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A signature-based classification
of lung adenocarcinoma that
stratifies tumor immunity

Xun Zhang, Dizhi Jiang, Shunjia Li , Xinyu Zhang,
Wendi Zheng and Bo Cheng*

Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University,
Jinan, China
Background: Immune-related subgroup classification in immune checkpoint

blockade (ICB) therapy is largely inconclusive in lung adenocarcinoma (LUAD).

Materials and methods: First, the single-sample Gene Set Enrichment Analysis

(ssGSEA) and K-means algorithms were used to identify immune-based

subtypes for the LUAD cohort based on the immunogenomic profiling of 29

immune signatures from The Cancer Genome Atlas (TCGA) database (n = 504).

Second, we examined the prognostic and predictive value of immune-based

subtypes using bioinformatics analysis. Survival analysis and additional COX

proportional hazards regression analysis were conducted for LUAD. Then, the

immune score, tumor-infiltrating immune cells (TIICs), and immune

checkpoint expression of the three subtypes were analyzed. The Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of

the differentially expressed genes (DEGs) between three immune-based

subtypes were subsequently analyzed for functional enrichment pathways.

Result: A total of three immune-based subtypes with distinct immune

signatures have been identified for LUAD and designated as cluster 1 (C1),

cluster 2 (C2), and cluster 3 (C3). Patients in C3 had higher stromal, immune,

and ESTIMATE scores, whereas those in C1 had the opposite. Patients in C1 had

an enrichment of macrophages M0 and activation of dendritic cells, whereas

tumors in C3 had an enrichment of CD8+ T cells, activation of CD4+ memory T

cells, and macrophages M1. C3 had a higher immune cell infiltration and a

better survival prognosis than other subtypes. Furthermore, patients in C3 had

higher expression levels of immune checkpoint proteins such as PD-L1, PD1,

CTLA4, LAG3, IDO1, and HAVCR2. No significant differences were found in

cluster TMB scores. We also found that immune-related pathways were

enriched in C3.

Conclusion: LUAD subtypes based on immune signatures may aid in the

development of novel treatment strategies for LUAD.
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1 Introduction

Lung cancer is the leading cause of cancer-related mortality

and the most frequently diagnosed cancer worldwide (1–5).

Non-small cell lung cancers (NSCLCs) account for

approximately 85% of all lung cancers, with lung squamous

cell carcinomas (LUSCs) and lung adenocarcinomas (LUADs)

being the most common (6). LUAD is the most prevalent

primary lung tumor, accounting for 40% of all primary lung

tumors (7). Despite the striking clinical improvements, the 5-

year survival rate for LUAD patients is only 18% (8).

Blocking immune checkpoints is one of the most promising

strategies for boosting anti-tumor immunity (9–13).

Immunotherapy (IO) has revolutionized lung cancer treatment,

significantly improving overall survival (OS) (14–17). Immune

checkpoints, such as PD-L1 (18–20), CTLA4 (21, 22), TIGIT

(23), and LAG3 (24), have emerged as promising drug targets for

cancer IO. In recent years, IO has gained widespread acceptance as

the first-line treatment for non-oncogene-driven lung cancer (25,

26). However, a significant proportion of patients experience

immune resistance and disease progression. Although various

putative biomarkers have been investigated for predicting

response to immune checkpoint inhibitors (ICI), there is

currently no common biomarker available for patients receiving

ICI. Many researchers believe that IO based solely on a limited

number of immune checkpoints is insufficient and that physicians

should consider immune characteristics in a broader sense

(including tumor-infiltrating lymphocytes and gene signatures)

when formulating treatment plans.

Several studies have been conducted on the immune

characteristics of various solid tumor types. Daniela et al.

identified the immune class of hepatocellular carcinoma as

patients with a high degree of immune infiltration and

molecular features (27) . The immune-based assay

“Immunoscore” was developed to quantify in-situ T cells in

colon cancer patients and outperformed the TNM stage (28).

According to evidence from other cancer types, ICI therapy can

benefit patients with an inherently inflamed tumor

microenvironment (TME), whereas immune-excluded tumors

are prone to resistance (29). Although some studies have focused

on lung cancer with typical immune characteristics, models

based on immune characteristics to help find patients best

suited for immunotherapy are still lacking.

