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Purpose: To develop a metal artifact reduction (MAR) algorithm and eliminate

the adverse effects of metal artifacts on imaging diagnosis and radiotherapy

dose calculations.

Methods: Cycle-consistent adversarial network (CycleGAN) was used to generate

synthetic CT (sCT) images frommegavoltage cone beamCT (MVCBCT) images. In

this study, there were 140 head cases with paired CT and MVCBCT images, from

which 97 metal-free cases were used for training. Based on the trained model,

metal-free sCT (sCT_MF) images and metal-containing sCT (sCT_M) images were

generated from the MVCBCT images of 29 metal-free cases and 14 metal cases,

respectively. Then, the sCT_MF and sCT_M images were quantitatively evaluated

for imaging and dosimetry accuracy.

Results: The structural similarity (SSIM) index of the sCT_MF and metal-free CT

(CT_MF) images were 0.9484, and the peak signal-to-noise ratio (PSNR) was

31.4 dB. Compared with the CT images, the sCT_MF images had similar relative

electron density (RED) and dose distribution, and their gamma pass rate (1 mm/

1%) reached 97.99% ± 1.14%. The sCT_M images had high tissue resolution with

no metal artifacts, and the RED distribution accuracy in the range of 1.003 to

1.056 was improved significantly. The RED and dose corrections were most

significant for the planning target volume (PTV), mandible and oral cavity. The

maximum correction of Dmean and D50 for the oral cavity reached 90 cGy.

Conclusions: Accurate sCT_M imageswere generated fromMVCBCT images based

on CycleGAN, which eliminated the metal artifacts in clinical images completely and

corrected the RED and dose distributions accurately for clinical application.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1024160/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1024160/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1024160/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1024160&domain=pdf&date_stamp=2022-11-10
mailto:gfliu@ustc.edu.cn
mailto:yjpei@ustc.edu.cn
https://doi.org/10.3389/fonc.2022.1024160
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1024160
https://www.frontiersin.org/journals/oncology


Cao et al. 10.3389/fonc.2022.1024160
Introduction

Metal artifacts are a common problem in kilovoltage CT

images and radiation therapy. In the process of CT scanning,

when X-rays pass through metal implants, such as metal

dentures and metal hip joints in patients, erroneous X-ray

projections will be produced due to the combined effects of

beam hardening, scattering, photon starvation, noise

enhancement, volume effects and other factors (1, 2), resulting

in bright and dark stripes and radial areas in the reconstructed

images; these are known as metal artifacts. Metal artifacts not

only affect the diagnosis and the accurate delineations of the

tumour target volume and normal tissues but also introduce

dose calculation errors in radiation therapy by reducing the

accuracy of relative electron densities (RED), which endanger

the efficacy and safety of radiotherapy for patients (3–5).

Traditional metal artifact reduction (MAR) algorithms

mainly include the interpolation method and iterative method

(6–8), which often introduce new artifacts into images, resulting

in image distortion (9–12). In recent years, deep learning

technology has developed rapidly and has been widely applied

in the field of image processing; it has provided new ideas for

MAR in CT images. Yu et al. combined the traditional MAR

method with a convolutional neural network (CNN) and

achieved a higher accuracy than the traditional MAR method

(13). Zhang et al. corrected metal artifacts in cervical CT images

by using a CNN-based method (14). Zhu et al. trained U-Net

based on a digital anthropomorphic head phantom and verified

its MAR effect through PMMA phantoms containing aluminium

rods and copper rods (15). Wang et al. developed an

interpretable network model named InDuDoNet by combining

sinogram and image data and embedding imaging geometric

constraints in training (16). Yu et al. also designed a new deep

learning framework by combining the advantages of the

sinogram and image learning to obtain MAR images through

multiple filtered back-projection reconstruction of the

sinogram (17).

All the above studies are supervised methods that require

paired CT images with the same anatomical structure, one with

and the other without metal artifacts, for model training.

