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Illkirch, France
Most gastric cancers (GC) are adenocarcinomas, whereas GC is a highly

heterogeneous disease due to its molecular heterogeneity. However,

traditional morphology-based classification systems, including the WHO

classification and Lauren’s classification, have limited utility in guiding clinical

treatment. We performed nonnegative matrix factorization (NMF) clustering

based on 2752 metabolism-associated genes. We characterized each of the

subclasses from multiple angles, including subclass-associated metabolism

signatures, immune cell infiltration, clinic10al characteristics, drug sensitivity,

and pathway enrichment. As a result, four subtypes were identified: immune

suppressed, metabolic, mesenchymal/immune exhausted and hypermutated.

The subtypes exhibited significant prognostic differences, which suggests that

the metabolism-related classification has clinical significance. Metabolic and

hypermutated subtypes have better overall survival, and the hypermutated

subtype is likely to be sensitive to anti-PD-1 immunotherapy. In addition, our

work showed a strong connection with previously established classifications,

especially Lei’s subtype, to which we provided an interpretation based on the

immune cell infiltration perspective, deepening the understanding of GC

heterogeneity. Finally, a 120-gene classifier was generated to determine the

GC classification, and a 10-gene prognostic model was developed for survival

time prediction.
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Introduction

Gastric cancer is a significant cancer worldwide, accounting

for over one million new cases and an expected 769,000 deaths in

2020, ranking fifth for cancer incidence and third for the most

prevalent cause of cancer-related death (1, 2). Cancer is

considered to be a metabolic disease and to be a result of

metabolic dysfunction. During carcinogenesis, metabolism is

changed to benefit cancer cells. The best-known example of this

type of metabolism is theWarburg effect, which has been observed

in numerous cancer cells and tumors (3). This impact involves

high glucose absorption, accelerated glycolysis, and the conversion

of pyruvate to lactic acid rather than oxidative phosphorylation

(OXPHOS) to produce energy under aerobic conditions (4). In

addition to providing extra energy, the breakdown of glucose

through glycolysis creates glycolytic intermediates for cell growth

and the synthesis of macromolecules (5). It has been

demonstrated that GC cells and normal cells exhibit metabolic

differences not only in glucose metabolism but also in the

metabolism of lipids and amino acids, which further involves

changes in the key enzymes in glycolysis, mitochondrial proteins,

noncoding RNAs, and proteins that regulate these factors (6).

Studies have reported that metabolism-related mechanisms are

involved in gastric cancer. For instance, Lin et al. (7) discovered

that metabolic stress is one of the mechanisms that elevates

MACC1 expression in GC, and MACC1 upregulation

compensatively ensures GC growth against metabolic stress by

facilitating the Warburg effect. Gao et al. (8) reported that the

aminoacyl-tRNA biosynthesis pathway is upregulated in gastric

cancer and that both threonyl-tRNA synthetase and phenylalanyl-

tRNA synthetase play key roles in the progression of gastric

cancer. In pan-cancer research (9), transcriptional metabolic

dysregulation has been reported in gastric cancer.

Furthermore, metabolic reprogramming causes alterations

in the tumor microenvironment that not only affect tumor cells

but also influence infiltrated immune cells. For example,

Poznanski et al. (10) discovered that the malfunction of

human NK cells in the microenvironment of tumors is related

to the inhibition of glucose metabolism by lipid peroxidation-

associated oxidative stress. In vivo, activation of the NRF2

antioxidant pathway restored the metabolism and function of

NK cells, resulting in enhanced antitumor activity. Enhanced

tumor killing in the tumor microenvironment was observed in

expanded NK cells reprogrammed with intact metabolic

flexibility and metabolic fitness, in response to nutrient

deprivation (10). Cholesterol in the tumor microenvironment

increases CD8+ T cell expression of immune checkpoints and

exhaustion, according to Ma et al. (11) Cholesterol-rich tumor

tissues and the cholesterol content of tumor-infiltrating CD8+ T

cells were positively related with increased T cell expression of
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PD-1, 2B4, TIM-3, and LAG-3. Immune checkpoint blockers

(ICBs) have been introduced to the treatment of gastric cancer,

and the FDA approved two PD-1 ICBs for treating metastatic

gastric cancer. The demand for efficient biomarkers for ICBs has

emerged; however, current GC classification has limited clinical

utility in guiding patient treatment.

The classification of gastric cancer has been widely studied.

Traditionally, the WHO classification divides tumors into

papillary, tubular, mucinous, and poorly cohesive types (12).

