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Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It

can activate janus kinase 2 (JAK2)-signal transducer and activator of

transcription 3 (STAT3) signaling pathway. As one of the important signal

transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical

role in cell proliferation and differentiation by affecting the activation state of

downstream effector molecules. The activation of JAK2/STAT3 signaling

pathway is involved in tumorigenesis and development. It contributes to the

formation of tumor inflammatory microenvironment and is closely related to

the occurrence and development of many human tumors. This article focuses

on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver

cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer,

pancreatic cancer and ovarian cancer, hoping to provide references for the

research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3

signaling pathway.
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Introduction

With the participation of many cytokines, the tumor microenvironment (TME)

thereby forms a local milieu which is conducive to tumor propagation (1). Cytokines

such as interleukin-6 (IL-6) may have a significant impact on cancer progression through

signal cascades. Among them, IL-6/janus kinase 2 (JAK2)/signal transducer and activator

of transcription 3 (STAT3) signaling pathways may play a key role in the development of

malignant tumors, participating in the entire process of invasion and metastasis.

Excessive release of IL-6 in response to inflammatory stimulation is a potent activator

of JAK/STAT signaling pathway. IL-6 may play a pro-inflammatory role by activating

this pathway to promote the process of epithelial-mesenchymal transition (EMT) (2, 3).

IL-6/JAK2/STAT3 signaling pathway is one of the important inflammatory signaling

pathways found at present. It participates in many physiological and pathological
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processes such as immune regulation, angiogenesis and cell

proliferation and differentiation. It is closely related to

biological behaviors such as tumor occurrence, development,

metastasis and invasion, and its abnormal expression has

guiding significance for tumor prognosis (4, 5).

A large number of studies have shown that IL-6/JAK2/

STAT3 signaling pathway is abnormally highly activated in a

variety of cancers, such as gastric cancer (GC) (6, 7), breast cancer

(BC) (8–10), liver cancer (11–13), colorectal cancer (CRC) (14,

15), colon cancer (16, 17), ovarian cancer (OC) (18, 19), lung

cancer (20–22), pancreatic cancer (PC) (4, 5). It strongly inhibits

anti-tumor immune response (23). In glioma tissues, syndecan-

binding protein (SDCBP), which controls the proliferation and

invasion of cancer cells, is positively correlated with IL-6

expression level, and IL-6 stimulation induces SDCBP

expression at mRNA and protein levels in a dose- and time-

dependent manner (24). Phosphorylation of STAT3 and JAK2

was significantly enhanced in glioma cells, and inhibition of IL-6/

JAK2/STAT3 signaling pathway could significantly inhibit the

proliferation of glioma cells and promote cell apoptosis (25, 26).

IL-6, phosphorylated JAK2 and phosphorylated STAT3 protein

levels were significantly increased in liver cancer cells. The

treatment of liver cancer cells with JAK2 inhibitor and IL-6

neutralizing antibody enhanced the adriamycin-induced aging of

cells, and also significantly inhibited the proliferation rate of the

cells (27). IL-6/JAK2/STAT3 pathway is more active in

CD44+CD24- BC cells than in other tumor types, and

inhibition of JAK2 reduces their numbers and prevents

xenograft growth (28). In CRC, CRC-derived mesenchymal

stem cells (CC-MSCs) increase the migration and invasion of

CRC cells through EMT in vitro, leading to the occurrence of

CRC; and promote the growth and metastasis of CRC in vivo

(29). The use of STAT3 inhibitors can weaken the CRC

promoting effect of CC-MSCs (14). Total STAT3 and

phosphorylated STAT3 in intestinal GC were increased

compared with normal stomach (30). In lung cancer,

mesenchymal stem cells can enhance tumorigenesis by

activating IL-6/JAK2/STAT3 pathway (22). IL-6 and its

downstream JAK2/STAT3 pathway have become the most

important factors in the regulation of inflammation-related PC

(31). Compared with normal ovaries and benign tumors, JAK2/

STAT3 is activated in high-grade OC and is involved in cancer

progression and EMT (32). Activation of IL-6/JAK2/STAT3

pathway is closely associated with EMT and stem cell-like

features, ultimately leading to poor prognosis in patients with

various cancers (33). Therefore, the inhibition and regulation of

IL-6/JAK2/STAT3 signaling pathway is conducive to the

prevention and treatment of tumors and the improvement of

prognosis, and it is also one of the important targets for screening

anti-tumor drugs (34). Targeting molecules in this pathway have

significant effects on slowing down cancer progression (35–37).

Thus, it is a very promising research object for cancer treatment.
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This paper reviewed the relationship between IL-6/JAK2/STAT3

signaling pathway and various cancers, providing a reference for

cancer therapy targeting this pathway.
IL-6, JAK2 and STAT3

IL-6

Interleukin is a kind of cytokines produced by and acting on

many kinds of cells. It can interact with many types of cells, alter

the immune system, and play a role in a variety of cancers (38).

Interleukin can be divided into several families, with more than

40 subfamily members (38). Among them, IL-6 is a pleiotropic

cytokine involved in immune regulation. It regulates almost all

aspects of the innate immune system, including hematopoiesis

and neutrophil accumulation at infection or trauma sites by

controlling granulopoiesis (39–41).