However, it is clinically impractical to obtain such pairs of

images. To obtain paired data, some studies used simulated

phantoms for model training (15), and other studies artificially

generated metal artifacts on metal-free CT images through

theoretical calculations (13, 14, 16, 17). A simulated phantom

is very different from the real human body, and the artificially

generated metal artifacts cannot accurately simulate the real

physical mechanisms of CT imaging. Therefore, the above two

methods have poor generalization ability to real patient data

(13–17). To solve the problem of the lack of paired training data,

Liao et al. proposed an unsupervised network model named

ADN, which used unpaired data for training (18), and its
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generalization ability was significantly improved compared to

the supervised models that used synthetic data. Nevertheless,

metal artifacts on CT images of real patients are still clearly

residual and cannot be completely eliminated

This study aims to completely eliminate metal artifacts in CT

images based on paired data from real patients. Compared with

CT images, MVCBCT images have higher noise and lower soft

tissue resolution, but the higher X-ray energy greatly reduces the

photon starvation and radiation hardening effects, making the

metal artifacts almost negligible, and this feature can be applied

to MAR in CT images (19–21). In this work, we proposed a

novel MAR approach using paired MVCBCT images and

planning CT images. First, paired metal-free MVCBCT

(MV_MF) images and metal-free planning CT (CT_MF)

images were used for training the cycle-consistent adversarial

network (CycleGAN) model. Then, synthetic metal-free CT

(sCT_MF) images were generated from MV_MF images in the

test dataset and compared with CT_MF images in terms of

image quality, the RED distributions of organs at risk (OARs)

and the dose calculation in radiation therapy. Finally, metal cases

were used to evaluate the effect of MAR. The synthetic metal-

containing CT (sCT_M) images were generated from the metal-

containing MVCBCT (MV_M) images and compared with

metal-containing CT (CT_M) images. The comparison of

sCT_M and CT_M images was implemented with imaging

and dosimetry to evaluate the radiation dosimetry

improvement in the generated sCT_M images.
Materials and methods

As illustrated in Figure 1, the process of this research was

mainly divided into four stages. First, the CT images and

MVCBCT images of the same patient were elastically

registered in the registration stage. For metal-free images in

the training set, CT numbers range from -1000 HU to 3000 HU

for CT and from -1000 HU to 1400 HU for MV. Next, the

CycleGAN model was trained using the metal-free images to

generate sCT_MF images from MV_MF images. Then, in the

third stage, the accuracy of the generated sCT_MF images was

evaluated with imaging and dosimetry to judge whether the sCT

images generated by the model were accurate enough to perform

MAR. Finally, in the MAR stage, based on the well-trained

CycleGAN model, metal-artifacts-free sCT_M images were

generated from MV_M images; then, the metal pixels in the

CT_M images were copied to the corresponding pixel positions

in the sCT_M images. Specifically, the CT numbers in the

MV_M images exceeding 1400 HU were modified to 1400

HU, and the sCT_M images without added metal pixels were

generated through the CycleGAN model. In the works of Liao

et al. and Wang et al., 2500 HU was used as the threshold of

metal segmentation in CT images (16, 18). However, bright
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FIGURE 1

Schematic diagram of metal artifact correction based on MVCBCT and CycleGAN. The process of this research was divided into the registration
stage, CycleGAN training stage, evaluation stage and MAR stage.
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metal artifacts may still exist in the metal region segmented by

this method. We observed that there is almost no metal artifact

in the MVCBCT images and the CT number of metal is not less

than 300 HU. Therefore, in order to reduce the metal artifacts

contained in the segmented metal regions as much as possible,

we identified the intersection regions with HU values greater

than 2500 in the CT_M images and greater than 300 in the

MV_M images as the metal regions. The final MAR images were

obtained by copying the CT numbers of the metal pixels in the

CT_M images into the previously generated sCT_M images.
Data acquisition and preprocessing

Metal dentures have diverse materials and complex shapes.

When their size is large or RED is high, severe metal artifacts

appear in CT images, destroying the image quality and the

accuracy of RED information. Therefore, the correction of metal

artifacts caused by metal dentures has good clinical application

value. In this study, CT and MVCBCT images of head cancer

patients were obtained from the dataset.

