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Although the prognosis for acute leukemia has greatly improved, treatment of

relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently,

increasing evidence indicates that the bone marrow microenvironment (BMM)

plays a crucial role in leukemogenesis and therapeutic resistance; therefore,

BMM-targeted strategies should be a potent protocol for treating R/R AL. The

targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received

much attention and has achieved some progress, as CAFs might act as an

organizer in the tumor microenvironment. Additionally, over the last 10 years,

attention has been drawn to the role of CAFs in the BMM. In spite of certain

successes in preclinical and clinical studies, the heterogeneity and plasticity of

CAFs mean targeting them is a big challenge. Herein, we review the

heterogeneity and roles of CAFs in the BMM and highlight the challenges and

opportunities associated with acute leukemia therapies that involve the

targeting of CAFs.

KEYWORDS

bone marrow, tumor microenvironment, leukemia, relapsed/refractory, cancer
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Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic

leukemia; BM, bone marrow; BMM, BM microenvironment; BMT, BM transplantation; CAFs, cancer

associated fibroblasts; CAR, Cxcl12-abundant reticular; CAR-T, chimeric antigen receptor T; CLL, chronic

lymphoid leukemia; CML, chronic myeloid leukemia; ECs, endothelial cells; ECM, extracellular matrix;

EFS, event free survival; HSCs, hematopoietic stem cells; LSCs, leukemic stem cells; MSCs, mesenchymal

stem cells; MDS, myelodysplastic syndrome; MM, multiple myeloma; MF, myelofibrosis; MPN,

myeloproliferative neoplasms; R/R, relapsed/refractory; TME, tumor microenvironment.
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1 Background

Acute leukemia is a clonal hematopoietic cancer originating

in the bone marrow (BM) and can be classified into two types:

acute lymphoid leukemia (ALL) and acute myeloid leukemia

(AML). With the advancement of therapies, leukemia is no

longer an incurable disease. In children, the 5-year event-free

survival (EFS) rate is approximately 85-90% for ALL, sometimes

exceeding 90% in ALL trials in developed countries (1–4), and

approximately 45-65% for AML (5, 6). However, in adults, the 5-

year EFS rate for ALL is only 35-45% (7, 8). The prognosis for

adult AML is better in acute promyelocytic leukemia (APL), with

a 5-year EFS rate exceeding 80% (9, 10). However, only 35-40%

of patients with AML manage to survive for more than 5 years

(10, 11). Even in the most curable pediatric ALL, 10-15% of

patients do not survive because of chemo-resistance and relapse,

which is named relapsed/refractory (R/R) ALL (12, 13). The

proportion of R/R AML and R/R adult ALL cases is far higher

than that of R/R pediatric ALL.

Until now, the treatment of leukemia has been focused on

targeting leukemic cells.While the intensity of chemoradiotherapy

is limited by toxic side effects, such as pancytopenia, BM

transplantation (BMT) has been drawn into the therapeutic

protocol to help reconstruct hematologic and immunologic

capacity following high-intensity chemotherapy and radiation

treatment to eradicate leukemic cells (14–16). Even so, the

prognosis for patients with R/R leukemia remains poor. The

exploration of innovative approaches is crucial for patients with

R/R leukemia. Immunotherapy, especially chimeric antigen

receptor T (CAR-T) cell and antibody therapy, improves the

response rate in patients with R/R leukemia by targeting leukemic

cells (1, 8, 13–19). However, the cure rate has not been noticeably

improved, especially in patients with R/R AML, which highlights

an urgent need for novel and synergistic therapies.

‘Seed-and-soil’ theory is well known in cancer research and

the term was coined by Dr. Stephen Paget in 1889 (20, 21). ‘Seed’

and ‘soil’ crosstalk may push cancer progression. Remodeling of

the ‘soil’ will make it more difficult for cancer cells but more

suitable for normal cells, thus potentially helping to cure cancer.

As a matter of course, the next target should be the ‘soil’. ‘Soil’

remodeling is important for R/R leukemia patients as it may

provide conditions in which cancer cells and cancer stem cells

struggle to survive in (22–25). It generally accepted that the ‘soil’

of solid cancer, known as the tumor microenvironment (TME),

is a target-rich environment (26–31). Cancer-associated

fibroblasts (CAFs), the major players in the TME, have drawn

much attention for their multiple functions, including

extracellular matrix (ECM) remodeling, growth factor,

cytokine, and chemokine production, angiogenesis regulation,

and metabolism and immune system modulation (24, 32–39). In

this review, we summarize the role of CAFs in acute leukemia

and highlight the challenges and opportunities associated with

CAF-targeting therapy.
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2 Bone marrow microenvironment
and CAFs

First, we must understand the ‘soil’ of leukemic cells and

stem cells, the BM microenvironment (BMM). BMM plays a key

role in regulating normal hematopoiesis, as well as

chondrogenesis and osteogenesis. Initially, BMM was

identified as necessary for successful BMT to reconstruct

hematopoiesis. In the 1950s, few patients with leukemia

benefitted from BMT (40). After the human histocompatibility

antigen system was recognized, a modern era of human BMT

began. From then on, the BMM has been slowly demystified.

In 1961, Fliedner et al. (41) pointed out that the recovery of

hematopoiesis in rats following 1000 cGy total body irradiation

required the recovery of vasculogenesis as support. Then, in 1967,

Wolf and Trentin applied the term ‘hemopoietic inductive

microenvironment’ to this event in the spleen and BM (42–44).

In 1978, Raymond Schofield (45) formally proposed the ‘stem cell

niche’ in BM as a specialized microenvironment for stem cells in

vivo. Since the 1980s, an increasing number of studies have

showed that the BM niche (also called BMM) plays a crucial

role in both hematopoiesis and leukemogenesis (46–51).