The human gene for IL-6 was cloned and reported in 1986. It

is mapped to 7p15–p21 chromosome, consisting of four introns

and five exons (42). The IL-6 gene encodes the 212 amino acid

length IL-6 precursor protein, including a 28-amino acid signal

peptide and a 184-amino acid mature segment (42, 43). Its

molecular masses vary from 21 kDa to 28 kDa, depending on the

cellular source and post-translational modification including N-/

O-glycosylation and phosphorylation (44). IL-6 is produced by

various types of lymphocytes and non-lymphocyte cells, such as

T and B lymphocytes, fibroblasts, monocytes, mesangial cells,

endothelial cells, keratinocytes, and several tumor cells (45). IL-6

enacts a broad set of physiological functions traditionally related

with immune cell regulation, host defense, proliferation and

differentiation (46), and can directly stimulate the proliferation,

survival, metastasis and invasion of tumor cells (47–49). It has a

wide range of effects on immune system cells and non-immune

system cells, usually showing hormone-like characteristics that

affect homeostatic processes (41). IL-6 has context-dependent

pro- and anti-inflammatory properties, and is regarded as a

prominent target for clinical intervention (41). IL-6 levels were

elevated in patients with chronic inflammation and a large

number of hematopoietic malignancies and solid tumors.

About 25 percent of adult cancers are caused by chronic

inflammation (50). Associated with inflammation, IL-6 is

involved in the progression of cancer. IL-6 exerts its biological

effects by binding to its receptors, IL-6a receptors (glycoprotein

80, gp80) and IL-6b receptors (glycoprotein 130, gp130) (51).

Homodimer composed of IL-6 and gp130 phosphorylates

downstream janus tyrosine kinase (JAK), and then activates

various downstream transcription factors (52). Tumor-

associated macrophages increase tumor initiating ability and

drug resistance of tumor stem cells by secreting IL-6 (53). IL-6 is

involved in the progression of many tumors (54–58) and it is an

important cytokine in tumor.
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JAK2

Janus kinase (JAK) is a non-receptor tyrosine kinase with a

molecular weight of 120-140 kDa (59). It can mediate the

cascade activation of signal molecules after the binding of

cytokines and receptors. JAK kinase family includes four

members, namely JAK1, JAK2, JAK3 and TYK2 (60, 61).

Among them, JAK1, JAK2 and TYK2 are expressed in any

tissue and cell, which is also the basis for their extensive

participation in various molecular signal transduction

processes. JAK3 is generally expressed only in medullary and

lymphoid tissues and is highly expressed in activated T cells, B

cells and monocytes (62). In JAK family, JAK2 has become an

important target for cancer therapy due to its role in cell growth

and survival. Although most solid tumors do not have JAK2

mutations (63–65), more and more evidence shows that

abnormal JAK2 signaling acts importantly in solid tumors (66)

such as CRC (14, 67, 68), BC (69, 70), GC (71), lung cancer (72)

and prostate cancer (73).
STAT3

Signal transducer and activator of transcription (STAT)

protein family plays a key role in regulating cytokine

dependent inflammation and immunity, consisting of seven

members: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B

and STAT6 (16). Among them, STAT3 is a transcription factor

that has been profoundly studied in cancer and inflammation.

STAT3 is a protein composed of 770 amino acids,

characterized by the existence of 6 functional conservative

domains (74). SRC homology 2 (SH2) is the most conservative

STAT domain and plays a key role in signal transduction by

binding to specific phosphotyrosine motifs (75). STAT3 is

activated by many cytokines and growth factors (76), including

cytokines utilizing the IL-6 signal-transducing receptor chain

gp130 [such as IL-6 (77, 78), interleukin-11 (78–80), oncostatin

M (81)] or homodimeric cytokine receptors [such as granulocyte

colony-stimulating factor (G-CSF) (82)], as well as growth factors

acting through protein tyrosine kinase receptors (such as

epidermal growth factor (77, 83). Thereby, it is involved in

carcinogenic signaling pathways and intracellular signal

transduction pathways, including IL-11-STAT3 signaling (80),

G-CSF-STAT3 pathway (84), NF-kB pathway (85). Once enter

the nucleus, the STAT molecule binds to specific promoter DNA

sequences, leading to transcription of genes regulating cell

proliferation, differentiation, and apoptosis (86–88). Apoptosis

related proteins B cell lymphoma-2 (Bcl-2) and Bcl-2 associated

protein X (Bax) play an important role in regulating cell survival

and are key transcription targets of STAT3 (89, 90). Over-

activation of STAT3 can promote tumor growth either directly

through tumor autonomic mechanisms or indirectly by
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and immune system. Constitutively activated STAT3 in tumor