Classification of tumors as “hot,” “cold,” or “altered” based

on CD3+ and CD8+ T cell infiltration (30), PD-L1 expression,

and tumor mutation burden (TMB) at the center and margin of

the tumor is an essential determinant of IO response in solid

cancers (31, 32). While hot and cold tumor phenotypes have

been shown to correlate with treatment response and overall

cancer outcome, specific immune cell subsets, including

regulatory T cells (Tregs), myeloid-derived suppressor cells

(MDSCs), and tumor-associated macrophages (TAMs), have

been shown to alter this relationship (33).
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Using the Nonnegative Matrix Factorization (NMF) method, we

identified LUAD subtypes based on 29 immune signatures. An

immune-classificationmethod for LUAD patients is being developed

to identify those who respond to anti-PD-1/PD-L1 therapy.
2 Material and methods

2.1 Data source

The data for LUAD, including RNA expression, somatic

mutation, and clinical pathological information, was obtained

from TCGA database (https://tcga-data.nci.nih.gov/tcga/).
2.2 Immune signature-based subtype
classification

The number of clusters across the tumor samples was

determined using a consensus cluster algorithm. Non-negative

matrix factorization (NMF) is an effective method for reducing

data dimension and has a wide range of applications for identifying

the functional components of multidimensional complex data. The

NMF method in the R software ‘CancerSubtypes’ package was

utilized to stratify tumor immunity based on TCGA data (34). For

subtype clustering, 29 immune signatures, including immune cell

types, functions, and pathways, were utilized (Supplementary

Table 1). Gene set variation analysis (GSVA) is a nonparametric,

unsupervised analytical method used primarily to evaluate the

sequencing gene set enrichment results (35, 36). From a

bioinformatics standpoint, the goal is to define phenotypic

differences. In our study, we quantified immune signatures using

the R package “GSVA” and the ssGSEA algorithm (37). Based on

ssGSEA scores for immune signature enrichment, all LUAD were

hierarchically clustered into three subtypes: cluster 1 (C1), cluster 2

(C2), and cluster 3 (C3).
2.3 Survival analysis

Survival analysis is a method for evaluating and deducing the

survival times of patients with different subtypes of LUAD based

on clinical data obtained from TCGA. The survival analysis for

our study was carried out by utilizing the survival package

included in the R software. Kaplan–Meier curves and the

Logrank test were used to compare the differences in survival

rates between patients with different types of LUAD.
2.4 Multivariate Cox regression analyses

We investigated the prognostic impact of clusters and

clinical factors, such as age, gender, pathologic stage, race and
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TNM stage (AJCC, American Joint Committee on Cancer/

UICC, Union internationale cancer control, 8th edition).

Multivariate Cox regressions were conducted to eliminate

confounding factors, and the “forest-plot” R package was used

to display each variable’s P value, HR, and 95% CI. Principal

component analysis (PCA) was conducted using the “prcomp”

feature of the “stats” package in R.
2.5 Immunogenomic features of LUAD

Using expression data, the Estimation of STromal and Immune

cells in MAlignant Tumor tissues using Expression data

(ESTIMATE) algorithm calculated immune and stromal scores to

quantify the infiltration of immune and stromal cells and evaluate

the immune activity of the tumor. ESTIMATE can generate immune

scores (positively reflecting the abundance of immune cells), stromal

scores (positively reflecting the abundance), and ESTIMATE scores

(positively reflecting the non-tumor component).

CIBERSORT (37) was used to calculate the relative

frequencies of 22 different types of TIICs in each tumor tissue,

namely: dendritic cells resting, dendritic cells activated,

monocytes, mast cells resting, mast cells activated, neutrophils,

plasma cells, eosinophils, B cell naive, B cell memory, T cells

regulatory (Tregs), T cells CD4+ naive, T cells CD4+ memory

resting, T cells CD4+ memory activated, T cells follicular helper,

T cells gamma delta, T cells CD8+, NK cells resting, NK cells

activated, macrophages M0, macrophages M1, and macrophages

M2. P < 0.05 and 1000 permutations were used as sample

deconvolution criteria. The Kruskal–Wallis test was used to

calculate the proportion of TIICs and immune checkpoint

protein expression in three immune-based cell subpopulations.
2.6 Identification of mutational patterns
and TMB

The prespecified definition of TMB-high status was at least

10 mutations per megabase. TMB has been retrospectively

correlated with response to immune checkpoint blockade.