Traditionally, the BMM was divided into endosteal and vascular

niches, which may participate in different divisions of labor (52–

61). Through technological breakthroughs, such as the

construction of transgenic mouse models, the development of

sophisticated imaging technologies, and single-cell sequencing, the

atlas of BMM is becoming clearer. BMM is a continuum in which

hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs)

may locate in their corresponding niche. The trouble is that LSCs

remodel the BMM into a leukemia-permissive microenvironment

while suppressing a hematopoietic-permissive microenvironment

(50, 60, 62–67). Clinically, this hypothesis is best supported by

donor cell leukemia, in which leukemia originates from engrafted

donor cells after allogeneic HSC transplantation, i.e., the leukemia-

permissive microenvironment may initiate leukemogenesis in

healthy cells (68–72). Therefore, targeting of the leukemia-

permissive BMM to restore hematopoietic-permissive BMM can

be a useful strategy for overcoming R/R leukemia. Herein, the next

issue is to dig out the potent target cells.
2.1 The cell components of BMM

Initially, in the 1960s, Owen and Macapheson (73, 74)

observed a group of pre-osteoblasts growing in the inner

periosteal surface of the femur. In 1968, Friedenstein (75) and

Tavassoli et al. (76) found that BMT could generate non-

hematopoietic osteogenic cells. Then, in the 1980s, many

papers reported fibroblast colonies originating from stromal

osteogenic precursor cells in BM (77–81). In 1991, Caplan (82)

termed precursor cells with multipotency properties as

mesenchymal stem cells (MSCs). In the present day,
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autoradiography, BM smear and biopsy, flowcytometry, in vivo

BMT, and in vitro cell culture have helped us recognize the

cellular components of the BMM, including MSCs, endothelial

cells (ECs), adipocytes, Cxcl12-abundant reticular (CAR) cells,

osteogenic cells, macrophages, fibroblasts, Schwann cells, and

possibly other stromal cells (81, 83, 84). Cre-mediated lineage

tracing and deletion of molecular factors helped trace cell fate

and differentiation, which were still limited in a small piece of a

whole. Recently, single-cell and spatial transcriptomic

technologies provided the first systematic and label-free

identification of cell types of the BMM (85–90). So far, we can

map the cellular composition and distribution in the BMM.

Different BM resident cell types are successfully allocated to

endosteal, sinusoidal, arteriolar, and non-vascular niches (90).

Baryawno et al. (86) first profiled all non-hematopoietic

(Ter119-/CD71-/Lin-) cells in mouse BM and gained 17

clusters spanning MSCs (Lepr+Cxcl12+), osteolineage cells

(Bglap+), chondrocytes (Acan+Col2a1+), fibroblasts (S100a4+),

BMECs (Cdh5+), pericytes (Acta2+), and possible transitional

states. Based on single-cell and spatial transcriptomics, Baccin

et al. (87), identified nine cell types in BM-resident non-

hematopoietic cells and demonstrated their differential

localization, including two different EC clusters (Ly6a+ arterial

ECs and Emcn+ sinusoidal ECs), CAR cells (Leprhigh Adipo-CAR

and osterixhigh Leprlow Osteo-CAR), three distinct fibroblast

clusters (stromal, arteriolar, and endosteal localizations),

myofibroblasts, Ng2+ Nestin+ MSCs, chondrocytes (Acan and

Sox9), osteoblasts (Osteocalcin/Bglap and Col1a1), smooth

muscle cells (Tagln and Acta2), and Schwann cells (Mog, Mag).

In the BMM, MSCs and ECs are the most abundant subsets

(86), and have been fully researched, especially MSCs.

Fibroblasts, myofibroblasts, and Schwann cells were found to

be more abundant in crushed bones than in flushed bones (87).

Therefore, these cells might be ignored during regular clinical

examinations without broken bones, such as BM aspiration and

biopsy, due to the limited number of cells. Baryawno et al. (86)

revealed that Fibroblast-1 and -2 cells are MSC-like as they

expressed the progenitor marker CD34 and MSCmarkers (Ly6a,

Pdgfra, Thy1, and Cd44), but not BMECs or pericytes genes

(Cdh5 and Acta2). While in the BMM of AML, Cxcl12, Kitl, and

Angpt1 were upregulated in Fibroblast-1 cells (similar to Cxcl12-

secreting CAFs). CAFs are defined as fibroblasts that are located

within or adjacent to cancer cells, and have been extensively

studied due to the ease with which they can be obtained and

cultured in vitro from solid cancers (24, 33, 35, 91). In the past

decade, CAFs have been well recognized as a promising target in

the TME (25, 33, 34, 37).
2.2 Origins of CAFs in BM

Fibroblasts are defined as interstitial cells of a mesenchymal

lineage that are not epithelial, endothelial, or immune cells (34,
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37, 92). The origins and roles of fibroblasts in different tissues

remain ambiguous, resulting in a lack of unified biomarkers to

define them (36, 93). It is generally accepted that CAFs are the

main participants in ECM remodeling, wound-healing

responses, immune cell recruitment, inflammation, and

fibrosis (32, 34–37, 93). The origins and roles of CAFs are

even more complicated than fibroblasts. So far, over 10 origins of

CAFs have been found in solid tumors, including tissue-resident

cells (fibroblasts, myofibroblasts, fibrocytes, epithelial cells,

endothelial cells, adipocytes, smooth muscle cells, and immune

cells) and BM-derived cells (MSCs, circulating fibrocytes, and

immune cells) (24, 35, 37). Still, the precise origins of CAFs

and CAF subgroups, and the differences between CAFs and

fibroblasts in normal tissues, remain elusive due to the

phenotypic and functional plasticity of these cells and the lack

of well-defined lineage biomarkers (34, 37). However, based on

scRNA-seq and spatial transcription technology, there is a

considerable understanding of the heterogeneity of CAFs in

solid cancers, such as pancreatic cancer, liver cancer, gastric

cancer, head and neck cancer, and breast cancer (94–102).