cells not only eliminates anti-tumor immune response by

continuously promoting IL-6 (91), IL-10 (91) or vascular

endothelial growth factor (VEGF) (92) in the TME, but also

transcribes and activates key oncogenes involved in

immunosuppression such as programmed cell death-ligand 1

(PD-L1) (93), indoleamine 2, 3-dioxygenase 1 (IDO1) (94). The

high expression of STAT3 thus enhances immune escape ability

or establishes immune tolerance through a variety of mechanisms,

and the inflammatory microenvironment further promotes tumor

angiogenesis and the growth, invasion and metastasis of tumor

cells (95). Whether in the initial stage of malignant transformation

or during the progression of cancer, STAT3 plays a crucial role in

selectively inducing and maintaining the carcinogenic

inflammatory microenvironment (96).
IL-6/JAK2/STAT3 signaling pathway

IL-6/JAK2/STAT3 signaling pathway plays a crucial role in

the development and progression of cancer. JAK2/STAT3 can

induce systemic inflammatory response and is associated with

the occurrence of tumor cachexia (97, 98). IL-6 binds to

membrane receptors and then activates non-receptor tyrosine

kinases, including JAK2. These phosphotyrosine residues act as

docking sites for STAT3 protein recruitment, and STAT3

protein acts as a cellular mediator of IL-6 (4). Oncogene

STAT3 responds to extracellular signals and JAK2 pathway

after activation (99). Once tyrosine phosphorylate, the two

STAT3 monomers form a dimer, transfer to the nucleus, and

then bind to the STAT3 specific DNA response element of the

target gene and induce gene transcription (100). Thus, IL-6

induces the activation of its downstream cascade JAK2/STAT3

pathway, contributing to tumorigenesis by regulating cell cycle

progression, angiogenesis and tumor cell escape of the immune

system (101–103). Over-activation of STAT3 in tumor cells also

induces the production of IL-6, resulting in a positive feedback

loop (104) (Figure 1). The activation of this signaling pathway

plays an important role in cancer cachexia, and it is significantly

related to the proliferation, invasion and migration of cancer

cells (59, 105).
IL-6/JAK2/STAT3 signaling pathway
plays a role in various cancers

A large number of studies have shown that IL-6/JAK2/

STAT3 signaling pathway is abnormally highly activated in

many types of cancer and strongly inhibits anti-tumor

immune response (23). Activation of IL-6/JAK2/STAT3

pathway is closely associated with EMT and stem cell-like
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features, ultimately leading to poor outcomes in various human

cancer patients (33). Through EMT, cancer cells can acquire

more invasive characteristics (6). The motility and invasiveness

enhanced by EMT are crucial in the metastasis initiation of

cancer progression. The acquisition of mesenchymal phenotype

also enhances the resistance to chemotherapy and poor

prognosis (106, 107).
Liver cancer

The levels of IL-6, phosphorylated JAK2 and phosphorylated

STAT3 were significantly increased in liver cancer cells (27). The

treatment of liver cancer cells with JAK2 inhibitor and IL-6

neutralizing antibody enhanced the adriamycin-induced aging

of cells, and also significantly inhibited the proliferation rate of

the cells (27).

Saffron can promote the apoptosis of liver cancer cells. It is a

major glycosyl carotenoid, with a variety of pharmacological

effects, such as antioxidant, anti-atherosclerotic, antidepressant

and anti-inflammatory activities. Saffron can inhibit the

activation of STAT3 pathway and non-receptor protein

tyrosine kinase by inhibiting the DNA binding activity of

STAT3 in IL-6 stimulated liver cancer cells. Then, it inhibits

gene expression regulated by STAT3, downregulates gene

expression related to cell proliferation, survival, apoptosis and

invasion, activates apoptotic protein-3 and apoptotic protein-9,

and thus promotes the dependent apoptosis of liver cancer cells

(108). In addition, bufothionine induces autophagy in HCC by

inhibiting JAK2/STAT3 pathway (109). These indicate that
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regulating IL-6/JAK2/STAT3 signaling pathway may be a

therapeutic strategy for liver cancer.
Breast cancer

JAK2/STAT3 pathway is necessary for the growth of human

CD44+CD24- stem cell like BC cells. IL-6/JAK2/STAT3 pathway

is more active in CD44+CD24- BC cells than in other tumor

types, and inhibition of JAK2 reduces their numbers and

prevents xenograft growth (28). IL6 is involved in the

formation of mammary globules enriched with stem cell-like

cancer cells (110) and progenitor cells (111). The activation of its

downstream effector STAT3 is sufficient and necessary to

maintain the undifferentiated status of mouse embryonic stem

(ES) cells (112). Matsuda et al. (112) constructed a fusion protein

STAT3ER, composed of the entire coding region of STAT3 and

the ligand binding domain of the estrogen receptor. ES cells

transfected with STAT3ER cultured in the presence of 4-

hydroxytamoxifen (4HT) maintained an undifferentiated

state (112).