VarScan was used to analyze MAF files for somatic variants in

each LUAD sample, and the maftools package generated

waterfall plots visualizing the somatic variants of samples in

C1 and C3 (38). Then, after sorting the mutation frequency in

TCGA database from highest to lowest in immune-based

subtypes, we selected the top 30 mutated genes in C1 and C3.

The data from whole-exome sequencing (WES) were

analyzed to calculate the TMB score for LUAD samples. The

total number of non-synonymous somatic variants was classified

by the exome size for the TMB score of the TCGA database (39).

In addition, we also analyzed the TMB score between C1 and C3

subtypes using the student’s t-test.
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2.7 Gene functional enrichment analysis

Differentially expressed genes (DEGs) in C1 and C3 were

identified using the R limma package. DEGs were identified as

genes with |Log (Fold change)| >1.5 and false discovery rate

(FDR) < 0.05. Furthermore, protein-protein interaction (PPI)

network was constructed using the STRING database (https://

string-db.org/). Cystoscope 3.7.2 (https://cytoscape.org/) was

used to examine network topology. Hub genes are those with a

degree of 10 or more. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were carried out to evaluate the pathway

enrichment in DEGs.
2.8 Statistical analysis

The Chi-square test was used to compare categorical variables.

The student’s t-test was used to compare continuous variables

between two groups. The one-way analysis of variance (40) or

Kruskal–Wallis tests were used to compare continuous variables

between three groups. Kaplan–Meier curves and Logrank tests were

used to compare survival differences between immune-based

subgroups of patients. Univariate and multivariate Cox regression

analyses were conducted to eliminate the confounding factors.

Linear regressions were used for simple correlation. All analyses

were performed using R version 4.2.5 (https://www.r-project.org/).

*, P < 0.05; **, P < 0.01; ***, P < 0.001.
3 Results

3.1 Identification of immune-based
subtypes of LUAD

To identify the immune signatures among LUAD, LUAD

sequencing data were screened and downloaded from TCGA

(https://tcga-data.nci.nih.gov/tcga/; 504 cancer cases). The

hallmarks of 29 immune signatures (gene sets) were

subsequently downloaded from GSVA. The specific immune

signature was shown in Supplementary Table 1. Immune

signature score was quantified by the single sample Gene Set

Enrichment Analysis (ssGSEA) algorithm using the R package

“gsva” (http://www.bioconductor.org/packages/release/bioc/

html/GSVA.html). Using the NMF method, K=3 was

determined to be the optimal number of clusters, indicating

that LUAD samples could be divided into three subtypes based

on the GSVA immune-based signature score (Figure 1A). The

three subdivided groups are displayed in Figure 1B. The

silhouette width plot and cluster display plot demonstrated

subtype identification for credibility (0.43 average silhouette

width, Figure 1C).
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3.2 Correlation between LUAD subtypes
and clinical characteristics

To test the clinical significance of 29 immune signatures, we

examined the relationship between clinical characteristics and

subtypes. The differently 29 immune signatures scores with

significance by pairwise comparison were enriched and calculated

in each cluster (adjusted P value <0.05). A total of 29 significant

immune signatures were enriched as common differently expressed

immune signatures in the 3 subtypes. The C1 and C3 subtypes
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showed significant differences in 29 immune signature scores

among the three subtypes. The correlation between clinical

characteristics and immune-based subtypes was determined in

the TCGA-LUAD cohort. The proportion of patients over 65

years (55.56%) in C3 was significantly higher than that of patients

over 65 years or younger (40.74%). However, the proportion of

patients over 65 years (39.81%) in C1 was significantly lower than

that of patients aged 65 years or younger (59.26%). Furthermore,

T stages of patients in C3 were concentrated in T1 and T2 stage,

while the proportion of T3 and T4 stages of patients in C3
A

C

B

FIGURE 1

Identification of immune-based subtypes of LUAD. (A) Identification of best cutoff of the cluster; (B) Distribution of each cluster by the PCA
method in the factoextra package; (C) Visualization of each cluster using the NMF method. Identification of the value of grouping by silhouette
width plots.
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significantly lower than the figure for C1. But patients in C2