Paired planning CT images and MVCBCT images of 126

patients without metal dentures and 14 patients with metal

dentures were collected in this study, and the scans included

the head. The CT images were derived from a Siemens

SOMATOM Spirit helical CT scanner (tube voltage of 130 kV,

slice thickness of 3 mm, 16-bit image output). The paired

MVCBCT images were obtained in the first fraction (Siemens

Artiste Medical Electron Linear Accelerator, 6 MV, 0.54

mm×0 . 54 mm×0 . 54 mm) . The image s f rom the

temporomandibular joint to the mandible were selected for

training and evaluation. The images from ninety-seven

patients without metal in their scans were randomly selected

for model training; these data included 1762 paired planning CT

slices and MVCBCT slices. The remaining images of the 29

metal-free patients (457 slices) were used as the metal-free test

set, and the 14 patients with metal dentures (86 slices) were used

as the metal test set.

Data preprocessing was required before model input. First,

the Elastix multiresolution B-spline registration method (22, 23)

was used to elastically align the CT images andMVCBCT images

of the same patient. Then, the images were resampled to 1

mm×1 mm and cropped to 256×256 pixels. Then, the hyperbolic

tangent function (Tanh) was used to scale the CT values to (–

1,1), and is defined as Tanh(x)  =    e
x−e−x

ex+e−x . Before being processed

by Tanh, the HU values of the CT images and MVCBCT images

were scaled linearly with three methods as follows:

1) X(MVCBCT) = Tanh(HU(MVCBCT)/400) and X(CT) =

Tanh(HU(CT)/400).

2) X(MVCBCT) = Tanh(HU(MVCBCT)/150) and X(CT) =

Tanh(HU(CT)/300).

3) X(MVCBCT) = Tanh(HU(MVCBCT)−800/400) and X

(CT) = Tanh(HU(CT)−1600/960).
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Processed by the above three methods, these data were used

for model training separately to obtain three groups of results,

named P1, P2 and P3.
CycleGAN-based unsupervised model

Although the paired CT and MVCBCT images were selected

as training data, there were still problems in supervised pixel-to-

pixel learning. The setup error between the two scans, the

differences in the mouth opening size and image distortions

caused by elastic registration may introduce differences into the

CT images and MVCBCT images. Therefore, this study used

CycleGAN for unsupervised learning because pixel-level

correspondence is not necessary.

Generative adversarial networks (GANs) are unsupervised

deep learning models that mainly include a generator (G) and a

discriminator (D). A trained GA-B could generate image A’,

which has the structure of image A and the style of image B.

CycleGAN models (24) include two generators and two

discriminators and add cycle-consistency loss for training.

CycleGAN has been widely used for interconversion between

different types of medical images (25–30). The structure of

CycleGAN used in this study is consistent with that reported

in the literature (24), and the model structure is shown in

Figure 1. ResUNet (31) was used as the generator, and the

Adam optimizer was selected to train the model with a batch size

of 6 on one NVIDIA Quadro RTX 6000 GPU. The learning rate

was constant at 0.0002 for the first 100 epochs of training and

attenuated by 1% per epoch for the last 100 epochs. A previous

study showed that paired data have better performance than

unpaired data when using CycleGAN to generate sCT (32).

Therefore, this study used deformation-registered paired data

for training.
Imaging evaluation

Compared to the planning CT images, the image quality of

synthetic CT images was evaluated by the peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM) index.

PSNR I1, I2ð Þ = 10� log10
MAX2

RMSE(I1, I2)
2

� �
(1)

SSIM I1, I2ð Þ = 2mI1mI2 + c1
� �

2sI1,I2 + c2
� �

m2
I1
+ m2

I2
+ c1

� �
s 2
I1
+ s 2

I2
+ c2

� � (2)

To compute the dose using CT images in photon

radiotherapy, the CT numbers need to be converted to RED

values through the CT-ED conversion curve. Since the CT-ED

curves are very different between CT images and MVCBCT

images, it is necessary to compare their RED values rather than
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their CT numbers. The CIRS 062 electron density phantom was

used to obtain CT numbers corresponding to the RED values in

the range of 0 to 1.456. The correspondence between CT

numbers and RED values of different metals was obtained

through the head part of a CIRS ATOM 701-B dosimetry

anthropomorphic phantom with aluminium alloy (RED: 2.43),

titanium alloy (RED: 3.73) and stainless steel (RED: 6.83) plugs.