Although the BMM has been studied extensively since 1978,

research on CAFs in hematological malignancies is falling far

behind that of solid tumors. The major reason for this is that BM

biopsy specimens are relatively hard to obtain. Additionally,

lineage tracing of CAFs might be more difficult in BM.

According to the achievements with solid tumors, we can

conclude that there are abundant resident origins of CAFs in

the BMM, such as MSCs, fibroblasts, myofibroblasts, fibrocytes,

smooth muscle cells, endothelial-mesenchymal transformation

cells, adipocyte-mesenchymal transition cells (24, 35, 103),

pericyte-fibroblast transformation cells (104, 105), monocyte-

fibroblast transition cells (106, 107), macrophage-mesenchymal

transformation cells (108), and leukemia cells (109–111)

(Figure 1). Different cell origins of CAFs might suggest

different phenotypes and roles. Additionally, most of the cell

origins of CAFs in BM contain populations with multipotent

differentiation capacity, which may make lineage tracing of

CAFs more difficult (Figure 2). For example, MSCs can

differentiate into osteoblasts, chondrocytes, and adipocytes in

vitro and in vivo (82, 112, 113). Adipocytes can differentiate into

myofibroblasts (103) and osteoblasts (114). CD34(+) fibrocytes

are BM-derived monocyte progenitor cells, which can

differentiate into adipocytes, osteoblasts, and chondrocytes

(115, 116). Monocytes can differentiate into fibrocytes and

macrophages (117, 118). Furthermore, the cell origins of BM

MSCs currently remain unclear; a mesodermal, a neuro-

ectodermal, or even a dual origin have been suggested (113).

The pericytes of ectodermal origin can differentiate into MSCs

(113, 119, 120). BM MSCs may arise from BM or adipose tissue

(121). Similarly, activated fibroblasts can transform into MSCs,

adipocytes, chondrocytes, endothelial cells, ECs, and pericytes,

and can even be induced to become induced pluripotent stem

cells (iPSCs) (35, 122).
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3 CAFs in the BMM of leukemia

3.1 Myelofibrosis and CAFs

First described in 1879, BM fibrosis with fibroblast

infiltration and excessive ECM deposition (123, 124) is a
Frontiers in Oncology 04
typical type of BMM remodeling (125). Now, myelofibrosis

(MF) is defined as a clonal hematopoietic BCR-ABL-negative

myeloproliferative neoplasm characterized by BM fibrosis,

extramedullary hematopoiesis, megakaryocytic hyperplasia,

and constitutional symptoms (126). MF may be primary or

secondary with a heterogeneous clinical course, ranging from a
FIGURE 2

The multipotent differentiation capacity of origin cells of CAFs. Activated fibroblasts, MSCs, and adipocytes are highly plastic and exhibit
multipotent capacity. MSCs can differentiate into osteoblasts, chondrocytes, adipocytes, and fibroblasts/myofibroblasts. Adipocytes can
differentiate into fibroblasts/myofibroblasts and osteoblasts. Fibrocytes can differentiate into monocytes, fibroblasts/myofibroblasts, adipocytes,
osteoblasts, and chondrocytes. Monocytes can differentiate into fibrocytes, macrophages, and fibroblasts/myofibroblasts. The pericytes and
adipocytes can differentiate into MSCs. Similarly, activated fibroblasts can transform into MSCs, adipocytes, chondrocytes, endothelial cells, ECs,
and pericytes.
FIGURE 1

Diverse origins of CAFs in the BMM. CAFs can originate from diverse sources, such as MSCs, fibroblasts, myofibroblasts, fibrocytes, smooth
muscle cells, endothelial cells, adipocyte pericytes, monocytes, macrophages, and leukemia cells, with different phenotypes. CAFs are a
heterogeneous population with distinct functions in the BMM. ECM, extracellular matrix; CAFs, cancer-associated fibroblasts.
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chronic asymptomatic state to acute leukemic transformation,

and possibly a preleukemic state (126, 127). Most forms of

secondary MF collaborate with myeloproliferative neoplasms

(MPN) and chronic myeloid leukemia (CML). Leukemia

transformation is rare in patients with non-fibrotic MPNs but

common in patients with MF (128–131). Patients with acute

leukemia transformed from MF have a dismal prognosis, with a

median survival time of approximately 3 months (128, 129). BM

fibrosis in ALL and AML was first described in 1964 (132).

Although BM fibrosis may disappear and accompany the

complete remission of leukemia, a higher degree of fibrosis

(measured as reticulin fibrin density) may correlate with

relapse and higher minimal residual disease (MRD) in ALL,

especially B-ALL (133–136), and with a poor prognosis in AML

(137); however, there remains controversy (138, 139). These

results imply that CAFs may play a crucial role in a part of

patients with acute leukemia.
3.2 Acute leukemia and CAFs

The phenotypes and roles of BM CAFs were first reported in

patients and mice with multiple myeloma (MM) in 2014 (140).