frequently share a moderate T stage with statistical significance

(Figure 2A). In addition, the PCA result revealed that patients could

be accurately classified using 29 immune signature scores, especially

C1 and C3 (Figure 2B). What’s more, Table 1 outlined the clinical

significance of the three immune-based subtypes. The patient’s age

and T stage varied significantly among the three immune-based

subtypes (P <0.05). Then TCGA datasets were analyzed to

determine the statistical difference in ESTIMATE scores between

C1 and C3. There were significant differences among the three

subtypes in Stromal Score, Immune Score and ESTIMATE Score

(all P < 0.001; Figure 2C). These results indicate that, among these

clinical characteristics, patients in C1 tend to be in the poorest

condition, while those in C3 tend to be in the best condition.
3.3 Survival outcomes of immune
signature-based subtypes

To test the survival significance of 29 immune signatures, we

examined the relationship between survival outcomes and three
Frontiers in Oncology 05
immune subtypes. The prognostic differences between the three

immune subtypes of LUADwere analyzed in relation to clinical data.

There were statistically significant differences in survival between the

three subtypes. The absolute value of slope of C3 is significantly

higher than that of C2 and C1. Among the three subtypes, C1 had

the worst prognosis, C2 had an intermediate prognosis, and C3 had

a considerably better prognosis (follow-up was 10, 15, and 15 years

for C1, C2, and C3, respectively; Figure 3A). Furthermore,

Multivariate Cox regression analysis revealed that the cluster (HR:

0.681; 95%CI: 0.534-0.868; P < 0.002), pathological stage (HR: 2.374;

95% CI: 1.726-3.265; P < 0.001), T stage (HR: 2.208; 95% CI: 1.506-

3.238; P < 0.001), and N stage (HR: 2.471; 95% CI: 1.831-3.335; P <

0.001) were all significant, indicating the cluster was an independent

immune prognostic factor (Figure 3B).
3.4 Immune microenvironment of
three subtypes

Next, the CIBERSORT algorithm was used to study the

composition of TIICs between the subtypes and calculate the
frontiersin.org
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FIGURE 2

Correlation between immune-based subtypes of LUAD and clinical characteristics. (A) Correlation between the expression of 29 immune
signature genes and clinical characteristics in three clusters; (B) PCA analysis of three clusters; (C) Immune infiltration assessment in three
clusters. *, P < 0.05 and ***, P < 0.001.
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TABLE 1 The relevance among subtypes and clinical data inTCGA-LUAD.

Characteristic Total C1 C2 C3 P value

Age, n (%)

<=65 238 (47.22%) 64 (59.26%) 97 (46.86%) 77 (40.74%) 0.0152

>65 256 (50.79%) 43 (39.81%) 108 (52.17%) 105 (55.56%)

unknown 10 (1.98%) 1 (0.93%) 2 (0.97%) 7 (3.7%)

Gender, n (%)

Female 270 (53.57%) 59 (54.63%) 110 (53.14%) 101 (53.44%) 0.9678

Male 234 (46.43%) 49 (45.37%) 97 (46.86%) 88 (46.56%)

Pathologic stage,n (%)

Stage I 270 (53.57%) 49 (45.37%) 117 (56.52%) 104 (55.03%) 0.3197

Stage II 119 (23.61%) 26 (24.07%) 46 (22.22%) 47 (24.87%)

Stage III 81 (16.07%) 25 (23.15%) 29 (14.01%) 27 (14.29%)

Stage IV 26 (5.16%) 7 (6.48%) 11 (5.31%) 8 (4.23%)

unknown 8 (1.59%) 1 (0.93%) 4 (1.93%) 3 (1.59%)

T stage, n (%)