In addition, the RED distributions of OARs in CT images

were analysed. The main OARs affected by metal artifacts, such

as the mandible, oral cavity, parotid gland and spinal cord, were

delineated, and their RED distributions were compared with

those in the MVCBCT images and sCT images.
Dosimetry evaluation

The target volume was redelineated according to the

anatomical structure of each patient in the test set with

reference to the actual target volume position of NPC patients.

In the treatment planning system (TPS), the same prescription

dose (PTV: 6000 cGy) was used to produce a dynamic intensity-

modulated plan (Eclipse 15.6, AXB algorithm) on the CT

images, and then the plan was copied to the corresponding

sCT images. Finally, the global gamma pass rates and the three-

dimensional dose distribution difference of the target area and

the OARs were compared. The gamma pass rates between the

radiotherapy plans of sCT images and CT images were

calculated using PTW Verisoft software, version 6.0 (PTW,

Frieburg, Germany), and the criteria included 2 mm/2% and 1

mm/1% (distance error/dose error), respectively. V95%, V100%,

V110% (Vx% means the percentage of volume receiving at least

x% of the prescription dose), D5, D95 (Dx means the doses to x

% of the volume), Dmean (mean dose of the volume) for the
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PTV, D2 and Dmean for the mandible, D50 and Dmean for the

oral cavity and parotid gland, and D0.1 cc (dose to 0.1 cc

volume) for the spinal cord were investigated.

The significance test of the RED and dosimetry data was

performed using IBM SPSS Statistics 26 software. Paired and

unpaired t tests were used for normally distributed data, and the

Mann-Whitney U test was used for nonnormally distributed

unpaired data (33).
Results

Figure 2 shows the effects of different preprocessing methods

(P1, P2 and P3) on sCT image quality. For organs such as the

mandible and teeth, more uniform CT numbers and higher

similarity with the CT_MF images were achieved using sCT_

MF_P3 compared with sCT_MF_P1 and sCT_MF_P2. The CT

numbers of teeth for CT_MF, sCT_MF_P1, sCT_MF_P2 and

sCT_MF_P3 were 1473 ± 554 HU, 1726 ± 863 HU, 2003 ± 995

HU and 1476 ± 481 HU, respectively. The CT numbers of the

mandible were 838 ± 494 HU, 891 ± 631 HU, 917 ± 417 HU and

848 ± 425 HU, respectively. Table 1 shows a comparison of the

accuracy of sCT_MF images with different preprocessing

methods in the ranges of [-200, 400] HU, [400, 800] HU, [800,

3000] HU and [-1000, 3000] HU. sCT_MF_P2 performed best at

[-200, 400] HU, sCT_MF_P1 performed best at [400, 800] HU,

and sCT_MF_P3 performed best at [800, 3000] HU. Obviously,

different image preprocessing methods have their own

advantages in different CT number ranges. Therefore, the

three trained models with different preprocessing methods

were combined to produce the new sCT_MF (sCT_MF_P4),

which used the part of sCT_MF_P2 below 400 HU, the part of

sCT_MF_P1 at [400, 800] HU and the part of sCT_MF_P3 over
FIGURE 2

Visualized differences of CT_MF and sCT_MF images with different preprocessing methods. The display windows for the first and second rows
were [0, 3000] HU and [-360, 440] HU, respectively. Blue lines represent the contour of the teeth, and red lines represent the contour of the
mandible. The images in the first to fifth columns were CT_MF, sCT_MF_P1, sCT_MF_P2, sCT_MF_P3 and sCT_MF_P4, respectively. Different
image preprocessing methods have their own advantages in different CT number ranges, and sCT_MF_P4 performs best.
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800 HU. The accuracy of the sCT_MF_P4 image was improved

significantly (PSNR: 31.4 ± 1.3 dB; SSIM: 0.9484 ± 0.0090). It

should be noted that the generated sCT_MF and sCT_M images

in the following were processed by the combined P4 method.

