Figure 8. When non-tumor and

tumor classes were taken together, 73 out of 76 (96.0%) of cases

were correctly classified. Among the three cases with a wrong

classification result, one case was a SqCC misclassified as BCC

and two cases were melanoma misclassified as SqCC.
3.4 Visualization of the resemblance of
the images

To visualize the resemblance of the images, the output of last

convolutional layer after the final pooling operation was

subjected to dimension reduction. A UMAP diagram confirms

that classes that are very different morphologically such as

skeletal muscle, sebaceous glands and chondral tissue, are

separated clearly from other image categories. On the other

hand, melanocytic lesions such as naevi and melanoma show

proximity and also some overlap. UMAP diagram of validation

data (Figure 5) and test data (Supplementary Figure 9)

are displayed.
3.5 Evaluation on the external test set

A total of 62 external slides passed the initial quality control.

Quality issues were noted even in the remaining cases that

passed the quality control. Examples of quality issues of the

external test set are provided in Supplementary Figure 10. Of the

41 melanoma cases, 32 were predicted as melanoma (78%), 7
Frontiers in Oncology 06
cases were predicted as BCC (17%), one case (2%) was predicted

as SqCC and naevus, respectively. Non-tumor skin cases had

generally a proportion of tiles predicted as tumor <5% of all

image tiles and were rather randomly distributed throughout the

whole slide.
4 Discussion

In the past, deep learning techniques have been shown to

support diagnosis and prognosis prediction in many neoplastic

and non-neoplastic diseases, such as but not limited to prostate

cancer (21), lung cancer (22), breast cancer (23), pancreatic

cancer (8), colon cancer (24), skin cancer (25, 26), cancer of

unknown primary (27), or scoring of fibrosis or fat in non-

neoplastic liver disease (28, 29).

In skin diseases, the technique has been mainly used in

neoplastic diseases so far. While most reports focus on either

melanocytic (9–11, 30) or non-melanocytic (26) lesions, data on

both melanocytic and non-melanocytic lesions, non-tumor skin

lesions or anatomical tissue structures are scarce (12, 26).

Although there are honorable exceptions (31), most of the

published studies on deep learning on histopathological slides

do not make their annotated data, the full dataset of image

patches and/or their code available. Our study narrows this gap

by providing image data of 16 different classes including normal

anatomical tissue structures, reactive solar elastosis and the most

common neoplastic skin lesions. This complements the dataset

from Thomas et al., who provided a publicly available

comprehensive segmented dataset including 12 different

classes for non-melanoma skin cancer and anatomical tissue

structures. We hope our data will enable researchers to validate

our and their results and to develop new methods for the

application of deep learning to support pathologists and

ultimately improve patient care. Of note, we believe it is

necessary to avoid a common non-tumor skin category and to

separate morphologically distinct classes during training, as the

different anatomical tissue structures are morphologically highly

heterogeneous, which has also been highlighted by a UMAP

diagram in the current study. The introduction of non-tumor

skin categories will also enable automated classification of whole

slides, without prior annotation of the tumor area, which is

important to achieve a workflow that is faster than the current
TABLE 2 The three best models after training based on loss, balanced accuracy and Matthews correlation coefficient.

Metric Model ID Epoch Training Validation

loss BAC MCC loss BAC MCC

Loss 19 27 0.08955 0.96953 0.96750 0.18650 0.91650 0.93590

BAC 20 28 0.08871 0.96920 0.96760 0.18998 0.94276 0.93178

MCC 19 27 0.08955 0.96953 0.96750 0.18650 0.91650 0.93590
frontie
BAC, balanced accuracy; ID, Identifier; MCC, Matthews correlation coefficient.
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analog setting, although we are aware of recent developments

that may overcome this issue (32). Additionally, the

identification of anatomical tissue structures may be suitable

for automatic tissue orientation with subsequent automatic

distance measurements of the tumor margin (26).

Technically, we have used the EfficientNetV2, which has

achieved high top-1 and top-5 accuracies on the ImageNet

reference dataset and is a modern and efficient alternative to

larger and more computationally expensive architectures

available (17). In the past other algorithms, specifically for

segmentation or specific organ systems have been published
Frontiers in Oncology 07
(33, 34). The architecture used in this study has been successfully