Lauren classification categorizes tumors into intestinal, diffuse,

and mixed (13). Because these classification systems are

morphology-based classification systems, they have not

incorporated the advances in the molecular and genetic

aspects of the diseases and do not provide guidance

for treatment. The Cancer Genome Atlas (TCGA) subtypes

were reported in 2014 (14), proposing a molecular

classification dividing GC into four subtypes: tumors positive

for Epstein–Barr virus (EBV), microsatellite unstable tumors

(MSI), genomically stable tumors (GS), and tumors

with chromosomal instability (CIN). Other studies include

but are not limited to Tan et al.’s research (15) based on the

genomic expression of GC cell lines, which identified two

subgroups: genomic intestinal and genomic diffuse. Lei et al.

(16) reported another molecular classification that classifies GC

into three independent subtypes: proliferative, metabolic,

and mesenchymal. In comparison to morphology-based

classification systems, molecular-based systems are a

large leap forward in explaining genetic heterogeneity.

However, little research work has been done to develop a

classification system from a metabolism perspective, and the

landscape of the metabolism signatures in GC has yet to be

comprehensively elucidated.

Therefore, we performed an unsupervised classification

analysis based on previously reported metabolism-relevant

genes. GC patients were mainly classified into four subtypes:

immune suppressed, metabolic, mesenchymal/immune

exhausted and hypermutated. Based on analyses from various

angles, including the evaluation of the prognostic value,

correlations with metabolic signatures, immune infiltration,

clinical characteristics, and drug sensitivity of the GC

subclasses, we depicted the characteristics of each GC subtype

and compared them with previous classifications. Finally, a 120-

gene classifier was generated to determine the GC classification,

a 10-gene prognostic model was developed for the survival time

of the patients, and the risk score groups displayed distinctive

prognostics. The subtypes exhibited substantial prognostic

differences, which suggests that the metabolism-related

classification has clinical significance. We hope this approach

from a metabolism perspective adds new information to the

understanding of gastric cancer.
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Materials and methods

Data and sample collection

Transcriptome HTSeq count data from patients diagnosed

with gastric adenocarcinoma were retrieved from Genomic Data

Commons (GDC). Data from the TCGA-STAD project were

downloaded using the ‘TCGAbiolinks’ R package (17). Primary

malignancies were chosen from fresh-frozen samples.

GENCODE27 was used to translate Ensembl IDs for mRNAs

to gene symbols. Patient survival data were downloaded from the

PanCanAtlas project and filtered for STAD tumor type. A total

of 348 TCGA patients had their expression data matched with

survival data. The number of fragments per kilobase million

(FPKM) was converted into transcripts per kilobase million

(TPM) values, which were comparable to microarray

expression values.

Additionally, the microarray data of Gene Expression

Omnibus (GEO) cohorts GSE15459, GSE84426 and GSE84433

and their clinicopathological data were retrieved. Eight patients’

expression data in GSE15459 were excluded due to missing

survival data. As a result, there were 192, 76 and 357 patient

expression profiles matched with survival data for GSE15459,

GSE84426 and GSE84433, respectively. The TCGA dataset,

GSE15459 and GSE84426 were combined as the training set

for robustness, and GSE84433 was used as the validation set.

The pathological stage status of GSE84433 and GSE84426

was derived based on the T stage and N stage information

according to AJAA 7th edition, making it consistent with TCGA

and GSE15459 for further analysis. The algorithm ‘combat’ (18)

was chosen to eliminate the possibility of batch effects from

nonbiological technological biases between various datasets, and

the ‘sva’ R package was used (19) Principal component analysis

was performed to examine the batch effect before and

after correction.
Identification of GC subclasses

First, a previously published list of 2,752 metabolism-

relevant genes encoding human metabolic enzymes and

transporters was obtained for downstream analysis (20). Next,

metabolism-relevant genes with a median absolute deviation

(MAD) less than 0.2 were excluded, and univariate Cox

regression assessing the associations of all metabolism-relevant

genes with overall survival (OS) was conducted using the R

package ‘survival’. Eventually, 460 candidate genes were

obtained with significant prognostic value (P < 0.05).