T1 168 (33.33%) 23 (21.3%) 82 (39.61%) 63 (33.33%) 0.042

T2 269 (53.37%) 65 (60.19%) 101 (48.79%) 103 (54.5%)

T3 45 (8.93%) 11 (10.19%) 17 (8.21%) 17 (8.99%)

T4 19 (3.77%) 8 (7.41%) 5 (2.42%) 6 (3.17%)

TX 3 (0.6%) 1 (0.93%) 2 (0.97%) 0 (0%)

N stage, n (%)

N0 325 (64.48%) 63 (58.33%) 137 (66.18%) 125 (66.14%) 0.6048

N1 94 (18.65%) 21 (19.44%) 37 (17.87%) 36 (19.05%)

N2 71 (14.09%) 21 (19.44%) 28 (13.53%) 22 (11.64%)

N3 2 (0.4%) 0 (0%) 1 (0.48%) 1 (0.53%)

unknown 12 (2.38%) 3 (2.78%) 4 (1.93%) 5 (2.65%)

M stage, n (%)

M0 335 (66.47%) 81 (75%) 128 (61.84%) 126 (66.67%) 0.8191

M1 25 (4.96%) 6 (5.56%) 11 (5.31%) 8 (4.23%)

unknown 144 (28.57%) 21 (19.44%) 68 (32.85%) 55 (29.1%)

Race, n (%)

Caucasians 387 (76.79%) 79 (20.41%) 147 (37.98%) 161(41.60%) 0.001

Asian 7 (1.39%) 6 (85.71%) 0 1 (14.29%)

Other 110 (21.82%) 23 (20.91%) 42 (38.18%) 45 (40.91%)
F
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ratios of 22 immune cells in the microenvironment (41). We

found that tumors in C1 were enriched with macrophages M0

cells, activated dendritic cells, and eosinophils, whereas tumors

in C3 were enriched with CD8+ T cells, activated CD4+ memory

T cells, and macrophages M1 cells (Figure 4A). Specific markers

and functions of several immune cells are shown in

Supplementary Table 2.

Besides, the associations between clusters and the expression

of 18 different immune checkpoints were investigated, and we

discovered that there were also significant differences in the

expression of immune checkpoints in the three classifications,

including immune checkpoints that are already in clinical use,

such as PD-L1, PD1, CTLA4, LAG3, IDO1, HAVCR2, as well as

promising targets for immunotherapy, such as CD160, PVR, B7-

H3, SIRPA, CD244, B7-2, LGALS9, TIGIT, VTCN1 and

NFRSF14 (Figure 4B). These findings suggested that “hot

tumors” are more likely to occur in C3 patients, who were

suitable for subsequent immunotherapy. Thus, the classification

based on 29 immune signatures may provide a theoretical basis

for immunotherapy of patients.
3.5 Gene mutational patterns of
immune-based subtypes: Cluster 1 and
Cluster 3

TMB is a biomarker that can help predict a patient’s

response to immunotherapy (42). We demonstrated the key

visualizations generated using maftools in TCGA cohorts. We

identified 30 genes with frequent mutations in C1 of the TCGA

cohort. The top 10 genes with the most frequent mutations were

TP53 (48%), TTN (48%), MUC16 (41%), RYR2 (41%), CSMD3

(38%), LRP1B (34%), ZFHX4 (33%), USH2A (27%), KRAS

(26%), and XIRP2 (25%) (Figure 5A). In C3 of the TCGA
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cohorts, the 10 most frequently mutated genes were TTN

(40%), CSMD3 (39%), MUC16 (37%), TP53 (35%), USH2A

(32%), LRP1B (30%), RYR2 (30%), SPTAE (26%), ZFHX4

(25%) and KRAS (24%) (Figure 5B). The TMB score was

calculated using WES data from TCGA database. However, no

significant differences were found between the TMB scores of C3

and C1 (Figure 5C).
3.6 Immune-related pathways associated
with immune-based subtypes

