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Background: The incidence and mortality of bladder cancer (BCa) are

increasing, while the existing diagnostic methods have limitations. Therefore,

for early detection and response prediction, it is crucial to improve the

prognosis and treatment strategies. However, with existing diagnostic

methods, detecting BCa in the early stage is challenging. Hence, novel

biomarkers are urgently needed to improve early diagnosis and treatment

efficiency.

Methods: The gene expression profile and gene methylation profile dataset

were downloaded from the Gene Expression Omnibus (GEO) database.

Differentially expressed genes (DEGs), differentially methylated genes (DMGs),

and methylation-regulated differentially expressed genes (MeDEGs) were

gradually identified. A cancer genome map was obtained using online gene

expression profile interaction analysis, and survival implications were produced

using Kaplan-Meier survival analysis. GSEA was employed to predict the marker

pathways where DEGs were significantly involved. The study used bisulfite PCR

amplification combined with bisulfite amplicon sequencing (BSAS) to screen

for methylation analysis of multiple candidate regions of the adenylate cyclase

2 (ADCY2) based on the sequence design of specific gene regions and

CpG islands.

Results: In this study, DEGs and DMGs with significantly up- or down-regulated

expression were selected. The intersection method was used to screen the

MeDEGs. The interaction network group in STRING was then visualized using
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Cytoscape, and the PPI network was constructed to identify the key genes. The

key genes were then analyzed using functional enrichment. To compare the

relationship between key genes and the prognosis of BCa patients, we further

investigated ADCY2 and found that ADCY2 can be a potential clinical biomarker

in BCa prognosis and immunotherapy response prediction. In human BCa 5637

and MGH1 cells, we developed and verified the effectiveness of ADCY2 primers

using BSAS technology. The findings revealed that the expression of ADCY2 is

highly regulated by the methylation of the promoter regions.

Conclusion: This study revealed that increased expression of ADCY2 was

significantly correlated with increased tumor heterogeneity, predicting worse

survival and immunotherapy response in BCa patients.
KEYWORDS

ADCY2, bladder cancer, tumor microenvironment, DNA methylation, prognosis
Introduction
Bladder cancer (BCa) is the most common malignant tumor

of the urinary system, and BCa ranks 13th in the incidence

spectrum of malignant tumors in China (1), and holds first place

in the incidence of urogenital tumors. BCa ranks 9th in

incidence and 13th in mortality among all malignant tumors

worldwide (2). The etiology of BCa is complex and can occur at

any age, and its incidence increases with age. It is a type of

malignant tumor that is affected by internal and external

influences, with smoking and occupational exposure being the

two most obvious pathogenic factors. Current treatments

for aggressive BCa include surgery, radiotherapy, and

chemotherapy. Chemotherapy is still the primary treatment

option in the late stage which includes gemcitabine,

cisplatin, carboplatin, paclitaxel, and others (3). However,

immunotherapy, targeted therapy, and antibody-coupled drugs

are gradually used for the treatment (4, 5), which helps improve

the survival rate of patients (6). The most recent clinical studies

comprehensively cover all stages of BCa, including the use of

new generations of antibody-coupled drugs, targeted drugs,

oncolytic viruses, immunomab, dual antibodies, and others (7,

8). The diagnosis and treatment model of early diagnosis, refined

surgery, comprehensive multidisciplinary process, and

internationalization of clinical translational research were

proposed, which significantly improved the diagnosis and

treatment of BCa in China (4).

Epigenetics refers to changes in the expression of genes;

though environmental factors can cause an organism’s genes to

be expressed differently, the genes will not be changed (9).