The RED comparison of CT, MVCBCT and sCT images is

shown in Figure 3. In Figure 3A, the difference in the RED values

of CT_MF and sCT_MF images was significantly smaller than

that of CT_MF and MV_MF images, especially in soft tissues.

Figure 3F and part A in Figure 3E show that the RED curves of

CT_MF and sCT_MF images were almost coincident, while the

curves of CT_MF and MV _MF images were quite different. The

RED distributions of OARs for CT_MF and sCT_MF images

were almost the same (Figure 4), and the difference was not

statistically significant (P > 0.05 in Table 2). Compared with the

large difference in the RED values of CT_MF and MV_MF

images, the RED values of the main OARs in sCT_MF images

were sufficiently accurate to be used for radiotherapy

dose calculations.

The dose distributions based on CT_MF and sCT_MF

images were slightly different, as shown in Figure 5A. The

gamma pass rates of the sCT_MF-based plans were 99.72% ±

0.29% (2 mm/2%) and 97.99% ± 1.14% (1 mm/1%) compared to

the CT_MF-based plans. The blue part in Figure 6 shows the

absolute dose errors of CT_MF and sCT_MF images, which

were 8.9 ± 6.2 cGy, 11.9 ± 8.1 cGy, 9.3 ± 7.2 cGy, 0.04% ± 0.06%,

0.32% ± 0.28% and 0.76% ± 0.77% for Dmean, D5, D95, V95,

V100%, and V110% of the PTV, respectively. For the mandible

(D2 and Dmean) and oral cavity (D50 and Dmean), the

maximum differences were all less than 40 cGy, and the

average difference was approximately 10 cGy. For the parotid

(D50 and Dmean) and spinal cord (D0.1 cc), the max differences

were all less than 20 cGy, and the average difference was

approximately 7 cGy. The above results demonstrate that the

dose distribution of sCT_MF images was consistent with that of

CT_MF images, which proves the accuracy of our proposed

method for generat ing synthet ic CT images from

MVCBCT images.

LI (34) and NMAR (35) are widely used approaches to MAR.

Supplementary figure 1 and Supplementary figure 2 show the

qualitative comparisons of our MAR method with the LI and

NMAR methods on the clinical data and phantom data,

respectively. It is clear that our method completely eliminates
Frontiers in Oncology 06
metal artifacts in both clinical data and phantom data, whereas

both the LI and NMAR methods not only fail to completely

eliminate metal artifacts, but also create a large number of new

artifacts in the images. For MAR of CT_M images, metal artifacts

with varying severities were completely removed from sCT_M

images (Figures 3B–3D). The sCT_M images had comparable

quality to metal-artifact-free CT_MF images. Notably, according

to the RED differences in Figures 3B–3D, the RED information

corrupted by metal artifacts was corrected in the sCT_M images,

and the RED difference in the area away from themetal artifacts was

very small. It was evident from Figure 3F and parts B-D in Figure 3E

that the difference in the RED values of the CT_M and sCT_M

images was larger than that of the CT_MF and sCT_MF images. In

Figure 4, the RED values of the CT_M and sCT_M images were

1.350 ± 0.254 and 1.355 ± 0.230 for the mandible (P = 0.813), 1.060

± 0.081 and 1.032 ± 0.016 for the oral cavity (P< 0.001), 0.987 ±

0.036 and 0.994 ± 0.027 for the parotid (P = 0.174), and 1.029 ±

0.015 and 1.020 ± 0.010 for the spinal cord (P = 0.006), respectively.