To better evaluate the connection between immune-related

pathways and 29 immune signatures in LUAD, we performed

GSEA analysis. We found the expression of 21 KEGG pathways

were significantly upregulated in C3 and moderately upregulated

in C2 while those pathways were inactivated in C1. GSEA

analysis of the differentially enriched pathways of KEGG

revealed that C3 had significantly activated immune-related

pathways, such as the T cell receptor signaling pathway, the B

cell receptor signaling pathway, the cytokine-cytokine receptor

interaction, the JAK-STAT signaling pathway, the Toll-like

receptor signaling pathway, and the antigen processing and

presentation pathway (Figure 6A). These results further

suggested that patients with C3 subtypes are more prone to

hot tumors. What’s more, the correlation matrix of all 11 TIICs

and 21 KEGG pathways in the TCGA cohort is depicted in

Figure 6B. And we found that the CD8+ T cell and activated

memory CD4+ T cells had a strong positive correlation with T

cell receptor signaling pathways. Furthermore, M1 Macrophages

also had a strong correlation with the T cell receptor signaling

pathway, the antigen processing and presentation pathway, and

the toll-like receptor signaling pathway.
A B

FIGURE 3

Survival outcomes of immune signature-based subtypes. (A) Survival analysis of three clusters; (B) Multivariate Cox regression analysis of clusters
and clinical characteristics.
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3.7 Construction of the PPI network and
identification of hub genes

To further determine specific indicators, differential gene

expression analysis was performed. The volcano plot displays

DEGs between C1 and C3 (Figure 7A). Further, the PPI network
Frontiers in Oncology 08
revealed interactions among these 74 DEGs (Figure 7B and

Supplementary Table 3). We further analyzed the expression of

74 DEGs in both normal and tumor tissues. We found that 47

genes were upregulated in tumor tissues compared to normal

tissues, such as CD48, TIGIT, GNLY, CCL19, CCL5, CXCL13,

CCL17 and NKG7 (Supplementary Figure 1). GO analysis
A

B

FIGURE 4

Immune microenvironment of three subtypes. (A) Comparison of the distribution of immune cells in three clusters; (B) The expression of
immune checkpoint-related genes in three clusters. *, P < 0.05; **, P < 0.01 and ***, P < 0.001.
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revealed that the DEGs between the C1 and C3 were enriched in

immune response-activating cell surface receptors (BP), plasma

membrane signaling receptor complexes (CC), and antigen

binding (MF; Figure 7C). KEGG analysis revealed that DEGs

were enriched in cytokine-cytokine receptor interaction, T cell

receptor signaling pathway, natural killer cell-mediated

cytotoxicity, PD-L1 expression, and PD-1 checkpoint pathway

in cancer (Figure 7D).
4 Discussion

In the field of immuno-oncology, ICIs have revolutionized the

treatment and management of cancer. However, only a small

fraction of patients with LUAD demonstrate a sustained response

to treatment. It is therefore crucial for clinicians to carefully select

patients for anti-PD-1/PD-L1 treatment. Furthermore, finding a
Frontiers in Oncology 09
classification system based on 29 immune signatures to help screen

LUAD patients who are more suitable for IO is critical. PD-L1

expression is being investigated as a potential predictor of response

to anti-PD-1 therapy (11, 43, 44). There is a growing body of

evidence that intratumoral T-cell infiltration, IFN signaling, or

checkpoint molecules may facilitate a clinical response (45–47).

Recent randomized trials revealed that combined-agent

chemotherapy is superior to single-agent chemotherapy (48, 49).

Therefore, we believe that, in comparison to individual immune

parameters, the combination of multiple immune parameters has

greater predictive power. Consequently, our study included a total

of 29 immune signatures to analyze LUAD data in TCGA database.

We found that patients in C3 had higher expression levels of

CTLA4, PD-1, PD-L1, LAG3, IDO1, and HAVCR2. Combining the

expression levels of these costimulatory molecules with lymphocyte

subset analysis may allow for a novel method to assess immune

dysfunction in patients with LUAD.
A B

C

FIGURE 5

Gene mutational patterns of immune-based subtypes: Cluster 1 and Cluster 3. (A) Top 30 gene mutations in C1 subtype; (B) Top 30 gene
mutations in C3; (C) Differences between the TMB scores of C1 and C3.
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Proteomics (50), immunohistochemistry staining (51–53),

and genetic characteristics (54) allow for more accurate cancer

classification and prognosis prediction. However, these methods

are primarily focused on tumor cells, while ignoring an

important component of tumors known as the tumor immune

microenvironment (TIME). Several factors, including

lymphocyte density and phenotypes infiltrating the tumor,

influence the immunotherapy response (55–58). The anti-

tumor immune response of patients is crucial to their survival,

giving rise to the now widely accepted concept of tumor immune

contexture (56, 59, 60). However, cancer classification modalities

continue to rely on traditional methods, not only for therapeutic

purposes but also for classification purposes.