Epigenetics processes include DNA methylation (10), genomic

imprinting, maternal effects, gene silencing, dormant transposon
02
activation, and RNA editing. Among these, DNA methylation

refers to the covalent binding of a methyl group to the 5’carbon

site of the CpG dinucleotide in the genome under the action of

DNA methylating transferase (11, 12). It can control gene

expression by causing changes in chromatin structure, DNA

conformation, DNA stability, and interaction of DNA with

proteins (13). DNA methylation is not a permanent change; it

is reversible. Therefore, DNA methylation and demethylation

modification have a wide range of applications and is associated

with genetic imprinting and cancer (14, 15). Aberrant

methylation can even turn normal stem cells into cancer stem

cells, a sign of cancer development and progression. The

researchers found that cancer cell genomes are characterized

by methylation or alternative splicing events by examining

methylation patterns on DNA in healthy human organs and

malignant tissues (16, 17). For example, the obesity-associated

protein (FTO) has been found to be overexpressed in BCa, which

stimulates cancer cell metabolism and subsequently causes

tumorigenesis and progression (18).

Currently, a machine learning model for predicting

immunotherapy response based on tumor DNA methylation

characteristics has been developed exploratively (19, 20).

Methylation and genomic features are anticipated to develop

into a potential research direction for tumor immune

microenvironment and tumor immunotherapy marker

screening using the selected methylation feature set to predict

the response of pan-cancer species to immunotherapy (21–23).

However, the limitation of tumor immunotherapy is that some

cancer patients may not respond to such drugs and are prone to

severe immune-related adverse events (irAEs), which can lead to

various local and systemic autoimmunity. DNA methylation is

another biomarker that is expected to be used as a predictor of

immunotherapy efficacy (24, 25). In addition to its role in
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tumorigenesis by regulating gene expression and promoting

somatic and structural mutations, DNA methylation can assess

the status of the tumor immune microenvironment. Previous

studies have shown that DNA methylation characteristics can

effectively predict the proportion of different types of immune

cells in the tumor microenvironment, and the methylation level

is related to the efficacy of immunotherapy (26). Many clinical

trials of BCa immunotherapy are underway, but no efficacy has

been positive to date. Studies have shown that CDH7 and

LUZP1 are associated with the clinical characteristics of BCa,

but more biomarkers for predictive immunotherapy and new

effective therapeutic targets are still needed (27).

The current diagnosis and treatment technology has not

kept up with the level of research due to the high incidence and

relapse of BCa, and there are currently no reliable biomarkers for

immunotherapy. Therefore, we are searching for reliable

markers for early diagnosis and treatment of BCa patients to

improve the survival rate and quality of life.
Methods

Acquisition and standardization of raw
microarray dataset

We downloaded the gene expression profiling dataset

created by high-throughput sequencing (GSE37815) and the

microarray-based gene methylation profiling dataset

(GSE37817) from the Gene Expression Omnibus database

(GEO, https://www.ncbi.nlm.nih.gov/geo/). In total, five

normal bladder mucosae and 18 primary BCa samples were

included in GSE37815 (platform: GPL6102 Illumina human-6

v2.0 expression beadchip). As for the DNAmethylation datasets,

GSE37817 included six normal bladder mucosae and 18 primary

BCa samples based on the GPL8490 platform (Illumina

HumanMethylation27 BeadChip).
Identification of methylation-regulated
differentially expressed genes

To identify the potential prognostic hub genes of the MeDEGs,

we performed GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) to

compare two or more groups of samples in a GEO Series to screen

genes that are differentially expressed across specific experimental

conditions. In the present study, GEO2R was used to identify the

differentially expressed genes (DEGs) and differentially methylated

genes (DMGs). |t| >2 and P <0.05 were considered statistically

significant. Furthermore, hypomethylation-high expression genes

were obtained after the overlap of upregulated and hypomethylated

genes, and hypermethylation-low expression genes were obtained

after the overlap of downregulated and hypermethylated genes. The

hypomethylation-high expression genes and hypermethylation-low
Frontiers in Oncology 03
expression genes were then identified as methylation-regulated

differentially expressed genes (MeDEGs).
Functional enrichment analysis

To obtain the functional annotations of hub gens, we utilized

the Database for Annotation, Visualization, and Integrated

Discovery (DAVID, https://david.ncifcrf.gov/) is a straightforward

web tool that can provide integrative and systematic annotation for

users to unravel the biological interactions of multiple genes. It was

utilized to perform functional and pathway enrichment analyses.