The same year, Duan et al. (141) found that ALL cells may

induce a dynamically transient niche in the BMM with the help

of chemotherapy: beginning with Nestin+ MSCs, maturating

through their transition to a-SMA+ cells, and terminating with

fiber residues, called the NSM niche, in mice models and patients

with ALL after chemotherapy. The NSM niche was associated

with additional difficulties in achieving complete remission after

therapy in ALL patients, i.e., the transit of Nestin+ MSCs to a-

SMA+ CAFs might correlate with BM fibrosis and poor

prognosis in ALL. In 2015, Paggetti et al. (142) reported that

exosomes from chronic lymphoid leukemia (CLL) may induce

the transition of BM MSCs to CAFs. In 2016, a retrospective

study on BM biopsies from patients with AML showed that

CAFs were widespread within the BM. Furthermore, excessive

reticular fibers in the BM led to a higher frequency of relapse and

mortality in primary ALL patients (143). In 2019, Burt et al.

(144) pinpointed that CAFs/activated MSCs are frequently

presence in ALL, which could prevent ALL cell apoptosis and

death from reactive oxygen species-inducing agents by

mitochondrial transfer. Exposure to Ara-C or daunorubicin

may generate CAFs in vitro and in ALL mice models (144).

Then, Pan et al. (145, 146) found that TGF-b is a key factor for

BM MSCs to obtain a CAF-like phenotype in a B-ALL

microenvironment, which may interact with ALL cells through

an SDF1-CXCR4 signaling axis to promote the progression of B-

ALL. Using single-cell sequencing, Baryawno et al. (86) revealed

a decrease in Fibroblast-5s (Sox9, Spp1, Nt5e, cspg4, and clip), an

increase in Fibroblast-2s (Cd34, Ly6a, Pdgfra, Thy1, and Cd44),

and a Cxcl12-secreting CAF phenotype of Fibroblast-1s (with

upregulation of Cxcl12, Kitl, and Angpt1) in mice BM with AML.
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In 2021, our team established the first CAF tumor cell line,

HXWMF-1 (a-SMA, vimentin, HSP47, S100A4/FSP1, FAP,

PDGFRb, and CD34 positive) (147), originated from the

subcutaneous xenografts of HXEX-ALL1 (148), a cell line from

a relapsed patient with B-ALL. The cell line provides firm

evidence that leukemia cells may induce malignant

transformation of CAFs (147). Malignant CAFs might remodel

the BMM to form a more aggressive niche. Although the exact

roles and underlying mechanisms of CAFs in BM remain elusive,

it is clear that CAFs in BM may correlate with BM fibrosis,

promote leukemia progression, and induce chemoresistance

(Table 1) (86, 141, 143–146). Chemotherapeutic drugs, such as

Ara-C and daunorubicin, may induce the generation of CAFs

(Table 1) (141, 144). In general, CAFs in BM may have distinct

phenotypes and play crucial roles in leukemogenesis and therapy

resistance. Understanding the role of CAFs in BM and AL may

have clinical significance as it may facilitate the identification of

novel drug targets for BMM and immunotherapy.
3.3 Genetic alteration and CAFs

G-banding analysis showed that HXWMF-1 cells have 60–

70 chromosomes with complex structural chromosomal

abnormalities (147), which raises the question of whether

there are cytogenetic abnormalities in BM stromal cells in

patients with acute leukemia? Some studies reported that

stromal cells in the BM of MM, myelodysplastic syndrome

(MDS), AML, ALL, and CML patients had numerical and

structural chromosomal abnormalities, which were different

from the abnormalities of leukemic cells (149–153). However,

other researchers were unable to find chromosomal

abnormalities in stromal cells from different hematological

diseases, including MDS, AML, ALL, CLL, and CML (154–

157). Gunsilius et al. (158) reported that ECs from patients with

CML expressed the BCR-ABL fusion gene. Zhou et al. (159)

found that clonal expansion of fibroblasts with somatic copy

number alterations is prevalent in patients with colorectal

cancer. The genetic profile of cancer cells can affect the

surrounding stoma (160), and genetic alterations have been

detected in a few stroma cells in solid tumors (161–163). In

general, cytogenetic alterations could appear in stromal cells in

some patients with leukemia but not all. The presence of

chromosomal aberrations in BM MSCs has been associated

with a bad prognosis (150).
4 Why focus on CAFs

4.1 The role of CAFs

Although, studies of the BMM of malignant hematological

diseases have suggested a tumor-promoting role for CAFs (140–
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146, 164), studies on solid tumors revealed highly heterogeneous

phenotypes in CAFs, with both tumor-promoting and

restraining functions (35, 36, 38, 93, 165–169), which may

partly explain the failure in clinical trials of targeting CAFs as

a whole (34). The former phenotype represents most of the CAF

population (38), which helps reprogram malignant ECM,

increase angiogenesis and neovascurization, fuel cancer cells,

direct cancer cell proliferation, metastasis, and invasion,

deregulate metabolism, induce epigenetic reprogramming,

unlock phenotypic plasticity, promote the stemness of

cancer cells, resist cell death, shape the tumor immune

microenvironment, and confer therapeutic resistance (32, 33,

36, 38, 39, 91, 93, 96, 97, 99, 168, 170, 171). Therefore, CAFs may

participate in constructing almost all the fourteen hallmarks of

cancer proposed by Dr. Hanahan and Dr. Weinberg (172–174),

including acquiring capabilities for sustaining proliferative

signaling, evading growth suppressors, resisting cell death,

enabling replicat ive immortal i ty , tumor-promoting

inflammation, inducing/accessing vasculature, activating

invasion and metastasis, reprogramming cellular metabolism,

avoiding immune destruction, genome instability and mutation,
Frontiers in Oncology 06
unlocking phenotypic plasticity, non-mutational epigenetic

reprogramming, polymorphic microbiomes, and senescent

cells (172). Kochetkova and Samuel (33) reviewed the

published evidence and summarized that CAF-mediated

differentiation may give rise to cancer-associated immune cells,

adipocytes, nerves, endothelia, and vasculature. They pointed

out that CAFs are well equipped to assume the role of master

organizer in the cancer by interacting with cancer cells and other

stromal cells and immune cells in the TME, and producing

cancer-specific ECM and secretome. Therefore, targeting CAFs

to destroy cancer might be a potent therapeutic protocol for

improving and perfecting cancer therapy.
4.2 Targeting CAFs and the
associated challenges

The first clinical trial of targeting CAFs was reported in 1994,

using iodine 131-labeled monoclonal antibody F19 (131I-

mAbF19) to target FAP+CAFs in colorectal carcinoma patients

with hepatic metastasis. The results prompted the diagnostic and
TABLE 1 CAFs in AL and their functions in leukemia progression.