Triple negative BC (TNBC) is an invasive BC subtype with

no effective targeted therapy (113, 114). Iron overload may be

related to the development of BC to a more malignant

phenotype (115). It can promote EMT (the expression of

mesenchymal markers N-cadherin, fibronectin and vimentin

increased) and migration of MDA-MB-231 cells of TNBC by

enhancing IL-6/JAK2/STAT3 signaling pathway (50). Abnormal

activation of JAK2/STAT3 signal mediated by IL-6 is positively

correlated with EMT and metastasis of human BC (116, 117). In
FIGURE 1

IL-6/JAK2/STAT3 signaling pathway.
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a paracrine or autocrine inflammatory environment rich in IL-6,

iron overload can lead to inducible IL-6 expression, thereby

promoting the malignant transformation of BC cells.

HER2-positive (HER2+) breast adenocarcinoma is a

heterogeneous group, in which the status of hormone receptor

(HR) affects the treatment strategy and prognosis of patients. HR

−/HER2+ cells secrete high levels of IL-6, which induces the

activation of STAT3 and increases the production of

calprotectin. The increase of calprotectin level activates the

proliferation and resistance pathway. Inhibiting IL-6-JAK2-

STAT3-calprotectin axis with drugs alone or in combination

with HER2 inhibitors can reduce the tumorigenicity of HR–/

HER2+ BC (10).

Homeodomain-containing gene 10 (HOXC10) is related to

the progression of a variety of human malignant tumors (118).

Its expression is increased in BC and is associated with poor

prognosis (119). In vitro and in vivo experiments showed that

HOXC10 promoted BC tumorigenesis by activating IL-6/JAK2/

STAT3 signals (119). In addition, abnormal P16 expression is

related to the metastatic potential of BC (120). The expression of

P16 in invasive BC was significantly higher than that in non-

invasive BC (120). In BC patients, P16 overexpression is closely

associated with tumor invasion into accessory tissues (121).

Inhibition of P16 reduced the growth and metastasis potential

of BC cells by inhibiting IL-6/JAK2/STAT3 signals (122). It may

be a potential therapeutic strategy for BC to affect the oncogenic

effect of BC related genes through IL-6/JAK2/STAT3

signaling pathway.
Colorectal cancer

Colon cancer is composed of cancer cells and stromal cells,

including endothelial cells, inflammatory cells, bone marrow-

derived myeloid cells and myofibroblasts (MFs), such as bone

marrow-derived myofibroblasts (BMF) (123, 124). These matrix

components create a favorable microenvironment for tumor cell

survival and tumor growth at the primary and metastatic site

(125). BMF or BMF conditioned medium (BMF-CM) can

induce colon cancer cells to form cancer stem cell-like spheres

(17). Anti-IL-6 neutralizing antibody, JAK2 inhibitor and

STAT3 gene knockout in mouse cancer cells reduced BMF and

BMF-CM induced colon cancer cell spheroid formation (17).

This indicates that BMF promotes tumorigenesis by activating

IL-6/JAK2/STAT3 pathway (17).

CC-MSCs increase the migration and invasion of CRC cells

through EMT in vitro, promote the occurrence of CRC, and

enhance the growth and metastasis of CRC in vivo (14, 29). IL-6

is the highest expressed cytokine under CC-MSCs conditions.

Under the stimulation of IL-6, the phosphorylation levels of

JAK2 and STAT3 in CRC cells are increased, and the activation

of STAT3 is dose-dependent (126). Activation of STAT3 in CRC

cells can be promoted through the IL-6/JAK2/STAT3 signaling
Frontiers in Oncology 05
pathway. STAT3 inhibitors can attenuate the CRC-promoting

effect of CC-MSCs (14).

Serum IL-6 level in CRC patients is significantly increased,

and it is positively correlated with the mortality and prognosis of

CRC (127, 128). IL-6 can act as a paracrine cytokine to promote

the proliferation of CRC cells (129) and enhance EMT mediated

CRC invasion and metastasis (130). In CRC mouse model, IL-6

promoted the occurrence of CRC, whereas the knockout of IL-6

or STAT3 gene inhibited CRC (131). STAT3 is constitutively

active in CRC (132). Inhibition of JAK2/STAT3 pathway can

induce cell cycle arrest and apoptosis of CRC cells (14). The use

of histone deacetylase inhibitors trichostatin A (TSA) abated

JAK2/STAT3 pathway, causing CRC cells to stagnate in G1

phase, followed by apoptosis (133). JAK2 inhibitor CEP-33779

inhibited colorectal tumor growth by inhibiting IL-6/JAK2/

STAT3 signal transduction (134). Butyrate inhibits the

development of human CRC cells by blocking the activation of

IL-6/JAK2/STAT3 signaling pathway (135). Therefore, blocking

IL-6/JAK2/STAT3 signal axis and its biological effects may be a

treatment strategy of CRC.
Gastric cancer

High serum IL-6 level is an independent predictor of poor

prognosis of GC and GC cells can secrete IL-6, promoting tumor

growth, development and migration (136, 137). Jackson et al.

(30) detected STAT3 in gastric antrum biopsy and proved that

total STAT3 and phosphorylated STAT3 in intestinal GC were

increased compared with normal stomach. Zhang et al. (138)

also found that activated STAT3 was positive in early GC, poorly

differentiated adenocarcinoma and metastatic lymph node

tissue. Liu et al. (7) elucidated the potential molecular

mechanism of RBMS1 promoting GC metastasis: RBMS1trans-

activates IL-6 and stimulates JAK2/STAT3 pathway based on in

vitro and in vivo experiments.