Subsequently, unsupervised NMF clustering methods were

performed using the ‘NMF’ R package (21) on the training set

and the validation set using the same candidate genes. The
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optimal value of k was determined at the point where the

magnitude of the cophenetic correlation coefficient began to

fall (22). Subclass mapping (SubMap) analysis was then used to

determine whether the subclasses identified in the two above

datasets were correlated (23). A t-distributed stochastic neighbor

embedding (t-SNE)-based approach was then used to validate

the subtype assignments using the mRNA expression data of the

above metabolic genes.
Gene set variation analysis

Gene set variation analysis (GSVA) is a nonparametric

unsupervised gene set enrichment method that can estimate the

score of a certain pathway or signature based on transcriptomic

data (24). The 113 metabolism-relevant gene signatures were

obtained from a previously published study (9), and by using

the ‘GSVA’ R package, each sample received 113 scores

corresponding to metabolism signatures. Subsequently,

differential analysis was conducted based on the 113 metabolism

scores using the ‘limma’ package (25) in R software, and the

pathways with an absolute log2-fold change > 0.2 and adjusted P <

0.05 were defined as differentially expressed pathways. Then, the

mutually exclusive pathways for each subtype were defined as the

signature pathway. The gene signatures of the 11 oncogenic

pathways were retrieved from a publication (26), and the

enrichment score for each subtype was calculated.
Estimation of immune infiltration

Microenvironment cell population counter (MCPcounter)

was used to evaluate the abundance of eight immune cell

populations and two stromal cell populations (27). In addition,

single-sample GSEA (ssGSEA) (28) was used to estimate the

enrichment of T cell subtypes and fibroblast subtypes.

Furthermore, immune scores and stromal scores were

calculated by applying the ESTIMATE algorithm (29), which

can reflect the abundance of stromal and immune cells.
Enrichment analysis of DEGs

The differentially expressed genes (DEGs) among GC

subclasses were identified using the ‘limma’ package. Genes

with an absolute FC > 1.5 and adjusted P < 0.05 were defined

as DEGs. The gene set of ‘h.all.v7.5.1.entrez’, ‘c5.go.bp.v7.5.1.

entrez’ and ‘c2.cp.kegg.v6.2.entrez.gmt’ were downloaded from

the Molecular Signatures Database (https://www.gsea-msigdb.

org) and were employed for the functional and pathway

enrichment analysis using the ‘clusterProfiler’ R package (30),

and the significance threshold was set at an adjusted P < 0.05.
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Somatic mutation and copy number
variation analysis

Gene mutation data of TCGA-STAD patient samples were

downloaded from cBioPortal (https://www.cbioportal.org/). The

R package ‘maftools’ (31) was used to analyze the association

between subtypes and tumor mutation. The copy number

variation data of TCGA-STAD tumor samples were

downloaded from Firehose (http://gdac.broadinstitute.org/).

The Genomic Identification of Significant Targets in Cancer

(GISTIC2.0) algorithm was utilized to classify the copy number

variant genes (32), and the default settings were used.
Prediction of the response to
immunotherapy

Tumor Immune Dysfunction and Exclusion analysis (TIDE)

was introduced to predict patient response to immunotherapy

(33, 34). The default cutoff value of zero was used for

categorizing whether a response was to be expected. The data

from gastric cancer patients treated with immunotherapies (35)

were used to predict the immunotherapy efficacy of our

subclasses by measuring the similarity of gene expression

profiles between our subclasses and gastric cancer patients

based on SubMap analysis (Gene Pattern) (23).
Construction of the prognostic model

The DEGs were first subjected to a feature selection process

with the R package ‘Boruta’ (36). Three hundred and sixty-two

confirmed genes were then combined with the 460 previously

defined prognosis-relevant metabolism genes, and the lasso-Cox

model was fitted. The final model has ten genes. The risk score

was calculated as the summation of the product of the

coefficients and the expression value of the genes. The median

risk score was used to divide the patient population into high-

and low-risk groups.
Statistical analyses

All statistical analyses were carried out by R 4.1.0. The

Kruskal–Wallis test was used to compare more than two

groups. The Wilcoxon test was used to compare two groups.

The correlation between two continuous variables was measured

using Pearson’s correlation coefficient. Kaplan–Meier curves were

generated for the survival data, and the log-rank test was used to

detect the difference. For all statistical analyses, a two-sided P

value less than 0.05 was considered statistically significant.
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Results

NMF identifies four subclasses in GC

A flow chart was developed to systematically describe our

study (Figure 1A), and the clinical characteristics of patients from

different cohorts are listed in Table S1. NMF was performed on the

460 prognostic related metabolism genes (Table S2). Cophenetic

coefficients were calculated to determine the optimal number of

clusters. When k = 4, the cophenetic coefficient drops (Figure 1B),

and the consensus matrix heatmap maintain distinct boundaries,

suggesting stable and robust clustering for the samples (Figure

S1B). In parallel, we performed another independent clustering

analysis on 357 GC samples from the GSE84433 dataset. SubMap

analysis was then conducted to determine whether the clusters

identified in the two independent analyses were correlated, and the

results showed that C1-C4 subclasses in the training set were

highly correlated with the corresponding counterpart in GSE84433

(Figure S1D), suggesting that there were four distinct metabolic

gene expression patterns in GC. To visualize the subclasses’

assignments, we performed t-SNE to decrease the dimension of

features (Figures 1C, S1C), and the four-subtype designation was

well clustered. Hence, k = 4 was eventually chosen. Survival

analysis was performed on the subclasses, and a significant

difference was observed in both datasets (log-rank test P < 0.001,

Figure 1D, training set; P = 0.013, Figure 1E, testing set). Subtypes

C2 and C4 showed better overall survival than C1 and C3.
Correlation of the GC subclasses with
metabolism-associated signatures