Gene ontology (GO) analysis, including the biological process (BP),

cellular component (CC), molecular function (MF), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis, were conducted for the selected MeDEGs by DAVID (28,

29). P <0.05 was considered statistically significant.
PPI network construction and
identification of hub genes

In this study, STRING (http://string-db.org; version 11.0) was

adopted to describe protein co-regulation of hypomethylation-

high expression genes and hypermethylation-low expression

genes, respectively, and measure functional interactions among

nodes (30). The interaction specificity score above 0.4 (the default

threshold in the STRING database) was considered statistically

significant. Cytoscape (version 3.6.0) was used to visualize

interaction networks obtained from STRING (31). MCODE

(version 1.4.2) of Cytoscape is a plug-in to cluster a given

network to identify densely connected regions based on

topology (32). It was utilized to find the most related module

network with selection threshold as follows: MCODE scores >5,

degree cutoff = 2, node score cut-off = 0.2, Max depth = 100 and k-

score = 2.
Survival and hierarchical analysis

Gene Expression Profiling Interactive Analysis (GEPIA,

http://gepia.cancer-pku.cn/) is an online tool that can provide

customizable functionalities based on data from The Cancer

Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/) and

the Genotype-Tissue Expression project (GTEx; https://www.

gtexportal.org/home/index.html) (33). GEPIA performs survival

analysis based on gene expression levels, using a log-rank test for

the hypothesis evaluation. The horizontal axis (x-axis)

represented the time in days, and the vertical axis (y-axis)

showed the probability of surviving or the proportion of

people surviving. The cut-off value was defined via median

value or using “survminer” R package. The lines presented the

survival curves of the two groups.
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Data processing of gene set
enrichment analysis

Based on data from the TCGA database, the GSEA tool

(version 2.10.1 package) was used to predict associated up- and

down-regulated genes and their significantly involved hallmarks

pathways (34). The student’s t-test statistical score was

implemented in consistent pathways, and the mean of the DEGs

was calculated for each analysis. A permutation test 1000 times was

utilized to recognize the significantly involved pathways. The

adjusted P using Benjamini and Hochberg (BH) and false

discovery rate (FDR) method by default were used to correct for

the occurrence of false positive results. Significantly related genes

were defined with an adjusted P <0.01 and FDR <0.25.
Bisulfite PCR amplification and bisulfite
amplicon sequencing technology

BSAS methylation next-generation sequencing of BCa cell

lines was conducted by GeneChem Biotechnology Co., Ltd.,

Shanghai (GSGC0257632). Microsoft Office Excel software and

Methylation Plotter software were used to examine the results.

The Kruskal-Wallis test is a nonparametric test of three or more

groups of data and was used when the ANOVA test could not be
Frontiers in Oncology 04
utilized. Bisulfite PCR amplification was performed using the

High Pure PCR Template Preparation Kit (Roche) with forward

and reverse primers provided. DNA methylation libraries were

developed using the VAHTS Turbo DNA Library Prep Kit for

Illumina® (ND102-0102).
Results

We selected DEGs and DMGs based on the transcriptome

dataset and methylation dataset. The up-or down-regulated genes

were selected to find the intersection, and the methylation-related

differential genes were eliminated. We identified the key gene

ADCY2 through a series of mRNA and protein level analyses of

these genes, including functional enrichment analysis and protein

interaction network. Further, the survival, immune infiltration,

and CpG island location analyses were carried out around ADCY2

in the schematic diagram (Figure 1).
Identification of MeDEGs in BLCA

GEO2R was adopted to identify the DEGs and DMGs,

respectively. For DEGs of gene expression microarray, 2425

overlapping up-regulated genes and 2563 overlapping down-
FIGURE 1

Schematic diagram of the study.
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regulated genes were screened (Figures 2A, B). A total of 1114

overlapping hypermethylation genes and 10,024 overlapping

hypomethylation genes were discovered for DMGs of gene

methylation microarray. The study identified 1162

hypomethylated, upregulated genes and 203 hypermethylated,

downregulated genes after integrating the DEGs and DMGs

(Figures 2C, D).
Frontiers in Oncology 05
PPI network establishment and
hub genes