Cancer-associated fibroblasts (CAF) is an important

regulator of tumor progression (139, 140). CAF isolated from

GC produces large amounts of IL-6 (6). CAFs enhance the

migration and EMT of GC cells by secreting IL-6, which

activates JAK2/STAT3 pathway in GC cells. Deprivation of IL-

6 with neutralizing antibodies or inhibition of JAK/STAT3

pathway with specific inhibitor AG490 can significantly

attenuate these phenotypes in CAF-induced GC cells (6). In

addition, inhibition of IL-6 expression in CAFs or JAK2/STAT3

pathway in GC cells can impair the peritoneal metastasis of

tumor induced by CAFs in vivo (6). These suggest that CAF in

tumor microenvironment promotes the progress of GC through

IL-6/JAK2/STAT3 signal transduction, and IL-6 targeted

therapy may become a complementary treatment for GC by

acting on stromal fibroblasts (6). Apart from that, berberine

(BBR) from Chinese herbal medicine inhibited the proliferation

of GC cells by regulating IL-6/JAK2/STAT3 related signal
frontiersin.org

https://doi.org/10.3389/fonc.2022.1023177
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2022.1023177
pathway (141), indicating that IL-6/JAK2/STAT3 pathway is

significantly important in the treatment of GC.
Lung cancer

IL-6 increases in serum and malignant pleural effusion of

patients with lung adenocarcinoma (49, 142). Elevated serum IL-

6 levels in patients with lung cancer predict adverse clinical

outcomes (143). The level of serum IL-6 in patients with non-

small cell lung cancer (NSCLC) decreases significantly after

chemotherapy, which is related to reducing cancer recurrence

and prolonging survival (144).

The signal changes of pro-inflammatory cytokine

transforming growth factor-b (TGF-b) are closely related to

various activities concerning cancer onset and migration (145,

146). The JAK/STAT3 signaling pathway in lung cancer cells is

regulated by TGF-b (147). TGF-b can promote MFs

proliferation (21). MFs will promote the development and

progression of cancer (125, 148–150). TGF-b and IL-6/JAK2/

STAT3 signal pathway form a positive feedback signal loop,

mediating the interaction between MFs and lung cancer

cells (21).

In lung cancer, mesenchymal stem cells can enhance

tumorigenesis by activating IL-6/JAK2/STAT3 pathway (22).

The downregulation of Leucine Zipper Down-Regulated In

Cancer 1 (LDOC1) in cancer patients is associated with the

low survival rate of lung cancer patients (151). LDOC1

deficiency leads to enhanced IL-6/JAK2/STAT3 loop, through

which LDOC1 mediates cancer progression (151). DNA

methyltransferase 1 (DNMT1) is related to human

tumorigenesis (152). IL-6/JAK2/STAT3pathway enhances the

occurrence of cancer and the proliferation of lung cancer stem

cells (CSCs) by downregulating p53 and p21, which are cell cycle

regulators caused by DNA hypermethylation, and upregulating

DNMT1 (153). After blocking IL-6/JAK2/STAT3 pathway and

inhibiting DNMT1, the proliferation of lung CSCs, the

formation of spheres and the ability to initiate tumor growth

decrease (153). These data suggest that targeting IL-6/JAK2/

STAT3 signaling pathway and DNMT1 may become an

important strategy for the treatment of lung cancer (153).

Sun et al. (20) evaluated the effect of 2-hydroxy-3-

methylanthraquinone (HMA) on lung cancer cells in vitro,

aiming to test the hypothesis that HMA may partially inhibit

the growth, migration and/or invasion of lung cancer cells by

downregulating IL-6-induced JAK2/STAT3 pathway. Their

results showed that HMA had an effective inhibitory effect on

the growth of highly invasive and metastatic A549 lung cancer

cells, and significantly inhibited the growth and invasion of A549

lung cancer cells induced by IL-6, which was related to the

induced apoptosis and inactivation of IL-6/JAK2/STAT3

signaling pathway (20). Culturing A549 or CL1-5 lung cancer
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increase spheroid formation, drug resistance and overexpression

of pluripotent markers by activating IL-6/JAK2/STAT3 pathway

(22). Blocking the pathway attenuates the tumor-forming ability

of A549 and CL1-5 cells (22). Therefore, targeted inhibition of

this signal loop may become a new way for the prevention and

treatment of lung cancer.
Pancreatic cancer

The pathogenesis of PC is complex. At present, it is believed

that inflammatory reaction is closely related to its occurrence,

development, metastasis and prognosis, which accelerates the

process of the disease (154, 155). Various factors, including

pancreatitis and injury, contribute to the development of PC

(156). IL-6 is overexpressed in PC patients (157). Its serum level

is directly associated with cachexia, advanced tumor and

increased mortality in PC patients (5, 86, 158). The increase of

IL-6 level is positively correlated with lymph node metastasis,

tumor differentiation and vascular invasion of PC (4). IL-6 and

its downstream pathways, especially the JAK2/STAT3 pathway,

have become the most important factors in the regulation of

inflammation-related PC (31).