Considering that the classification was based on metabolism-

relevant genes, we further investigated the metabolic

characteristics for each subclass. First, 113 metabolic processes

were quantified using the GSVA R package. Then, differential

analysis was conducted to identify subclass-specific metabolism

signatures. The results revealed that C2 and C4 were more

metabolically active because they had 13 and 16 metabolism

signatures, respectively, whereas C1 and C3 had only 4 and 2

signatures (Figure 2A). Glycolysis and OXPHOS did not appear

to be metabolic signatures, suggesting that they were

overexpressed in more than one subclass. Since they are the

most well-studied metabolic pathways and have a substantial

impact on glucose metabolism and the TME, we explored the

status of glycolysis and OXPHOS among the subclasses. C3 had

the lowest glycolysis and OXPHOS levels, whereas C4 had

higher levels in these pathways (Figures 2B, C).

To further investigate the characteristics of subclasses, the

enrichment of eleven oncogenic pathways was quantified using

GSVA (Figure 2D). C1 was highly enriched in HIPPO, WNT,

NOTCH and the cell cycle; C2 was highly expressed in MYC and

NRF2; C3 had high values of TGF-beta and angiogenesis; and C4
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had high levels of the cell cycle, TP53 and PI3K. The landscape

between the metabolism and oncogenesis pathways was visualized

with a heatmap (Figure S2A). The highest and lowest correlated

oncogenesis and metabolism pathways are shown in Figure 2E.
Correlation between GC subtypes and
tumor-infiltrating immune cells

The landscape of tumor-infiltrating immune cells is displayed

in Figure 3A, and a quantitative comparison of the immune cells
Frontiers in Oncology 05
was performed (Figure 3B). Except for neutrophils and effector

memory T cells (Tems), C1 has poor expression of immune cells,

indicating neutrophil-induced immune suppression (37). Subtype

C3 is characterized by a high abundance of T helper type 1 (Th1),

central memory T (Tcm), myeloid dendritic cells, cytotoxic

lymphocytes and B cells. Notably, the expression of endothelial

cells and fibroblasts was highly elevated in C3, indicating enhanced

endothelial-mesenchymal transition (EndMT) (38). Based on a

previously published fibroblast subtype signature, we further

investigated which of the subtypes contributed to the high

expression of fibroblasts in C3. Impressively, all fibroblast
A B

D E

C

FIGURE 1

Identification of subclasses with NMF. (A) The flow chart of the study. (B) Cophenetic coefficient of NMF for k= 2 to 6, k=4 is chosen as the optimal.
(C) Visualization of the clustering result in the training set with t-SNE. (D, E) Kaplan- Meier plot of OS of subclasses in training set and validation set.
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subtypes were highly proliferated in C3. Subclass C4 expressed

high Th2 cells and the lowest levels of neutrophils, endothelial cells

and fibroblasts. The heterogeneity of neutrophils in C1 and C4

could possibly be associated with the cancer progression of the

subclasses, which we will discuss in the Discussion section. In
Frontiers in Oncology 06
addition, we explored the level of infiltrating immune cells versus

stromal cells, and a significant difference was found among

subtypes (Figures 3D, E, Kruskal– Wallis, P<0.001). C3 had the

highest stromal score and immune score. Furthermore, we

investigated the expression levels of immune-related genes
A

B D

E
C

FIGURE 2

Association between metabolism signature and GC subclasses. (A) Heatmap of subclass-specific metabolism signatures. (B, C) Comparison
of glycolysis and OXPHOS level among C1-C4. (D) Enrichment of oncogenic pathway signatures among C1-C4 (*p < 0.05; **p < 0.01;
***p < 0.001). (E) Pearson correlation between oncogenic pathways and metabolism pathway.
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(Figure 3C). C1 has low expression of checkpoint inhibitors such as

LAG3, HAVCR2 and PDCD1, but it also expresses high levels of

cytotoxic-related GZMA, PRF1, and CD8A. C3 expresses the high

checkpoint inhibitors HAVCR2 and PDCD1. C4 is immune

stimulatory and cytotoxically active, since CXCL9, CXCL10,

IFNG, GZMA, GZMB and PRF1 were highly expressed. Finally,

the landscape between the metabolic pathways and immune cells

was visualized with a heatmap (Figure S2B).
Frontiers in Oncology 07
Correlation of GC subtypes with
clinical characteristics

We then investigated the associations between our

metabolism-associated classification and other classification

systems of GC. The comparison was performed separately for

TCGA and GSE15459 cohorts (Figures 4A, B and Tables S3, S4).