The PPI network of hypomethylation-upregulated genes and

hypermethylation-downregulated genes was visualized using

Cytoscape (version 3.6.0) [28]. A Cytoscape plug-in called

MCODE (version 1.4.2) clusters a given network to select densely
B

C D

E F

A

FIGURE 2

Identification of methylation-regulated differentially expressed genes (MeDEGs). (A, B) Mean difference plot of significantly differentially
expressed genes (DEGs) in two independent validation sets. Red represents up-regulated genes, and blue represent down-regulated genes.
(C, D) The up-regulated and down-regulated genes in the two validation sets were selected as intersections, respectively. (E, F) Constructed
protein-protein interaction networks based on common genes.
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connected regions based on topology [29]. The results are presented

in Figures 2E, F. As a result, in the hypomethylation-upregulated

genes module, CXCL10, CXCL16, CX3CR1, SSTR1, C3AR1,

CNR1, ADCY2, BDKRB2, POMC, GPR55, GNG12, GNG11,

GNGT2, CCL4, C5AR1, GNB4, CXCL13, GNG7, GPR18, APP,

FPR1, GPR17, and GPR18 were confirmed as hub genes. While in

the hypermethylation-downregulated genes module, PTGDR,

ADCY9, OXER1, GALR1, ADCYAP1, ADCY8, ADCY7, VIPR2,

GNG10, GNB4, CCR10, GNG4, and CXCR3 were confirmed as

hub genes.
Functional enrichment analysis
of MeDEGs

For hypomethylation-upregulated genes, changes in

biological processes were mostly enriched in angiogenesis,

signal transduction, aging, and immune response. The

hypermethylation-downregulated genes were primarily enriched

in extracellular matrix organization, signal transduction, cell

adhesion, cAMP-mediated signaling, and cellular response to

glucagon stimulus. Moreover, the study found that the

hypomethylated, upregulated genes were associated with
Frontiers in Oncology 06
extracellular exosome, plasma membrane, and extracellular

region. Whereas the hypermethylated, downregulated genes

were associated with the proteinaceous extracellular matrix,

plasma membrane, and extracellular matrix in the cellular

component group. For hypomethylated, upregulated genes,

changes in molecular function were primarily enriched in

protein binding, heparin-binding, actin filament binding, and

extracellular matrix structural constituent. On the other hand,

for hypermethylated, downregulated genes, changes were

significantly enriched in collagen binding, phosphorus-oxygen

lyase activity, and extracellular matrix binding. Furthermore,

pathway enrichment was performed using KEGG. The study

revealed that hypomethylated genes predominantly participated

in morphine addiction, retrograde endocannabinoid signaling,

and cholinergic synapse. For hypermethylated genes, the most

significantly enriched pathways involved focal adhesion, pathways

in cancer, and the PI3K-Akt signaling pathway.
Survival analysis

Significant survival outcomes of hub genes in the PPI

network are displayed in Figure 3. According to the expression
FIGURE 3

The KM curve indicates the overall survival of the selected differential genes.
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of each gene, overall survival for SKCM patients was acquired.

The study found that high mRNA expression of ADCY2 (P =

0.047) was significantly associated with worse prognosis for

SKCM as well as APP (P = 0.022), BDKRB2 (P = 0.029), FPR1

(P = 0.025), GNB4 (P = 0.013), GNG11 (P = 0.011), ADCY9 (P =

0.036), and ADCYAP1 (P = 0.014). Significant genes and

pathways were obtained using GSEA.
Differential expressed genes

After screening and analysis, this study found that ADCY2

was significantly associated with prognosis. A total of 34 cancers

were then selected to observe the difference in ADCY2

expression between tumor and normal tissues. In BCa, the

expression level in tumor tissues was significantly lower than

that in normal tissues (n = 435, Figure 4A). Hence, a separate

survival analysis of BCa patients and male and female subgroups

was performed. The findings revealed that the high expression of

ADCY2 predicted a worse prognosis, and it was significant in
Frontiers in Oncology 07
female patients, which might be due to a higher incidence of BCa

in males than in females (Figures 4B, C).