Regenerating gene protein (REG) 3A plays a role as a tumor

promoter in inflammation-related PC (159). After pancreatic

inflammatory injury, the expression of REG3A was significantly

increased (5). Overexpression of REG3A is associated with

excessive proliferation, invasion, migration, distant metastasis

and tumor invasiveness (160, 161). The activation of REG3A will

enhance the JAK2/STAT3 pathway and form a positive feedback

loop of REG3A-JAK2/STAT3, thereby amplifying the

carcinogenic effect of IL-6/JAK2/STAT3, and ultimately leads

to excessive PC cell proliferation in vitro and in vivo and tumor

formation (5).

Androgen receptor (AR) is important for cell migration (86).

The expression of AR in PC cells is higher than that in normal

pancreatic cells (162). IL-6 enhanced the phosphorylation of

STAT3 and mitogen-activated protein kinase (MAPK), thereby

enhancing AR-mediated transcription in PC cell lines (86).

Drug resistance is the key reason why PC chemotherapy is in

effective. PC cells are resistant to the histone deacetylase

(HDAC) inhibitor TSA (163). The expression and

phosphorylation of STAT3 were significantly upregulated in

TSA-resistant cells compared with TSA non-resistant cells (4).

In invasive malignant PC cell lines, a significant increase in IL-6

expression predicts more invasive cell types and poor clinical

outcomes (4). Tyrphostin B42, also known as AG490, attenuates

TSA-mediated drug resistance in PC cells (PCCS) by

antagonizing IL-6/JAK2/STAT3 signal transduction (4).

Therefore, targeted inhibition of IL-6/JAK2/STAT3 signaling

over-activation may provide a strategy for treating TSA
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resistance (4). These findings suggest that blocking IL-6/JAK2/

STAT3 signaling may inhibit the occurrence and development of

PC and play a role in its treatment.
Ovarian cancer

Wang et al. (18) isolated primary OC cells, CAFs and normal

fibroblasts (NFs) from fresh cancer tissues and found that CAFs

were the main source of IL-6 in OC tissues. CAFs highly secrete

IL-6 through JAK2/STAT3 pathway and promote b-TGF-
mediated EMT, thereby inhibiting apoptosis (18).

Compared with normal ovaries and benign tumors,

JAK2/STAT3 is activated in high-grade OC and is involved in

cancer progression and EMT (32). Adipose stromal cells

(ASCs) are involved in promoting the growth and migration

of OC cells by activating the IL-6/JAK2/STAT3 pathway (19).

CA125 is a useful predictor of advanced OC (164). It can bind

JAK2 and activate STAT3, highlighting the importance of JAK2

in the pathogenesis of cancer expressing CA125 (165).

Therefore, targeting JAK2 with multiple inhibitors may be an
Frontiers in Oncology 07
important therapeutic strategy to alleviate OC transmission (19)

(Tables 1, 2 and Figure 2).
Conclusions and prospects

Intracellular signal transducers and activators of

transcription play a key role in the process of information

transmission. IL-6/JAK2/STAT3 signaling pathway deserves

attention in the treatment of human cancer. More and more

evidence shows that it plays an important role in the invasion

and metastasis of many types of tumors. IL-6/JAK2/STAT3

pathway has considerable potential in inhibiting tumor growth

and restoring anti-tumor immunity. In recent years, a large

number of studies have shown that drug therapy targeting this

pathway is effective for various cancers. The specific targeted

intervention of related proteins and enzymes in this pathway can

develop new ideas for cancer treatment. This signaling pathway

can provide reference for tumor mechanism research and drug

design, and become one of the directions of cancer

treatment research.
TABLE 1 The role of IL-6/JAK2/STAT3 in cancers.

First
author,
year

Cancer
type

The role of IL-6/JAK2/STAT3 Model systems

Zhang
et al.,
2018

Liver
cancer

The levels of IL-6, phosphorylated JAK2
and phosphorylated STAT3 were
significantly increased in liver cancer cells
(27).

Liver cancer cell lines LO2, hepG2, Huh7, SK‐Hep1, LM3 and MHCC‐97L. Liver cancer
tissue samples and paired adjacent normal tissues. NOD/SCID mice model.

Shen
et al.,
2022

BC HOXC10 promotes BC tumorigenesis by
activating IL-6/JAK2/STAT3 signals (119).

BC tissues and adjacent normal tissues. Human BC cell lines (MCF7, T47D, MDA-MB-453,
and MDA-MB-231) and human breast epithelial cells (MCF10A). Male BALB/c nude mice
model.

Wang
et al.,
2018

The cancer promoting effect of P16 is
related to the activation of IL-6/JAK2/
STAT3 pathway. Inhibition of P16
reduces the growth and metastatic
potential of BC cells by inhibiting IL-6/
JAK2/STAT3 signal transduction (122).