The dose distributions based on CT_M and sCT_M images

are shown in Figures 5B–5D, and the gamma pass rates of the

sCT_M-based plans were 99.55% ± 0.35% (2 mm/2%) and

96.55% ± 1.54% (1 mm/1%) compared to the CT_M-based

plans. The green part in Figure 6 shows the absolute dose

errors from the CT_M and sCT_M images, which were 22.1 ±

17.9 cGy, 28.1 ± 20.8 cGy, 19.3 ± 19.0 cGy, 0.05% ± 0.07%, 0.37%

± 0.46% and 1.37% ± 1.46% for Dmean, D5, D95, V95%, V100%,

and V110% of the PTV, respectively. For the PTV (Dmean, D5),

mandible (Dmean), oral cavity (D50 and Dmean) and parotid

(D50 and Dmean), the absolute dose errors of the sCT_M and

CT_M images were statistically significant compared to the

absolute errors of the sCT_MF and CT_MF images (Figure 6C

and Table 3). The dose difference in the spinal cord far away

from metal artifacts was not statistically significant (6.7 ± 3.5 vs.

11.7 ± 8.1, P > 0.05 in Table 3).
Discussion

In this study, a novel approach, in which the advantages of

the CycleGAN model and the characteristics of negligible metal

artifacts in MVCBCT images were integrated, was proposed to

address the MAR task. The results suggested that our proposed
TABLE 1 The evaluation of sCT_MF images with different preprocessing methods (PSNR (dB)/SSIM).

CT number range(HU) sCT_MF_P1 sCT_MF_P2 sCT_MF_P3 sCT_MF_P4

-1000~3000 30.0/0.9459 28.2/0.9435 30.7/0.9345 31.4/0.9484

-200~400 23.9/0.8599 24.2/0.8689 22.6/0.8395 /

400~800 22.8/0.9558 22.2/0.9534 21.4/0.9470 /

800~3000 27.9/0.9652 24.9/0.9555 33.0/0.9701 /
sCT_MF_P1, metal-free sCT images obtained by the prepossessing method named P1; sCT_MF_P2, metal-free sCT images obtained by the prepossessing method named P2; sCT_MF_P3,
metal-free sCT images obtained by the prepossessing method named P3; metal-free sCT images obtained by the combined prepossessing method named P4. The best PSNR and SSIM values
in different HU ranges of sCT_MF images are marked in bold.
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method could be used to completely remove metal artifacts in

original CT images and correct the destroyed RED distributions,

and hence a more accurate dose calculation for radiotherapy can

be produced.

Different normalization methods in preprocessing could

affect the accuracy of sCT images, as shown in Figure 2. The

difference between the P1, P2 and P3 methods was mainly

because the main range of the CT numbers involved in the

training stage varied with the preprocessing methods. Therefore,
Frontiers in Oncology 07
the three trained models with different preprocessing methods

were combined to produce the final sCT images.

TPS requires images to be calibrated for RED values before

dose calculations are performed (36). Considering the large gap

between the CT-ED curves of CT and MVCBCT images (19), it

is not intuitive to directly compare the difference in CT numbers

when evaluating image quality in the study by Zhao et al. (37).

Therefore, our image evaluation approach mainly focused on the

RED values.
FIGURE 3

RED comparison of CT, MVCBCT and sCT images. (A) Metal-free images. (B-D) Metal-containing images. (E) RED distribution curves for the blue
lines in (A–D). (F) RED histograms of the images. The display window for CT, MVCBCT and sCT images was [-360, 440] HU. The RED
distributions of CT_MF and sCT_MF images were almost coincident, and the metal artifacts were completely eliminated in sCT_M images after
the MAR stage.
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In the results, we analysed the image quality and dose

calculation accuracy of the generated sCT images for the test

sets with and without metal. Since we cannot obtain ground

truth images for the clinical metal-containing images, in

previous studies, quantitative evaluation could only be

performed on synthetic data or simulated phantoms (13–18).