The 29 immune components included in this study could

thoroughly cover and describe the immune status of tumors.

Currently, immunotherapy appears to rely on eliciting an

immune response from CD8+ T cells, which have a strong

correlation with patient survival and direct tumor killing (61,
Frontiers in Oncology 10
62). In addition to CD8+ T cells, our study includes some recent

research hotspots, such as macrophages (63, 64) and dendritic

cells (65), which have been shown to contribute to antitumor

immunity and predict good prognoses in cancer patients. CAR-

NK cells and adoptive transfer of NK cells are being investigated

in both preclinical and clinical settings. NK cells have also been

linked to the activation and inhibition of certain immune

pathways (66 , 67) . There fore , in addi t ion to the

aforementioned “star immune cells,” we included APC, Th1,

Th2, IFN-g, and other cells or cytokines.

In our study, we filtered and downloaded LUAD data from

TCGA. Then, 29 immune signatures were obtained from the

GSVA to assist in classifying patients into the three clusters (C1,

C2, and C3) based on their scores in the aforementioned

indicators. The correlation between 29 immune features and

clinical features was further validated. We compared the

prognostic outcomes for the three LUAD subtypes and found

that C1 had the worst prognosis and C3 had the best prognosis.
A

B

FIGURE 6

Immune-related pathways associated with immune-based subtypes. (A) KEGG pathway enrichment analysis; (B) Heat map displaying the
association of immune cells and signaling pathways.
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The composition of the tumor microenvironment was compared

between subgroups, and C3 showed a significant increase in

CD8+ T cells. Additionally, we conducted a GSEA analysis to

investigate potential mechanisms underlying the immune

response-related clustering of LUAD subgroups. It can help

shed light on the combined strategy.

The aim of this study is to establish a new and comprehensive

immune signature scoring system for LUAD patients. This study

identified 3 multimarker-defined immune clusters.

At present, it is an urgent need that optimization of

prognostic indictors should be considered for development of

immune efficacy-related biomarkers toward clinical practice. We

hope that this scoring system, combined with the clinical

immunologic drug selection guidelines and the clinician’s

experience, will optimize the process by which clinicians

determine whether to treat patients with immunotherapy and

reduce the unnecessary burden of immunologic drugs on
Frontiers in Oncology 11
patients. And most importantly, we hope to contribute to a

better treatment of cancer patients.

Due to the complexity of predicting response to ICI

treatment in LUAD, in addition to immune-related

components, histopathology, imaging, and certain clinical

factors should also be considered. Both pathological factors

and tumor spread rate influence the response to anti-PD-1/

PD-L1, necessitating further research. An integrative multi-

parameter approach is a novel strategy in this regard.

Furthermore, this classification should be investigated further

in patients receiving IO to determine its predictive ability. In

addition, a thorough understanding of the molecular

mechanisms underlying LUAD tumor immunogenicity is

required. In the future, the advent of immunotherapy has

improved patient survival outcomes in LUAD due to the

biomarker-based approach, and parallel research would be

conducted on various biomarkers.
BA

C
D

FIGURE 7

Construction of the PPI network and identification of Hub genes. (A)The volcano plots depicting immune-related DEGs; (B) PPI network
displaying the association with 74 DEGs; (C) GO analysis showing enriched GO term; (D) KEGG pathway enrichment analysis.
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Research into the immunological characterization of

LUAD tumors and its utilization to optimize immune-

based therapy is in its early stages. Therefore, the immune

classification of LUAD is crucial . By analyzing the

immunologic profile and interaction of LUAD with the

tumor microenvironment, this study sheds light on the

immunology of this tumor.
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