Significant correlations were found between our classification
A

B

D E

C

FIGURE 3

Correlation between GC subtypes and tumor infiltrated immune cells. (A) Heatmap of tumor infiltrated immune cells, T cell subtypes and
fibroblast subtypes. (B) Boxplot of the enrichment level of infiltrated immune cells (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Boxplot of the
expression level of immune related genes. (D, E) Boxplot of the stromal score and immune score.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1024985
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ye et al. 10.3389/fonc.2022.1024985
and TCGA subtype (Chi-square, P < 0.001), Lauren subtype

(Chi-square, P < 0.001), and WHO subtype (Chi-square, P <

0.001). On the other hand, pStage, age, and sex were not

correlated with subtype in either of the datasets. Notably, in

the GSE15459 set, C2 and C3 highly mirrored the metabolic and

invasive type by Lei’s classification. Such overlap is intriguing

because the transcriptomic dataset and the clustering method

were different. This finding suggested that metabolic transcripts

could be the most informative in classifying gastric tumors.
Correlation of GC subtypes with copy
number variation, somatic mutation,
tumor mutation burden and neoantigen

First, we examined the landscape of the copy number

variation of C1-C4 (Figure 5A). Then, the top mutated cancer
Frontiers in Oncology 08
driver gene was analyzed, led by TP53, ARID1A and so forth

(Figure 5B and Table S5). TP53 was found to be mutated in 83%

of C1 patients versus 56% in C2, 35% in C3 and 45% in C4.

However, in general, C4 was the most mutated subtype because

it had the highest mutation rate in many other genes (Figure 5C)

and showed significantly higher TMB and neoantigen levels than

the other subtypes (Kruskal–Wallis, P < 0.001, Figures 5D, E). In

terms of amplification and deletion, C1 was significantly higher,

while C3 was the lowest (Kruskal–Wallis, P < 0.001, Figures 5F,

G). We further explored how the expression of the cancer driver

genes relates to the prognostics (Figure S3). It was discovered

that DMD was overly expressed in C3, and the median-based

low DMD group had better overall survival in the training set

(log-rank, P = 0.03); however, the curve did not separate

significantly in the testing set. Additionally, the expression of

CDH1 in C3 was inhibited, which could be associated with a

high mutation rate of CDH1 in C3 (Figure S3).
A

B

FIGURE 4

Correlation between GC subtypes and clinical characteristics in (A) TCGA cohort. (B) GSE15459 cohort.
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GSEA and enrichment analysis of DEGs

To further characterize the biological processes, we

conducted GSEA based on the hallmark gene set (Figure 6A),

Gene Ontology set (Figure 6B), and KEGG set, and we also

performed GO and KEGG enrichment analyses (Figures S4,

S5A). It should be highlighted that C1 was enriched for the

downregulation of the interferon gamma response in the
Frontiers in Oncology 09
hallmark pathway and the KEGG pathways related to the

immune response and antigen presentation. For C2, GSEA did

not give any result, but C2 was enriched in several KEGG

metabolism pathways (Figure S5A). The results suggested that

C3 is enhanced for EMT and inhibited for glycolysis and cell

division/cell cycle. C4 was enhanced for viral protein interaction

(Figure S5A), which is associated with its higher EBV

patient percentage.
A

B

D E F G

C

FIGURE 5

Correlation of GC subtypes with copy number variation, somatic mutation, tumor mutation burden and neo-antigen. (A) Visualization of the
copy number variation, GISTIC plot for C1-C4. (B) oncoPrint for C1- C4. (C) Mutation rate of top mutated cancer driver gene in each subtype.
(D-G) Correlation between subclasses and TMB, neoantigen, deletion and amplification.
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Correlation of HER2 and metabolism-
related genes