In our study, we indirectly realized the quantitative evaluation of

the MAR effect on clinical images through the quantitative

evaluation of the sCT_MF images and the statistical analysis of

sCT_MF and sCT_M images. The model was trained with paired

CT_MF and MV_MF images, and CT_MF and sCT_MF images

had high consistency in terms of image quality, RED values and

dose distributions. The PSNR and SSIM values for the CT_MF

and sCT_MF images comparison were 31.4 ± 1.3 and 0.9484 ±

0.0090, respectively, which are comparable to Liang et al.’s study
Frontiers in Oncology 08
(30.65 ± 1.36/0.85 ± 0.03), Vinas et al.’s study (29.7 ± 2.7/0.927 ±

0.028), Harms et al.’s study (PSNR: 32.3 ± 5.9) and Chen et al.’s

study (30.75 ± 3.89/0.9642 ± 0.0186) for head patient images (25,

27, 38, 39). The gamma pass rates (1 mm/1%) of the sCT_MF-

based plans (97.99% ± 1.14%) were better than those obtained in

Liang et al.’s study (96.26% ± 3.59%) and Li et al.’s study (95.5%

± 1.6%) (25, 40). Therefore, we believe that the sCT_M images

generated from MV_M images were sufficiently accurate to

evaluate the effect of MAR.

In previous studies, the excellent MAR performance on

simulated images could not be sustained on clinical images.

Qualitative analyses showed that artifacts remained in images

after MAR, and the image quality was also degraded (13, 14, 16–

18). In contrast, metal artifacts in clinical images were eliminated

completely in our study (Figure 3). Furthermore, quantitative
B

C D

A

FIGURE 4

Comparison of RED distributions for OARs. (A) Mandible. (B) Oral cavity. (C) Parotid. (D) Spinal cord. The numbers marked in the figure are the
average ± standard deviation. The RED values of the main OARs in sCT_MF images were accurate, and the inaccurate RED values caused by
metal artifacts in CT_M images were corrected in sCT_M images after the MAR stage.
TABLE 2 P value comparison of RED distributions for OARs.

OARs CT_MF vs. sCT_MFa CT_M vs .sCT_Ma CT_MF vs .CT_Mb CT_MF vs .sCT_Mb

Mandible 0.055 0.813 < 0.001* < 0.001*

Oral Cavity 0.805 < 0.001* < 0.001* 0.509

Parotid 0.499 0.174 0.355 0.744

Spinal Cord 0.056 0.006* < 0.001* 0.512
a: Paired-sample T test. b: Independent-sample T test.*: Statistically significant differences (P< 0.05). RED, Relative electron density; OARs, organs at risk; CT_MF, metal-free CT images;
CT_M, metal-containing CT images; sCT_MF, metal-free sCT images; sCT_M, metal-containing sCT images.
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assessments of the MAR effect on clinical images were performed.

The MV_M images were almost identical to the MV_MF images

since the metal artifacts were barely visible (Figures 3B–3D). In

the soft tissue region near the teeth, the RED distribution curves of

CT_MF images were smooth, while those of CT_M images were

not (Figure 3E). Some RED values were high (pink arrows) in

CT_M images due to bright metal artifacts, while others (green
Frontiers in Oncology 09
arrows) were low due to dark metal artifacts. On the other hand,

the curves in the corresponding areas in sCT_M images were as

smooth as those in CT_MF images, which means that the RED

values were accurately corrected in sCT_M images. In Figure 3F,

the RED histograms of the CT_M and sCT_M images had

obvious differences, especially in the RED value range of 1.003

to 1.056 (green arrow). This may be because metal artifacts mainly
FIGURE 5

Dosimetric comparison of CT and sCT images. (A) Metal-free images. (B–D) Metal-containing images. The display window for the CT and sCT
images was [-360, 440] HU. The dose distribution of sCT_MF images was consistent with that of CT_MF images, and there were obvious dose
differences between CT_M and sCT_M images in the area with serious metal artifacts.
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destroy RED values in the range of 1.003 to 1.056, while the

damage is corrected in sCT_M images.