Models Induction
factors of
CAFs

CAFs subtypes Cell
origin
of

CAFs

Roles of
CAFs

Mechanisms Method Correlated
with BM
fibrosis

References

Murine ALL
models
/Pediatric and
Adult patients
with ALL

Ara-C or
DNR

a-SMA+, Vimentin+

(murine)/a-SMA+,
Nestin-, CD146-

(human)

MSCs
with
Nestin+

Protect
leukemic cells
from
chemotherapy

GDF15 mediated the
niche protection

IF and
IHC

Yes Duan et al.
(140)

Adult patients
with AML

NA FSP1+, a-SMA+, or
FAP+

MSCs Protect
leukemic cells
from
chemotherapy

GDF15 mediated the
chemoprotection

IHC Yes Zhai et al.
(142)

Adult patients
with ALL
/Murine B-ALL
models

Ara-C or
DNR

F-action+, a-SMA+ MSCs Protect
leukemic cells
from
chemotherapy

Mitochondria
transfer mediated the
chemoprotection.

Cell
culture
and IF

NA Burt et al.
(143)

Murine AML
models

NA Cd34+, Ly6a+,
Pdgfra+, Thy1+ and
Cd44+/ Cxcl12+,
Kitl+, and Angpt1+

NA NA NA Single cell
sequencing

NA Baryawno
et al. (86)

Adult patients
with B-ALL

TGF-b a-SMA+ , FAP+ MSCs Accelerate
leukemic cells
migration
and invasion

NA Cell
culture, IF

NA Pan et al.
(145)

Adult patients
with B-ALL/
Murine B-ALL
modle

TGF-b a-SMA+, FAP+ MSCs Promoting
the growth
and invasion
of B-ALL

SDF-1/CXCR4 axis
mediated the
communication of
CAFs and leukemia
cells

IHC Yes Pan et al.
(144)

IF, immunofluorescence; IHC, immunohistochemistry; NA, not reported.
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therapeutic applications of mAbF19 (175). Then, an increasing

number of preclinical and clinical trials of different targets and

strategies were undertaken or are still in progress. However, in

recent years, CAFs have been the focus of debate. There are

numerous obstacles and challenges in targeting CAFs, such as a

lack of specific CAF cell markers and signaling pathways, and

the heterogeneous roles of CAFs. Increasing evidence has added

further complication by indicating that the phenotypes of CAFs

are dynamic and able to interconvert depending on tumor status,

culture conditions, and therapeutic protocols (34, 93, 176–178).

This presents a challenge and an opportunity, as modulating the

phenotype of CAFs from tumor promoting to tumor restraining

might be an attractive approach for cancer treatment (38, 93).

Unfortunately, owing to the same difficulty, there are no definite

and standardized markers to classify the functional subtypes of

CAFs. Traditionally, a-smooth muscle actin (a-SMA) was

identified as a marker of active CAFs and a prognostic factor

in tumor patients; however, certain subtypes of CAFs are

characterized by a far lower degree of a-SMA (176, 179, 180).

Currently, a number of markers, such as a-SMA, FAP,

PDGFRa/b, vimentin, S100A4 (FSP1), CAV1(caveolin 1),

transgelin (TAGLN), periostin (POSTN), podoplanin (PDPN),

integrin a11b1 (ITGA11), collagen type XI alpha I chain

(COL11A1), and microfibril-associated protein 5 (MFAP5),

are used to identify CAF populations and subgroups (24, 32,

38, 93, 179). Just as Dr. Song mentioned, CAFs are frequently

defined by what they are not, typically using multiple

biomarkers, resulting in an incomprehensive definition of a

CAF (38). Recently, novel CAF-specific biomarkers were

discovered in different cancers, such as CD10+GPR77+ CAFs

in breast and lung cancer (25), G protein-coupled receptor 30+

CAFs in prostate cancer (181), netrin G1+ CAFs (182),

neuregulin+ CAFs (183), leucine-rich-repeat-containing 15+

CAFs (91), Gli1+ CAFs (184), CD105+ CAFs in pancreatic

cancer (99), and EGRhigh CAFs in adult T cell leukemia/

lymphoma (185). Novel markers may help to precisely attack

the tumor-promoting CAFs.