Human BC cell lines MDA-MB-231, MCF7, and BT-549; human fetal lung fibroblast cell
line 2BS; human CRC cells SW-620 and LOVO; human osteosarcoma cell line U-2OS;
human prostate cancer cell lines LncaP, DU145, and PC-3; human pancreas cancer cell line
PANC-1; human cervical cancer cell line Ca ski; human esophagus cancer cell line TE-1;
human esophagus cancer cell line KYSE-510. BC specimens and the corresponding para-
carcinoma tissues. BALB/c-nu mice model.

Cheng
et al.,
2020

Iron overload can promote EMT of
TNBC MDA-MB-231 cells and cell
migration by enhancing IL-6/JAK2/
STAT3 signaling pathway (50).

Human breast carcinoma cell lines (MDA-MB-231, Hs578T, MCF-7, and T47D) and
murine breast carcinoma cell line (4TO7). BALB/c mice model.

Zhu, 2014 CRC BMF promotes tumorigenesis by
activating IL-6/JAK2/STAT3 pathway
(17).

Mouse colon cancer cell line CT26 cells and human colon cancer cell line SW480 cells.
BMFs EGFP+ isolated from dysplastic gastric tissues of EGFP + bone marrow-transplanted
IL-1b transgenic mice. BALB/c athymic nude mice model.

Liu et al.,
2022

GC RBMS1 activates IL-6 and stimulates
downstream JAK2/STAT3 signaling
pathway to promote GC metastasis (7).

GC cell lines MGC-803, BGC-823, SGC-7901 and other GC cell lines. GC tissues and
paired adjacent noncancerous gastric FFPE tissues. BALB/c nude mice model. In vivo
xenograft model.

(Continued)
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TABLE 1 Continued

First
author,
year

Cancer
type

The role of IL-6/JAK2/STAT3 Model systems

Wu et al.,
2017

CAF in tumor microenvironment
promotes GC progression through IL-6/
JAK2/STAT3 signal transduction (6).

Plasma samples from GC patients and healthy volunteers. GC tissues from patients. GC cell
lines SNU-1, MKN45, SGC7901 and MKN28. BALB/c nu/nu nude mice model. Tumor
xenograft model.

Hsu et al.,
2012

Lung
cancer

In lung cancer, mesenchymal stem cells
can enhance tumorigenesis by activating
IL-6/JAK2/STAT3 pathway (22).

Lung cancer cell lines A549 and CL1-5; primary MSCs from different normal human
volunteers. NOD/SCID mice model.

Lee et al.,
2019

LDOC1 mediates cancer progression
through IL-6/JAK2/STAT3 (151).

Human bronchial epithelial cell line BEAS-2B, LADC cell lineA549, NSCLCs cell lines
H460, H1299, and H1355. Specimens from human primary NSCLC tumors. BALB/C nu/nu
nude mice model. Mouse xenogaft tumor model.

Liu, 2015 IL-6/JAK2/STAT3 pathway enhances the
proliferation of lung CSC by
downregulating p53 and p21, caused by
DNA hypermethylation, and upregulating
DNMT1 (153).

Lung cancer cell lines including A549, CL1-1 and H1650. Tumor xenograft mouse model.

Shi et al.,
2017

TGF-b and IL-6/JAK2/STAT3 pathway
form a positive feedback signal loop,
mediating the interaction between MFs
and lung cancer cells (21).

CMT-167 cells and LLC cells. BMFs isolated from dysplastic gastric tissues of EGFP+ bone
marrow-transplanted IL-1b transgenic mice. Tumor tissues from in vivo experiments.
BALB/c athymic nude mice model. Tumor xenograft model.

Liu et al.,
2015

PC The activation of REG3A will enhance
JAK2/STAT3 pathway, amplify the
carcinogenic effect of IL-6/JAK2/STAT3,
and ultimately leads to excessive PC cell
proliferation in vitro and in vivo and
tumor formation (5).

Human PC cell lines BxPC-3, AsPC-1 and SW1990; cell line HPDE6c7. Tumor tissues.
Xenografted mice.

Wang
et al.,
2018

OC CAFs highly secrete IL-6 through JAK2/
STAT3 pathway and promote b-TGF-
mediated EMT, thereby inhibiting
apoptosis (18).

Human ovarian cancer cell line OVCAR3. Primary OC cells, CAFs and NFs isolated from
fresh cancer tissue. OC tissues.

Kim et al.,
2017

ASCs participate in promoting OC cell
growth and migration by activating IL-6/
JAK2/STAT3 pathway (19).

Human OC cell line SKOV3, ASCs cultured. Human subcutaneous and visceral adipose
tissues from patients with benign urologic or gynecologic diseases.

BC, breast cancer; CRC, colorectal cancer; GC, gastric cancer; PC, pancreatic cancer; OC, ovarian cancer; HCC, hepatocellular carcinoma; HOXC10, homeodomain-containing gene 10;
TNBC, triple negative breast cancer; BMF, bone marrow-derived myofibroblasts; CAF, cancer-associated fibroblasts; LDOC1, Leucine Zipper Down-Regulated In Cancer 1; DNMT1,
DNA methyltransferase 1; TGF-b, transforming growth factor-b; MFs, myofibroblasts; CSC, cancer stem cell; ASCs, adipose stromal cells; FFPE, formalin-fixed, paraffin-embedded;
MSCs, mesenchymal stem cells; LADC, lung adenocarcinoma; NFs, normal fibroblasts; NOD/SCID, non-obese diabetic/severe combined immunodeficiency; SCLC, small cell lung
carcinoma; NSCLC, non-SCLC.
F
rontiers in O
ncology
TABLE 2 Targeting the IL-6/JAK2/STAT3 signaling pathway in cancers.

