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Background: The heterogeneity of tumor tissue is one of the reasons for the

poor effect of tumor treatment, which is mainly affected by the tumor immune

microenvironment and metabolic reprogramming. But more research is

needed to find out how the tumor microenvironment (TME) and metabolic

features of colon adenocarcinoma (COAD) are related.

Methods:Weobtained the transcriptomic and clinical data information of COAD

patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases. Consensus clustering analysis was used to identify different

molecular subtypes, identify differentially expressed genes (DEGs) associated

with immune-and metabolism-related genes (IMRGs) prognosis. Univariate and

multivariable Cox regression analysis and Lasso regression analysis were applied

to construct the prognostic models based on the IMRG risk score. The

correlations between risk scores and TME, immune cell infiltration, and

immune checkpoint genes were investigated. Lastly, potential appropriate

drugs related to the risk score were screened by drug sensitivity analysis.

Results: By consensus clustering analysis, we identified two distinct molecular

subtypes. It was also found that the multilayered IMRG subtypes were

associated with the patient’s clinicopathological characteristics, prognosis,

and TME cell infiltration characteristics. Meanwhile, a prognostic model

based on the risk score of IMRGs was constructed and its predictive power

was verified internally and externally. Clinicopathological analysis and

nomogram give it better clinical guidance. The IMRG risk score plays a key

role in immune microenvironment infiltration. Patients in the high-risk groups

of microsatellite instability (MSI) and tumor mutational burden (TMB) were

found to, although with poor prognosis, actively respond to immunotherapy.

Furthermore, IMRG risk scores were significantly associated with immune

checkpoint gene expression. The potential drug sensitivity study helps come

up with and choose a chemotherapy treatment plan.
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Conclusion:Our comprehensive analysis of IMRG signatures revealed a broad

range of regulatory mechanisms affect ing the tumor immune

microenvironment (TIME), immune landscape, clinicopathological features,

and prognosis. And to explore the potential drugs for immunotherapy. It will

help to better understand the molecular mechanisms of COAD and provide

new directions for disease treatment.
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Introduction

Colon adenocarcinoma (COAD) is a leading cause of

cancer-related mortality and one of the most frequent cancers

worldwide. New treatment strategies are desperately needed to

address the rising global patient population. Immunotherapy

has become a pivotal role in cancer treatment programs,

especially the immune checkpoint inhibitor (ICI) therapy,

which has become the most promising treatment method.

Mismatch repair deficiency (dMMR) and high microsatellite

instability (MSI-H) tumors are now treated first with ICI therapy

for COAD. However, there is no efficacy in COAD with

mismatch repair proficiency (pMMR) and low microsatellite

instability (MSI-L) or microsatellite stability (MSS) (1).

Traditional chemotherapy is still the gold standard for this

patient subset. It’s possible that the heterogeneity of solid

tumors and their surrounding microenvironment are to blame

for this finding (2).

Tumor metabolism is a well-recognized feature of cancer (3).

For cancer cells to rapidly proliferate, metabolic reprogramming

is crucial because it provides the cells with the energy they need

to multiply. Meanwhile, the tumor immune microenvironment

(TIME) is well-nourished, allowing cancer cells to thrive (4).

Thus, tumor cells provide a good metabolic environment for

themselves. When tumor cells secrete metabolites, they can have

an effect on immune cells and alter the TIME. Meanwhile, tumor

cells and immune cells competing for energy demands can block

T cell activation and proliferation. Tumor cells express immune

checkpoint proteins PD-1 and CTLA-4, which inhibit T cell

metabolism (5). Research shows the specific metabolism of

immune cells can also lead to tumor cells developing immune

escape (6). Eventually, the immune escape of tumor cells will

affect the clinical treatment effect. This implies the immune

system is the umbrella of the body, while immune escape is a safe

house for tumors. Because of how complicated the relationship is

between metabolism and immunity, it is especially important to

construct and validate prognostic models that combine immune

and metabolic features of COAD patients to help with
02
immunotherapy. Currently, prognostic models have been

constructed for single immune or single metabolic related

genes. The prognostic model constructed with 11 metabolism-

related genes can be used to predict treatment response and to

define the biomarkers of metabolic therapy in COAD patients

(7). Furthermore, the development of a prognostic model based

on 18 immune-related genes could indicate immune cell

infiltration and demonstrate their critical role in TIME (8).

Some studies consider immune score and consensus molecular

subtype classification as promising biomarkers for predicting the

efficacy of selected COAD treatments (9). For immunotherapy

in COAD, more biomarkers will also need to be mined to

understand the molecular mechanisms controlling immune-

and metabolism-related genes (IMRGs) and to predict their

relationship to therapy (10). These will provide new

perspectives and more personalized treatment options for

targeted oncology options.