According to the target spot, there are two strategies for

targeting CAFs, direct and indirect, which were recently

comprehensively reviewed by Saw et al. (38). The direct

targeting approach includes CAF depletion via cell markers,

inhibition of CAF activation by targeting the signaling pathway,

halting infiltration of CAFs, and reprogramming tumor-

promoting CAFs to a quiescent state or tumor-restraining

phenotype (24, 32, 38, 39). The indirect targeting approach

includes targeting the TME, CAF-derived ECM, and

downstream effectors (24, 32, 38, 39). However, parts of the

clinical trials of targeting CAFs ended in failure, and in some

cases, even accelerated cancer progression (34). Recently, there

have been numerous studies on FAP-specific CAR-T cells, which

can specifically attack FAP+ CAFs with concomitant antitumor
Frontiers in Oncology 07
efficacy and no severe toxicity (24, 186–188). CAR-T, which was

first described by Gross et al. (189) in 1989, can enable T cells to

recognize antigens independent of major histocompatibility

complex II. The first FDA-approved CAR-T cell therapy

obtained a good response in aspects of patients’ ALL (190,

191). CAR-T cell therapy is mainly performed in patients with

hematological malignancies and is a revolutionary new

treatment for cancer (192). However, responses are transient

in patients as CAR-T cells may become exhausted/dysfunctional.

Recently, Sakemura et al. (164) constructed a dual-targeting

BCMA-FAP and BCMA-SLAMF CAR-T to target both

malignant plasma cells and BM CAFs. The results showed that

dual-targeting of CAR-T can overcome BM-CAF-mediated

inhibition of BCMA-CAR-T (targeting plasma cells only) in

an MMmice model. This study is a perfect preclinical attempt to

target both cancer cells and the TME with immunotherapeutic

strategies, and a brand-new attempt at targeting CAFs in the

BMM. Encouragingly, the study suggests that FAP-CAR-T can

be applied to target BM CAFs in hematologic malignancies to

combat BMM-mediated therapy resistance.
5 Conclusions and perspectives

Studies on CAFs are exciting and critical for leukemia

treatment. The challenge is to better understand the

heterogeneity and plasticity of CAFs, which may help to

develop novel CAF-targeting therapeutic strategies. Compared

with solid tumors, the targeting of CAFs is more challenging in

hematological malignancy. First, the BM biopsy samples are

harder to obtain. To complicate matters further, it is difficult to

obtain enough CAFs through regular BM aspiration and biopsy,

whereas fibroblasts and myofibroblasts are abundant in crushed

bones (87). Second, the precursor cells in the BMM are more

complex and plastic, which make lineage tracing more

challenging. In general, there are still many questions about

CAFs in the BMM that need to be answered, including

the following:
1. What kinds of CAFs in the BMM might correlate with

R/R AL? What are their cell origins? Do these CAFs

have chromosomal alterations?

2. Do CAFs contribute to donor cell leukemia? What kinds

of CAFs might induce donor cell leukemia? What are

the underlying mechanisms?

3. What kinds of ALs might induce the malignant

transformation of CAFs? What are the exact roles of

malignant CAFs?

4. What are the underlying mechanisms of the transition

of precursor cells to CAFs? Are there any influences of

therapeutic protocols on the transition of CAFs?
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112. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI.
Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regener
Med (2019) 4:22. doi: 10.1038/s41536-019-0083-6

113. Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal
stem cells: From roots to boost. Stem Cells (2019) 37(7):855–64. doi: 10.1002/
stem.3016

114. Lin D, Dass CR. Transdifferentiation of adipocytes to osteoblasts: potential
for orthopaedic treatment. J Pharm Pharmacol (2018) 70(3):307–19. doi: 10.1111/
jphp.12862

115. Hong KM, Burdick MD, Phillips RJ, Heber D, Strieter RM.
Characterization of human fibrocytes as circulating adipocyte progenitors and
the formation of human adipose tissue in SCID mice. FASEB J (2005) 19(14):2029–
31. doi: 10.1096/fj.05-4295fje

116. Choi YH, Burdick MD, Strieter RM. Human circulating fibrocytes have the
capacity to differentiate osteoblasts and chondrocytes. Int J Biochem Cell Biol
(2010) 42(5):662–71. doi: 10.1016/j.biocel.2009.12.011

117. Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K,
Göbel N, et al. CD4+ T cells control the differentiation of Gr1+ monocytes into
fibrocytes. Proc Natl Acad Sci U.S.A. (2009) 106(42):17892–7. doi: 10.1073/
pnas.0906070106

118. Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in
chronic inflammation. Nat Rev Immunol (2011) 11(6):427–35. doi: 10.1038/
nri2990

119. Mangialardi G, Cordaro A, Madeddu P. The bone marrow pericyte: an
orchestrator of vascular niche. Regener Med (2016) 11(8):883–95. doi: 10.2217/
rme-2016-0121

120. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A
perivascular origin for mesenchymal stem cells in multiple human organs. Cell
Stem Cell (2008) 3(3):301–13. doi: 10.1016/j.stem.2008.07.003

121. Zhang J, Liu Y, YinW, Hu X. Adipose-derived stromal cells in regulation of
hematopoiesis. Cell Mol Biol Lett (2020) 25:16. doi: 10.1186/s11658-020-00209-w

122. Raab S, Klingenstein M, Liebau S, Linta L. A comparative view on human
somatic cell sources for iPSC generation. Stem Cells Int (2014) 2014:768391.
doi: 10.1155/2014/768391