Simultaneously, the significantly down-regulated genes were

listed, including MFAP4, LMOD1, CNN1, COMP, SFRP4, and

so on (Figure 5A). The correlation trend of these genes in

populations with high and low ADCY2 expression was

observed (Figure 5B).
Functional enrichment analysis

In the KEGG pathways, ADCY2 was found to be primarily

enriched with protein absorption, PI3K-Akt signaling pathway,

and focal adhesion pathway. An enrichment of ADCY2 was also

observed in the BCa pathway, which showed that ADCY2 is

involved in the development of BCa. Meanwhile, in GO term,

ADCY2 was mainly enriched in extracellular structure

organization and extracel lular matrix organization

pathways (Figure 5C).
B C

A

FIGURE 4

Survival outcomes of ADCY2 expression in cancers and novel role in BCa. (A) Differential expression of ADCY2 in tumor and normal tissues in
pan-cancer. (B) Overall survival curve of BCa patients. (C) Survival curves of male and female in high and low expression groups. *p<0.05;
**p<0.01; ****p<0.0001.
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Immune correlation analysis of ADYC2
expression in BCa

Several immune-related cytokines were screened, mainly

from five families, for correlation analysis with ADCY2 in

pan-cancer. ADCY2 was found to be associated with most

cytokines and presented a tumor immune microenvironment

dominated by MHC and chemokine in most cancer types

(Figure 6A). Notably, an immune infiltration analysis was

performed in BCa using EPIC and CIBERSORT algorithms. T

cell CD4+ memory resting, B cell naive, B cell memory, and

macrophage M2 were significantly clustered in the ADCY2high

group, while uncharacterized cells were significantly increased in

the ADCY2low group (Figures 6B, C).
Frontiers in Oncology 08
Next, the study screened for immune checkpoint molecules.

The association between ADCY2 and some immune checkpoints

in pan-cancer was first explored, including those that promote

immunotherapy and inhibit the efficacy of immunotherapy

(Figure 7A). The immune molecules, such as HAVCR2,

PDCD1LG2, and TIGIT, which were significantly clustered in

the high and low ADCY2 groups of BCa, were then studied

independently (Figure 7B). However, the difference between the

two groups was not significant. Finally, TIDE analysis was

performed in the two BCa sample groups. The high score of

the ADCY2high group suggested a high expression of

ADCY2 associated with tumor heterogeneity, indicating a

worse immunotherapy effect and prognosis for BCa

patients (Figure 7C).
B

C

A

FIGURE 5

Functional enrichment annotations of ADCY2 expression in BCa. (A) A volcano plot of differentially expressed genes (DEGs), with down-
regulated genes in blue and up-regulated genes in red. (B) Heat map of ADCY2 and DEGs. The low ADCY2 expression groups in red (at the top)
and the high ADCY2 expression groups in green. Red and blue represent expression trends corresponding to up-regulated and down-regulated
genes. (C) KEGG pathway and GO term functional enrichment analysis.
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Identification of promoter regions of
ADCY2 methylation in BCa cells

In human BCa 5637 and MGH1 cells, the study developed

and verified the effectiveness of ADCY2 primers using BSAS

technology. Figure 8A displays the three pairs of primers for

ADCY2 methylation, where the CG site of the amplified

fragment is indicated in bold and red. The schematic diagram

of the average methylation information of all sites in the 5637

and MGH1 cells was developed using the Methylation plotter

(Figure 8B). Besides, the methylation levels of all sites in the
Frontiers in Oncology 09
grouped samples are shown in boxplots and dendrograms

(Figures 8C–E). The findings revealed that the expression of

ADCY2 is highly regulated by the methylation of the

promoter regions.
Discussion

BCa is a common malignant tumor of the urinary system.