applied to histological images previously (35). We have

successfully applied techniques like image augmentation of

progressive learning that have been suggested to find a well

performing model in the current study (17). To train a reliable

deep learning model, a large number of images is usually

necessary to account for technical and biological variation. In

this regard, a higher number of patient samples is commonly

preferred over a large number of images. The number of patients

included for training, validation and testing in the current

investigation is within the reported range of previous studies
A

B

C

FIGURE 3

Confusion matrix of the validation set. High concordance between actual and predicted classes can be observed. The algorithm shows a higher
rate of misclassification of elastosis and vessels with dermis, which can be explained since elastotic changes and vessels are commonly
observed in the dermis (A). In tumor categories (B) a higher rate of misclassifications was observed for squamous cell carcinomas that were
predicted as basal cell carcinoma. The misclassification of non-tumor categories as tumor was rare but observed with epidermis, misclassified
as squamous cell carcinoma (C). BCC, basal cell carcinoma; SqCC, squamous cell carcinoma.
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(9, 11, 26). Currently, there is no consensus on the minimum

number of cases that should be included in a deep learning

study. Algorithms that require manual annotation comprise

often a much lower number of patients as compared to

approaches that do not need manual annotation. The

prev ious ly repor ted s tudies on deep learning on

histopathological slides have included between dozens

to >1000 cases per entity (32, 36). The largest manually

annotated publicly available dataset on skin cancer subtypes
Frontiers in Oncology 08
comprises 290 whole slides. Our study includes a total of 16

classes from 386 manually annotated cases which is within the

reported range. Thus, we think that our approach is valid

although there is no firmly established standard to calculate

sample sizes for deep learning studies. Our training and

validation workflow included not only a training and

validation set, but also an internal and an external test set.

This strategy is regarded as good scientific practice (37).

Although we tested only for melanoma and normal tissue in
FIGURE 4

Proportion of tumor image tiles that was correctly classified on patient level in the validation set. Most tumors were correctly classified on
patient level. Two patients with squamous cell carcinomas were misclassified. BCC, basal cell carcinoma; SqCC, squamous cell carcinoma.
FIGURE 5

Dimension reduction using uniform manifold approximation and projection based on the last convolutional layer after the last pooling operation
of the validation data. Close proximity of image classes that resemble each other morphologically such as melanocytic tumors can be observed.
On the other hand, image categories that are morphologically very different such as skeletal muscle, sebaceous glands or chrondral tissue show
distinct clusters. BCC, basal cell carcinoma; SqCC, squamous cell carcinoma.
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the external test set, we still believe that the approach is legit, as

melanoma is by far the disease with the worst prognosis and

because the external dataset exhibited severe artifacts and was

therefore suitable to test for plausibility of our model.

Moreover, we show the application of our model that was

trained on small image patches, to whole slides, which allows

rapid identification of anatomical tissue structures and

neoplastic lesions. This may result in a faster and more

focused review of tissue sections in the routine diagnostic

setting, as regions of interest are highlighted. Moreover, areas

with high tumor cell content are automatically highlighted for

potential dissection and subsequent molecular analyses.

The performance of our model on the image level is within

the range that has been reported by others (9–11). Our model

had weaknesses in the distinction of BCC and SqCC, naevi and

melanoma, epidermis and SqCC and elastosis, vessels and

nerves with dermis. All these misclassifications can be

explained: First, BCC may exhibit squamous differentiation

and SqCC may look basaloid. Second, the distinction of naevi

and melanoma may be challenging and the criteria for correct

classification include the assessment on low magnification

power. As we provided only high magnification power

images for training and cytology not always resolve the

differential, some misclassified images were expected. Third,

SqCC is derived from the epidermal compartment and both

classes are therefore composed of the same cells. Especially in

highly differentiated SqCC the morphological difference to

epidermis may be minimal to absent on high-power. Fourth,

elastosis, vessels and nerves are all located within the

co l lagenous dermal sk in compartment . Thus , the

classification of an image containing e.g. vessels as dermis, is

not necessarily a misclassification.

Although, our algorithm showed a decreased performance of

78% for melanoma and 84% in all whole slides on the external

test set considering a majority vote, we still believe that the

performance is reasonably good and support the use of our

classifier for research, given the rather poor overall quality of this

external cohort.

The limitations of our study include the number of patients and

the number of different entities included to train the model. The full

morphological spectrum of BCC, SqCC, naevi and melanoma

cannot fully be displayed with the number of patients included in

this study. Likewise, the number of cutaneous neoplasms is by far

larger as the four most common tumor types included in this study

and entities not trained, cannot be identified by the classifier. Based

on the above-mentioned limitations the application of such a deep

learning model can only be a diagnostic supplement and should

always be conducted under supervision of an expert pathologist or
Frontiers in Oncology 09
dermatopathologist, to avoid potentially harmful consequences

for patients.

In summary, we show that the automated identification

and classification of common skin tumors is possible by deep

learning on scanned histological tissue sections and may

contribute to an efficient workflow in routine diagnostics.
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