123. Greenberg BR, Woo L, Veomett IC, Payne CM, Ahmann FR. Cytogenetics
of bone marrow fibroblastic cells in idiopathic chronic myelofibrosis. Br J Haematol
(1987) 66(4):487–90. doi: 10.1111/j.1365-2141.1987.tb01332.x
frontiersin.org

https://doi.org/10.1097/00003086-198612000-00037
https://doi.org/10.1007/BF00214667
https://doi.org/10.1002/9780470513637.ch4
https://doi.org/10.1002/jor.1100090504
https://doi.org/10.1038/nri.2017.53
https://doi.org/10.1111/j.1600-0609.1992.tb00053.x
https://doi.org/10.1111/j.1600-0609.1992.tb00053.x
https://doi.org/10.1097/CCO.0000000000000602
https://doi.org/10.1016/j.cell.2019.04.040
https://doi.org/10.1038/s41556-019-0439-6
https://doi.org/10.1016/j.stem.2019.06.003
https://doi.org/10.1016/j.celrep.2019.06.031
https://doi.org/10.1186/s13287-022-02718-1
https://doi.org/10.1158/2159-8290.CD-19-0644
https://doi.org/10.1038/s41586-021-03549-5
https://doi.org/10.1152/physrev.00048.2019
https://doi.org/10.1007/s11010-021-04095-4
https://doi.org/10.21037/atm-22-407
https://doi.org/10.1016/j.ccell.2021.03.012
https://doi.org/10.7150/thno.60540
https://doi.org/10.1158/2159-8290.CD-21-0683
https://doi.org/10.1016/j.ccell.2021.06.017
https://doi.org/10.1016/j.ccell.2021.06.017
https://doi.org/10.1158/1078-0432.CCR-21-3570
https://doi.org/10.1186/s12943-017-0642-7
https://doi.org/10.15252/embj.2019104063
https://doi.org/10.1007/s11926-020-00957-w
https://doi.org/10.1073/pnas.1608384113
https://doi.org/10.3389/fphar.2021.698275
https://doi.org/10.1073/pnas.0804910105
https://doi.org/10.4049/jimmunol.1501232
https://doi.org/10.1016/j.canlet.2021.04.013
https://doi.org/10.1155/2012/901783
https://doi.org/10.1155/2012/901783
https://doi.org/10.1016/j.bbrc.2009.11.104
https://doi.org/10.1016/j.leukres.2010.09.019
https://doi.org/10.1038/s41536-019-0083-6
https://doi.org/10.1002/stem.3016
https://doi.org/10.1002/stem.3016
https://doi.org/10.1111/jphp.12862
https://doi.org/10.1111/jphp.12862
https://doi.org/10.1096/fj.05-4295fje
https://doi.org/10.1016/j.biocel.2009.12.011
https://doi.org/10.1073/pnas.0906070106
https://doi.org/10.1073/pnas.0906070106
https://doi.org/10.1038/nri2990
https://doi.org/10.1038/nri2990
https://doi.org/10.2217/rme-2016-0121
https://doi.org/10.2217/rme-2016-0121
https://doi.org/10.1016/j.stem.2008.07.003
https://doi.org/10.1186/s11658-020-00209-w
https://doi.org/10.1155/2014/768391
https://doi.org/10.1111/j.1365-2141.1987.tb01332.x
https://doi.org/10.3389/fonc.2022.1022979
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2022.1022979
124. Tomuleasa C, Selicean S, Gafencu G, Petrushev B, Pop L, Berce C, et al.
Fibroblast dynamics as an in vitro screening platform for anti-fibrotic drugs in
primary myelofibrosis. J Cell Physiol (2018) 233(1):422–33. doi: 10.1002/jcp.25902

125. Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin
Oncol (2005) 23(33):8520–30. doi: 10.1200/JCO.2004.00.9316

126. Venugopal S, Mascarenhas J. Current clinical investigations in
myelofibrosis. Hematol Oncol Clin North Am (2021) 35(2):353–73. doi: 10.1016/
j.hoc.2020.12.003

127. Song IC, Yeon SH, Lee MW, Ryu H, Lee HJ, Yun HJ, et al. Myelofibrotic
and leukemic transformation in 2016 WHO-defined Philadelphia-negative
myeloproliferative neoplasm. Blood Res (2022) 57(1):59–68. doi: 10.5045/
br.2021.2021209

128. Mughal TI, Vaddi K, Sarlis NJ, Verstovsek S. Myelofibrosis-associated
complications: pathogenesis, clinical manifestations, and effects on outcomes. Int J
Gen Med (2014) 7:89–101. doi: 10.2147/IJGM.S51800

129. Mesa RA, Li CY, Ketterling RP, Schroeder GS, Knudson RA, Tefferi A.
Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-
institution experience with 91 cases. Blood (2005) 105(3):973–7. doi: 10.1182/
blood-2004-07-2864

130. Kundranda MN, Tibes R, Mesa RA. Transformation of a chronic
myeloproliferative neoplasm to acute myelogenous leukemia: does anything
work. Curr Hematol Malig Rep (2012) 7(1):78–86. doi: 10.1007/s11899-011-
0107-9

131. Tefferi A, Lasho TL, Jimma T, Finke CM, Gangat N, Vaidya R, et al. One
thousand patients with primary myelofibrosis: the mayo clinic experience. Mayo
Clin Proc (2012) 87(1):25–33. doi: 10.1016/j.mayocp.2011.11.001

132. Kundel DW, Brecher G, Bodey GP, Brittin GM. Reticulin fibrosis and bone
infarction in acute leukemia. implications for prognosis. Blood (1964) 23:526–44.
doi: 10.1182/blood.V23.4.526.526

133. Norén-Nyström U, Heyman M, Frisk P, Golovleva I, Sundström C, Porwit
A, et al. Vascular density in childhood acute lymphoblastic leukaemia correlates to
biological factors and outcome. Br J Haematol (2009) 146(5):521–30. doi: 10.1111/
j.1365-2141.2009.07796.x

134. Norén-Nyström U, Roos G, Bergh A, Botling J, Lönnerholm G, Porwit A,
et al. Bone marrow fibrosis in childhood acute lymphoblastic leukemia correlates to
biological factors, treatment response and outcome. Leukemia (2008) 22(3):504–
10. doi: 10.1038/sj.leu.2405072

135. Wallis JP, Reid MM. Bone marrow fibrosis in childhood acute
lymphoblastic leukaemia. J Clin Pathol (1989) 42(12):1253–4. doi: 10.1136/
jcp.42.12.1253