First
author,
year

Cancer
type

Targeting the
IL-6/JAK2/

STAT3 signal-
ing pathway

Mechanisms Model systems

Kim et al.,
2018

Liver
cancer

Crocin Crocin inhibits the DNA binding activity of STAT3,
thereby inhibiting the activation of STAT3 pathway and
non-receptor protein tyrosine kinase, and then inhibit the
gene expression regulated by STAT3 (108).

Human HCC cells (Hep3B, HepG2), human colon
cancer cells (HCT116) and human BC cells (MDA-
MB-231), human PCCs (BxPC3), human lung cancer
cells (A549) and human OC cells (A2780).

Kong
et al., 2021

Bufothionine Bufothionine induces autophagy in HCC by inhibiting
JAK2/STAT3 pathway (109).

SMMC7721 and H22 cell lines. Liver and tumor
tissues. H22-tumor-bearing mice model.

Rodriguez-
Barrueco
et al., 2015

BC Drugs alone or in
combination with
HER2 inhibitors

Their inhibition of IL-6-JAK2-STAT3-calprotectin axis
can reduce the tumogenesis of HR-/HER2+ BC (10).

MCF-10A and MCF-10A/ErbB2* cells. NOD.CB17-
Prkdcs SCID mice model. Xenograft model.

(Continued)
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TABLE 2 Continued

First
author,
year

Cancer
type

Targeting the
IL-6/JAK2/

STAT3 signal-
ing pathway

Mechanisms Model systems

Xiong
et al., 2012

CRC TSA The use of TSA abates JAK2/STAT3 pathway, causing
CRC cells to stagnate in G1 phase, followed by apoptosis
(133).

Human CRC cell lines (SW1116 and HT29).

Seavey
et al., 2012

JAK2 inhibitor
CEP-33779

It inhibits colorectal tumor growth by inhibiting IL-6/
JAK2/STAT signal transduction (134).

Mouse model of colitis-induced CRC.

Yuan
et al., 2020

Butyrate Butyrate inhibits the development of human CRC cells
by blocking the activation of IL-6/JAK2/STAT3 signaling
pathway (135).

HCT-116 and HT-29 human CRC cell lines. Mouse
xenograft tumor model. Tumor tissues and normal
peritumoral tissues.

Xu et al.,
2022

GC BBR BBR inhibits the proliferation of GC cells by regulating
IL-6/JAK2/STAT3 related signaling pathways (141).

GC cell lines (MKN-45 and HGC-27), human gastric
epithelial cells (GES-1). Tumor tissues and other
tissues. Tumor xenografts. BALB/C nude mice model.

Sun et al.,
2019

Lung
cancer

HMA HMA inhibits the growth of A549 lung cancer cells,
which is related to the induction of apoptosis and
inactivation of IL-6/JAK2/STAT3 signaling pathway (20).

Human lung carcinoma H1299, human
adenocarcinoma H23, mouse Lewis lung carcinoma
LLC, and HUVEC cell lines; human lung carcinoma
A549 and adenocarcinoma SPCA-1 cell lines.

Zhang
et al., 2018

PC AG490 AG490 attenuates TSA-mediated drug resistance of PCCs
by antagonizing IL-6/JAK2/STAT3 signal transduction
(4).

PC tissues. Human PCCs (PANC-1).

Kim et al.,
2017

OC WP1066,
TG101348

The migration of OC cells can be inhibited by blocking
the activation of JAK2 and STAT3 with neutralizing
antibodies against IL-6, inhibitors WP1066 and
TG101348, and silencing STAT3 with siRNA (19).

Human OC cell line SKOV3, ASCs cultured. Human
subcutaneous and visceral adipose tissues from
patients with benign urologic or gynecologic diseases.

BC, breast cancer; CRC, colorectal cancer; GC, gastric cancer; PC, pancreatic cancer; OC, ovarian cancer; HCC, hepatocellular carcinoma; HER2+, HER2-positive; HR, hormone
receptor; TSA, trichostatin A; BBR, Berberine; HMA, 2-hydroxy-3-methylanthraquinone; PCCs, pancreatic cancer cells; ASCs, adipose stromal cells; HUVEC, human umbilical vein
endothelial.
F
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FIGURE 2

Targeting the IL-6/JAK2/STAT3 signaling pathway in cancers. TSA, trichostatin A; BBR, Berberine; HMA, 2-hydroxy-3-methylanthraquinone;
HCC, hepatocellular carcinoma; HR, hormone receptor; HER2+, HER2-positive; CRC, colorectal cancer; GC, gastric cancer; PCCs, pancreatic
cancer cells; OC, ovarian cancer; BC, breast cancer.
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