HER2 overexpression is recognized as a frequent molecular

abnormality drives gastric cancer, and it has been solidly

correlated to poor disease outcomes (39, 40). Therefore, we

investigated the HER2 expression with metabolism. Possibly

owning to racial homogeneity, the expression of HER2 in cohort

GSE84426 and GSE84433 has MAD less than 0.2, in order to be
Frontiers in Oncology 10
consistent with the data processing criteria, we performed the

analyses of HER2 just with TCGA and GSE15459 datasets. First,

we explored the expression of HER2 in the metaclusters. it was

lower in C3 (Figure 7A). Next, we explored the correlation

between the expression of HER2 and the enrichment of the

metabolism pathways. We did not observe a pathway with

correlation of opposite directions with HER2 among

subgroups, however, the level of correlation is different across

metaclusters (Figure 7C). Furthermore, we investigated the
A

B

FIGURE 6

GSEA of DEGs. (A) GSEA of hallmark pathways for C1, C2 and C3; DEGs of C2 did not return with any pathways. (B) GSEA of GO pathways for
C1, C3; C2 and C4 were not enriched for any GO pathways.
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correlation between HER2 and 460 prognostic relevant

metabolism-related genes. Top 3 positively and negatively

correlated genes were plotted (Figure 7B) and the full results

were provided in Table S6.
Immunotherapy response prediction and
drug sensitivity analysis

Recently, the FDA approved two PD-1 inhibitors (nivolumab

and pembrolizumab) in combination with certain types of

chemotherapy for the treatment of patients with metastatic

gastric cancer/metastatic HER2-positive gastric cancer. Hence,

we used multiple methods to investigate whether specific

subtypes have prognostic value in predicting the response to

immunotherapy. First, we utilized the TIDE online tool to

predict patient response for each of the subtypes (33, 34). The

classification was correlated with the predicted response to

immunotherapy (Figure 8A, Fisher’s test, P < 0.001); a

considerable portion of patients from C2 and C4 were predicted

to have a response, while very few patients from C1 and C4 were

identified as responders. Second, based on an anti-PD-1

immunotherapy-treated metastatic gastric cancer cohort (35),

we investigated the response of the patients of a subtype to PD-

1 treatment. As a result, C4 manifested a high likelihood of

responding to PD-1 therapy, whereas the other subtypes did not
Frontiers in Oncology 11
(Figure 8B). In addition, we analyzed the sensitivity of subtypes of

drugs in the Genomics of Drug Sensitivity in Cancer (GDSC)

database. Among them, 270 drugs exhibited significantly different

responses between the subtypes, and the top 12 drugs according to

the p value (Table S7), indicating different responses, were plotted.

C3 had the highest sensitivity of these drugs (Figure 8C).
Subtype classifier and performance
validation

To create a classifier for clinical usage, it is required to

choose top informative subclass-associated signature genes.

After comprehensive consideration of accuracy and clinical

application potential, a 120-gene classifier was generated and

visualized (Figure 9A) based on the top 30 genes with the largest

log2FC value (nominal P value < 0.05 and adjusted P value <

0.05) in each subclass (Table S8). Then, the performance of the

classifier was examined with NTP in the training set and testing

set separately. The prediction exhibited good overall

concordance in the training set (kappa = 0.671, P < 0.001,

Figure 9B, top) and moderate agreement in the testing set

(kappa = 0.561, P < 0.001, Figure 9B, bottom). However, we

also noticed that the prediction concordance for C1 and C4 was

worse than that for C2 and C3, which we will discuss in the

Discussion section.
A B

C

FIGURE 7

Association of HER2 and metabolism-related genes. (A) Comparison of HER2 expression level among C1-C4. (B) Top positively and negatively
HER2-correlated metabolism-related prognostic genes (C) The correlation of HER2 with metabolism pathways in each metacluster.
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Development and validation of a
metabolism-related prognostic signature

Differential expression analysis followed by the Broruta

process identified a total of 362 DEG signatures (Table S9),

which were combined with the previously defined prognostic-

relevant metabolism genes (Figure 10A) to fit the lasso-Cox

model (Figure S6A). A 10-gene prognostic model was

constructed (Table S10). A significant difference in risk score

was observed among the subclasses (Figure 10B, Kruskal–Wallis,

P < 0.001). As we would expect according to the survival curves

of the subclasses, C1/C3 had a higher risk score than C4/C2.

Then, patients were classified into high- and low-risk groups

based on the median. The high-risk group exhibited a

significantly poorer prognosis in both the training set

(Figure 10C, log-rank, P < 0.001) and the testing set

(Figure 10D, log-rank, P < 0.001). The risk score was plotted

against the OS and the expression of gene signatures

(Figure 10E). APOD, CACNA1H, BST1, CDA and GSTP1 are

concentrated toward the high-risk end. APOD, CACNA1H,

BST1 and CDA each independently correlated with OS (Figure

S6B), suggesting the potential prognostic value of these genes.