136. Nath SV, Nicholson I, Tapp H, Zola H, Zannettino AC, Revesz T. Reticulin
fibres anchor leukaemic blasts in the marrow of patients with acute lymphoblastic
leukaemia. Med Hypotheses (2011) 77(3):333–5. doi: 10.1016/j.mehy.2011.05.007

137. Zhang X, Wang F, Yu J, Jiang Z. Significance of bone marrow fibrosis in
acute myeloid leukemia for survival in the real-world. Front Oncol (2022)
12:971082. doi: 10.3389/fonc.2022.971082

138. Bharos A, Jong AJ, Manton N, Venn N, Story C, Hodge G, et al. Bone
marrow fibrosis and vascular density lack prognostic significance in childhood
acute lymphoblastic leukaemia. Leukemia (2010) 24(8):1537–8. doi: 10.1038/
leu.2010.134

139. Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP. Bone marrow fibrosis:
pathophysiology and clinical significance of increased bone marrow stromal fibres.
Br J Haematol (2007) 139(3):351–62. doi: 10.1111/j.1365-2141.2007.06807.x

140. Frassanito MA, Rao L, Moschetta M, Ria R, Di Marzo L, De Luisi A, et al.
Bone marrow fibroblasts parallel multiple myeloma progression in patients and
mice: in vitro and in vivo studies. Leukemia (2014) 28(4):904–16. doi: 10.1038/
leu.2013.254

141. Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X, et al. Leukemia
propagating cells rebuild an evolving niche in response to therapy. Cancer Cell
(2014) 25(6):778–93. doi: 10.1016/j.ccr.2014.04.015

142. Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, et al.
Exosomes released by chronic lymphocytic leukemia cells induce the transition of
stromal cells into cancer-associated fibroblasts. Blood (2015) 126(9):1106–17.
doi: 10.1182/blood-2014-12-618025

143. Zhai Y, Zhang J, Wang H, Lu W, Liu S, Yu Y, et al. Growth differentiation
factor 15 contributes to cancer-associated fibroblasts-mediated chemo-protection of
AML cells. J Exp Clin Cancer Res (2016) 35(1):147. doi: 10.1186/s13046-016-0405-0

144. Burt R, Dey A, Aref S, Aguiar M, Akarca A, Bailey K, et al. Activated
stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells
from oxidative stress. Blood (2019) 134(17):1415–29. doi: 10.1182/
blood.2019001398

145. Pan C, Fang Q, Liu P, Ma D, Cao S, Zhang L, et al. Mesenchymal stem cells
with cancer-associated fibroblast-like phenotype stimulate SDF-1/CXCR4 axis to
enhance the growth and invasion of b-cell acute lymphoblastic leukemia cells
Frontiers in Oncology 11
through cell-to-Cell communication. Front Cell Dev Biol (2021) 9:708513.
doi: 10.3389/fcell.2021.708513

146. Pan C, Liu P, Ma D, Zhang S, Ni M, Fang Q, et al. Bone marrow
mesenchymal stem cells in microenvironment transform into cancer-associated
fibroblasts to promote the progression of b-cell acute lymphoblastic leukemia.
BioMed Pharmacother (2020) 130:110610. doi: 10.1016/j.biopha.2020.110610

147. Li Y, Gu L. Establishment and characterization of HXWMF-1: the first
mouse fibroblastic tumor cell line derived from leukemia-associated fibroblasts.
Cancer Cell Int (2021) 21(1):177. doi: 10.1186/s12935-021-01870-7

148. Zhu Y, Yang R, Gao J, Zhang Y, Zhang G, Gu L. Establishment and
characterization of a novel childhood acute lymphoblastic leukemia cell line,
HXEX-ALL1, with chromosome 9p and 17p deletions. Cancer Cell Int (2019)
19:113. doi: 10.1186/s12935-019-0834-x

149. Kim Y, Jekarl DW, Kim J, Kwon A, Choi H, Lee S, et al. Genetic and
epigenetic alterations of bone marrow stromal cells in myelodysplastic syndrome
and acute myeloid leukemia patients. Stem Cell Res (2015) 14(2):177–84.
doi: 10.1016/j.scr.2015.01.004

150. Blau O, Baldus CD, Hofmann WK, Thiel G, Nolte F, Burmeister T, et al.
Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid
leukemia patients have distinct genetic abnormalities compared with leukemic
blasts. Blood (2011) 118(20):5583–92. doi: 10.1182/blood-2011-03-343467

151. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schümann E, et al.
Chromosomal aberrations in bone marrow mesenchymal stroma cells from
patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp
Hematol (2007) 35(2):221–9. doi: 10.1016/j.exphem.2006.10.012

152. Yeh SP, Lo WJ, Lin CL, Liao YM, Lin CY, Bai LY, et al. Anti-leukemic
therapies induce cytogenetic changes of human bone marrow-derived
mesenchymal stem cells. Ann Hematol (2012) 91(2):163–72. doi: 10.1007/
s00277-011-1254-8

153. Huang JC, Basu SK, Zhao X, Chien S, Fang M, Oehler VG, et al.
Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow
exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J (2015) 5:
e302. doi: 10.1038/bcj.2015.17

154. Campioni D, Bardi MA, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E,
et al. Cytogenetic and molecular cytogenetic profile of bone marrow-derived
mesenchymal stromal cells in chronic and acute lymphoproliferative disorders.
Ann Hematol (2012) 91(10):1563–77. doi: 10.1007/s00277-012-1500-8

155. Diaz de la Guardia R, Lopez-Millan B, Lavoie JR, Bueno C, Castaño J,
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