The RED distributions of OARs were different because of the

different distances from the metal artifacts. Influenced by the metal
Frontiers in Oncology 10
artifacts, there were many pixels with low RED values in the

mandible of CT_M images, and these pixels were corrected in the

sCT_M images (Figure 4A). Due to the proximity to metal

dentures, the RED values of the oral cavity in CT_M images were
B

C

A

FIGURE 6

Comparison of the absolute dose errors for the PTV and OARs. (A) Dose difference (cGy) of the PTV. (B) Volume difference (%) of the PTV.
(C) Dose difference (cGy) of the OARs. The numbers marked in the figure are the average ± standard deviation. Compared with metal-free
cases, the average and standard deviation of the dose differences for the PTV and OARs doubled for cases with metal artifacts.
TABLE 3 The difference significance test between the absolute dose errors of sCT_M and CT_M images and the absolute errors of sCT_MF and
CT_MF images for the PTV and OARs.

Structures Dosimetry Parameter Test Method P Value

PTV Dmean T 0.047*

D5 T 0.038*

D95 T 0.142

V95% U 0.487

V100% U 0.781

V110% U 0.517

Mandible D2 U 0.089

Dmean U 0.009*

Oral Cavity Dmean U 0.002*

D50 U < 0.001*

Parotid Dmean T 0.047*

D50 U 0.036*

Spinal Cord D0.1 cc T 0.079
fron
T: Independent-sample T test for normally distributed data. U: Independent-sample Mann-Whitney U Test for nonnormally distributed data. *: Statistically significant differences (P< 0.05).
PTV, planning target volume; OARs, organs at risk; CT_MF, metal-free CT images; CT_M, metal-containing CT images; sCT_MF, metal-free sCT images; sCT_M, metal-containing sCT
images; Vx%, the percentage of volume receiving at least x% of the prescription dose; Dx, the doses to x% of the volume; Dmean, mean dose of the volume; D0.1 cc, dose to 0.1 cc volume.
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greatly affected by the metal artifacts (CT_MF vs. CT_M, P< 0.001

in Table 2), with a significantly higher mean and standard deviation

(Figure 4B) and a large number of outliers that were too high or too

low. The RED values of the oral cavity were almost consistent in the

sCT_M and CT_MF images (P = 0.509 in Table 2), and there was a

significant difference in the values of CT_M and sCT_M images

(P< 0.001 in Table 2), which further proved the accuracy of RED

correction for the oral cavity in sCT_M images. As shown in

Table 2, the spinal cord and oral cavity had similar significance test

results, which also proves that the RED values of the spinal cord

were accurately corrected in sCT_M images.

For dose calculation, the gamma pass rates of sCT_M and

CT_M images were lower than those of sCT_MF and CT_MF

images, which was the results of MAR. As shown in Figures 5B–

5D, there were obvious dose differences between CT_M and

sCT_M images in the area with serious metal artifacts (elliptical

dotted lines), and the maximum correction of the point dose

could reach more than 5% of the total dose. Compared with

metal-free cases, the average and standard deviation of the dose

differences for the PTV and OARs doubled for cases with metal

artifacts (Figure 6). The accuracy of the sCT_M-based dose

calculation showed statistically significant improvements in the

PTV and OARs (Table 3).

Finally, there are some works that need to be improved. The

RED difference of the bone and tooth areas of the CT_MF and

sCT_MF images was significantly greater than that of soft

tissues. The results showed that the combination of multiple

preprocessing methods could improve the accuracy of sCT

images with high RED values, and this will be further

researched in our next work.
Conclusion

We proposed a novel MAR approach to complete the MAR

task. In this approach, the advantages of the CycleGAN model

and the characteristics of negligible metal artifacts in MVCBCT

images are integrated. The model was trained on paired metal-

free CT andMVCBCT images and generated metal-artifacts-free

sCT images from metal-containing MVCBCT images to convert

the task of MAR to the task of generating sCT images from

MVCBCT images. The metal artifacts were completely removed

in the sCT_M images, and the inaccurate RED values were

corrected, which could significantly improve the accuracy of

disease diagnosis and radiotherapy dose calculation.
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