The incidence of BCa ranks 9th among all malignant tumors and
B

C

A

FIGURE 6

Implications of ADCY2 expression in immune regulators and tumor-infiltrated lymphocytes of cancers. (A) Correlation between ADCY2 and
several immune-related cytokines in pan-cancer. (B, C) Immune infiltration difference analysis between high and low ADCY2 groups with EPIC
and CIBERSORT algorithms. *p<0.05; **p<0.01; ***p<0.001.
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7th among male malignant tumors worldwide (6). Currently,

surgery is the primary treatment method, assisted by

chemotherapy and radiotherapy (5). However, many patients

disqualify for radical cystectomy or refuse the therapy. Cancer

immunotherapy, which harnesses the immune system of

individuals to fight cancer, has revolutionized cancer treatment

strategies. However, the majority of patients show no clinical

response, and the mechanisms of resistance remain unclear (35–

37). Therefore, there is an urgent need for novel

immunotherapies and therapeutic targets.

In this study, the DEGs and DMGs from the transcriptomics

dataset and methylation dataset were respectively studied. The

up-regulated or down-regulated DEGs and DMGs were selected.

The methylation-related differential gene sets were screened by

the method of intersection using the GEO2R website to identify

the DEGs as well as the DMGs. Then Cytoscape (version 3.6.0)

was used to visualize the interaction networks group from

STRING, based on which a PPI network was created, and the

key genes were obtained. The functional enrichment analysis of

key genes was carried out. For hypomethylation-upregulated

genes, changes in biological processes were mainly enriched in

angiogenesis, signal transduction, aging, and immune response.
Frontiers in Oncology 10
The hypermethylation-downregulated genes were primarily

enriched in extracellular matrix organization, signal

transduction, cell adhesion, cAMP-mediated signaling, and

cellular response to glucagon stimulus. To compare the

relationship between key genes and the prognosis of BCa

patients, we further studied ADCY2, which can significantly

predict the prognosis.

After a pan-cancer comparative study, immunoinfiltration

analysis, real-world cohort validation, and CpG island

annotations, we found that patients with high ADCY2

expression had significantly shorter overall survival and less

effective immunotherapy. However, in the pan-cancer analysis,

we found that the expression level of ADCY2 in tumor tissues

was lower than that in normal tissues, which may be due to

hypermethylation. Due to the significant immune escape of BCa

cells, many immunotherapies are ineffective for all patients and

are accompanied by immune rejection and side effects (38).

Currently, atezolizumab (Tecentriq), pembrolizumab

(Keytruda), nivolumab (Opdivo) (39), and others are approved

for the treatment of locally progressive and metastatic BCa that

has failed platinum-based chemotherapy (40). Both

atezolizumab and pembrolizumab are also approved by the
B

C

A

FIGURE 7

Relationship between ADCY2 expression and immune checkpoints in cancers and its implications in immunogenicity and tumor heterogeneity
of BCa. (A) Molecular correlation analysis of ADCY2 and immune checkpoint in pan-cancer. (B) Heat map association between ADCY2 high and
low groups and critical immune checkpoints in BCa. (C) TIDE scores in two groups of BCa samples. *p<0.05; **p<0.01; ***p<0.001;
****p<0.0001.
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FDA for first-line treatment of patients who are not eligible for

platinum-based chemotherapy (41). However, some patients do

not respond to these drugs, and only 20 percent benefit from

them (42).

This study found that the ADCY2 gene can be used as a

biological indicator for the diagnosis and immunotherapy of

BCa patients. Moreover, increased ADCY2 expression is

associated with worse prognosis, higher tumor heterogeneity,

and worse immunotherapy effect. Though ADCY2 has been

found to be a novel lipid prognostic feature in head and neck

squamous cell carcinoma (43), it has not been studied in BCa.

The relevant conclusions of this study innovatively discovered

the differential expression of ADCY2 in BCa and proved that the

expression of ADCY2 is highly regulated by the methylation of

the promoter regions and could be used as a reliable biomarker

in the diagnosis and treatment of BCa patients.
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FIGURE 8

Identification of promoter regions of ADCY2 methylation in BCa cells using BSAS technology. (A) The effectiveness of ADCY2 primers was
developed and verified in human BCa 5637 and MGH1 cells using BSAS technology. The three pairs of primers for ADCY2 methylation were
shown, and the CG site of the amplified fragment was indicated in bold and red. (B) The schematic diagram of the average methylation
information of all sites in the 5637 and MGH1 cells. (C–E) The methylation levels of all sites in the grouped samples were shown in boxplots and
dendrograms.
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