The expression of the prognostic genes in metaclusters was
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explored, APOD and CACNA1H were highly expressed by C3

(Figure S6C). We observed an association between the

expression of fibroblasts and poor survival in C3 in a previous

analysis. We are interested in determining whether it is a C3-

specific feature or is global across all subclasses, and it was

revealed that a negative association between fibroblasts and

survival or risk score also existed in C1/C2/C4 (Figure 10F). In

the high-risk group, 45% of the patients were from C3, and C4

contributed over 50% of the low-risk patients (Figures 10G, H).

To further explore the prognostic value of the gene signatures,

we performed ROC analysis to compare AUCs with age, pStage

and metabolism-associated cluster (metacluster). The AUC of

the risk score was 70.5%, which was higher than that of pStage

(67.1%), metacluster (60.5%) or age (53.4%) (Figure 10I).
Discussion

Our results showed that GC could be classified into four

distinct metabolism-relevant subtypes, and the reproducibility of

this subtyping was validated in the testing set. Each subtype was

associated with different clinical characteristics, immune cell

fractions and gene mutation alterations. First, the results showed
A B

C

FIGURE 8

Drug sensitivity analysis. (A) Summarized result of TIDE analysis; the width of a cluster corresponds to the number of patients in that subtype;
number represent the percentage of predicted responders/non-responders for each subtype. (B) SubMap analysis based on immunotherapy
treated metastatic gastric cancer cohort, C4 shows high sensitivity. (C) Drug sensitivity based on Genomics of Drug Sensitivity in Cancer
database, the top 12 drugs with the most significant p value were illustrated.
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that C1 displayed a low level of immune infiltration, as indicated

by the low immune score and low expression of lymphocytes,

e.g., T cells, B cells, NK cells, and myeloid dendritic cells.

Downregulation of the interferon gamma response and

immune response was discovered via GSEA. Therefore, we

define C1 as an immune-suppressed subtype. Next, C2 was

characterized by multiple metabolism KEGG pathways (Figure

S4A), which is consistent with Lei et al.’s observation; thus, we

continued to term it metabolic type. For C3, endothelial/

epithelial-mesenchymal transition is strongly evident by high

levels of endothelial cells, fibroblasts, low CDH1 expression, and

the EMT hallmark pathway, so we term it the mesenchymal type

or immune exhausted type from an immune infiltration point of

view. Finally, C4 is characterized by high levels of neoantigen,

TMB, cancer driver gene mutation and MSI; therefore, we term

it the hypermutated type.

There have been numerous studies about gastric cancer

classification, and our study pursued this topic from a

metabolism angle. The results manifested a clear link to Lei’s

research. Superficially, C1 and C4 jointly correspond to Lei’s

proliferative subtype, indicating that in broad transcriptomic

terms, C1 and C4 share molecular similarities. This may help to

explain why the classifier is less accurate in distinguishing these

two subtypes. For example, 26 out of 127 C4 patients were
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misclassified as C1 in the testing set, and 19 out of 69 patients in

C1 were mislocated as C4 in the testing set. However, we argue

that C1 and C4 are heterogeneous. First, subtype C1 is highly

enriched in the WNT signaling pathway but poorly enriched in

the NR2F pathway, which is the opposite of the C4 subtype,

implying they have different oncogenesis mechanisms. In

addition, C1 shows signs of a cold tumor and is unlikely to

respond to immunotherapy, whereas C4 is immune active. It

could be hypothesized that the difference in metabolism

signatures observed between C1 and C4 reflects the discrepant

behavior of infiltrated immune cells, which could be further

studied in the future. Moreover, we hypothesize that the immune

suppression in C1 is driven by the abundant infiltrated

neutrophils. This phenomenon has been reported by several

studies by stimulating the JAK-signal transducer and activator of

STAT3 signaling pathways. Tumor-derived granulocyte-

macrophage colony-stimulating factor efficiently activated

neutrophils and triggered PD-L1 expression on neutrophils,

which further suppressed normal T cell immunity and was

associated with disease progression in GC (37, 41).

Subtype C4 has exhibited highly mutative nature out of the

classification, as it expresses significantly high TMB and

neoantigens and consists of a higher proportion of MSI-high

patients. Somatic mutations are capable of encoding alien
A B

FIGURE 9

Performance and validation of the classifier. (A) Heatmap of the expression of the subclass classifier, 30 top up-regulated genes per subtype
were illustrated. (B) Performance of the classifier (top, training set; bottom, validation set). Vertical axis shows the classification resulted from
NMF; horizontal axis shows the classification predicted by NTP.
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FIGURE 10

Development of a metabolism-related prognostic signature. (A) Venn diagram of DEGs and prognostic-relevant metabolism-associated genes.
(B) Correlation between risk score and subclasses. (C, D) Kaplan-Meier plot of the patients in training set and GSE84433 data set. (E) Correlation
between signature risk score and patients’ survival and risk signatures’ expression. Upper panel shows the distribution of the risk score; middle
panel shows the patients’ survival status and time; bottom shows the heatmap of the risk signatures’ expression profiles. The black dotted line
represents the median risk score cutoff dividing patients into low-risk and high-risk groups. (F) Correlation between signature risk score and
patients’ survival and risk signatures’ expression in each subclass. Bottom panel heatmap of the fibroblasts’ expression profiles. (G) Distribution
of the subclasses in high/low risk score groups. (H) ROC analysis of the risk score, pStage, age and metacluster. (I) Sankey plot of the
relationship between subclasses and the risk group, and the relationship between risk group and OS.
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immunogenic antigens or neoantigens; thus, cancers with a high

number of somatic mutations as a result of mismatch repair

deficiencies might be vulnerable to immune checkpoint

inhibition. Several clinical trials have demonstrated that MSI-

high status is associated with prolonged progression-free

survival (42–44), including GC (45, 46). However, according

to TCGA classification, MSI-H only consists of 22% of gastric

cancers (14), and a more common biomarker for ICI treatment

in GC is needed. Tumor mutation burden has been shown to

have a predictive effect on prognosis in multiple cancer types for

immunotherapy (47–49), and a recent clinical trial of

toripalimab confirmed the association between TMB-high and

OS in GC (50). Except for these genomic alteration

characteristics, C4 contains the majority of EBV-infected

patients; in a recent study, six out of six EBV-positive patients

treated with pembrolizumab exhibited remarkable responses

(35). Taken together, these points suggest that C4 is inclusive

of multiple confirmed predictive factors, e.g., TMB, MSI,

neoantigen and EBV. Thus, we suggest this classification can

be used as a predictive tool for immunotherapy.

Our study showed that a high level offibroblasts is associated

with poor prognostics between subclasses and within subclasses.

Hence, we hypothesize that cancer-associated fibroblasts (CAFs)

play a crucial role in modulating the TME in GC. First, it has

been reported that in GC, CAFs produce fibroblast activation

protein alpha (FAP), which promotes cancer progression via

EMT through the WNT/b-catenin signaling pathway (51). This

mechanism is confirmed by our result that C3 exhibited an

enhanced EMT process and high enrichment of the WNT

pathway. Second, echoed by other studies, high expression of

CAFs is l inked to an immune suppress ive tumor

microenvironment, which can be further linked to poor

survival outcomes (52). This is consistent with our observation

in C3, as well as in the other three subtypes; higher fibroblast

levels worsened OS. In addition, our results suggest that the

TGFb-dependent signal ing pathway is involved in

immunosuppression of the C3 subtype, as evidenced by high

enrichment in the TGF-pathway. TGF changes the function of

CD8+ T cells by suppressing the production of critical genes

involved in their cytotoxic action. By secreting TGF and IL6,

-SMA+ FAP+ CAFs in head and neck cancer suppress the

growth of CD8+ T cells and increase the recruitment of CD4+

CD25+ T cells (53). Furthermore, it was recently discovered that

CAFs from breast, ovarian, lung, pancreas and colon cancer

express PD-L1 and/or PD-L250 (54–57) particularly in the FAP-

high CAF subset (54, 55). These ligands bind to the PD-1

receptor expressed by T cells and inhibit T cell activity (52, 54,

57, 58). Therefore, anti-CAF therapy can be considered as an

addition to current treatment for GC, which requires

more research.
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In summary, we identified the prognostic value of metabolic-

gene-associated GC subclasses and proposed a 120-gene

classifier for immune-suppressed (C1), metabolic (C2),

mesenchymal/immune exhausted (C3) and hypermutated (C4)

subtypes. The metabolic and hypermutated subtypes have better

overall survival, and C4 is likely to be sensitive to anti-PD-1

immunotherapy. The metabolism-associated classification can

be used to stratify patients and identify those who will benefit

more from immunotherapy. In addition, a risk score based on a

10-gene signature was developed for GC patient survival time

prediction. We further identified the immune landscape,

signaling pathways and clinical characteristics for each

subclass, deepened our understanding of the heterogeneity of

GC, and provided information for the development of new

strategies for GC treatment.
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