In this study, we combined multiple datasets to develop and

validate a novel prognostic model based on IMRGs. Meanwhile,

we comprehensively explored the association of this feature to

the immune landscape, immunotherapy response, and drug

sensitivity of COAD patients. Our results demonstrate that our

constructed features based on IMRGs can be used as potential

biomarkers to predict the clinical outcome and immunotherapy

efficacy in COAD patients.
Marerials and methods

Data collection and preprocessing

The Cancer Genome Atlas database (https://portal.gdc.cancer.

gov/, TCGA) was used to find the transcriptomic data (fragments

per kilobase million, FPKM), clinical data, and somatic mutation

data of COAD patients. A total of 521 TCGA-COAD samples were

obtained, including 41 normal samples and 480 COAD tumor

samples. Preprocessing converted the FPKM values of the TCGA-

COAD to the transcripts per million (TPM). The Gene Expression
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Omnibus database (https://www.ncbi.nlm.nih.gov/geo/, GEO)

obtained samples containing survival outcome information, and

the GSE40967 cohort (11) and GSE17536 cohort (12) contained

585 samples and 177 samples, respectively. Gene expression data

from the three datasets were merged and batch corrected by the

“ComBat” algorithm in the R package “sva”, leaving a total of 1211

samples for subsequent analysis. 2,483 immune-related genes were

obtained from the ImmPort database (13) (https://www.immport.

org). By downloading the “c2.cp.kegg.v7.4.symbols” from the

MSigDB, we extracted 816 metabolism-related genes. After

combining immune-related genes with metabolism-related genes

and getting rid of duplicates, a total of 2597 IMRGs were left to

study further.
Consensus cluster analysis of IMRGs

Differentially expressed genes (DEGs) of IMRGs in COAD

tumor samples and normal samples were analyzed by the

“limma” package. |logFC| > 1 and FDR < 0.05 were set as the

criterion for screening DEGs, and differentially expressed

IMRGs were extracted. The “ggplot2” package draws volcano

maps, the Gene Ontology (GO), the Kyoto Encyclopedia of

Genes and Genomes (KEGG), and the Disease Ontology (DO)

analysis to identify enriched GO terms, associated signaling

pathways, and diseases. Consensus clustering analysis of the

extracted DEGs using the “ConsesusClusterPlus” package (14)

divided the clusters of different IMRGs characterized. And

principal component analysis (PCA) was performed to

distinguish the clusters of IMRGs. After extracting survival

information from clinical data and removing data with

survival times less than 30 days, the overall survival (OS)

contrasts between clusters of different IMRGs were compared

by Kaplan-Meier analysis. Heatmap visualizing the relationship

between clinical pathological features and clusters of different

IMRGs. The gene set variation analysis (GSVA) to compare the

biological functional differences between the clusters of different

IMRGs by the “GSVA” package (15). In the “GSVA” and

“GSVABase” packages, a single-sample gene enrichment

analysis of the 23 immune cell-related gene sets (ssGSEA) (16)

was performed to assess the relative abundance of immune cell

infiltration between the different IMRG clusters.
Construction of a prognostic model
for IMRGs

A univariate Cox regression analysis was performed on the

DEGs in this study to identify the genes associated with the

COAD prognosis. Unsupervised clustering based on prognostic

IMRG expression will also be used to classify patients into

different subtype groups, namely, gene subtype A and gene

subtype B. All COAD patients were randomized into the
Frontiers in Oncology 03
training group (n = 577) and the test group (n = 578), and the

IMRGs risk score with prognosis was constructed, combining

with the previous results. A risk prediction model was

established by performing the Lasso Cox regression algorithm

using the “caret”, and “glmnet” packages. Candidate genes were

selected using multivariate Cox analysis to establish a prognostic

IMRGs risk score in the training set. The calculation formula is

as follows: risk score =S(EXPI×coefi), coefi while EXPI

represents the respective risk coefficient and expression level of

each gene. The total sample, training group, and test group were

each divided into high-risk and low-risk groups according to the

median risk score. The Kaplan-Meier survival analysis and the

receiver operating characteristics (ROC) were generated.
Correlation between prognostic IMRGs
risk scores and clinical subtypes

Sankey plots show patients’ relationships between IMRG

clusters, gene clusters, IMRG risk scores, and survival status.

WilcoxTest compares the difference in IMRGs risk scores

between different IMRGs clusters or prognostic gene clusters.

The relationship between the IMRGs risk score and the clinical

characteristics (age, gender, clinical stage, and TNM) was further

explored. Meanwhile, we performed univariate and multivariate

Cox analyses on training and test sets to judge the independent

prognostic role of IMRGs risk score. We did stratified analyses to

see if the risk scores from IMRGs still worked as good predictors

in different age, gender, clinical stage, and TNM subgroups.
Build a nomogram and validation

Using the “rms” program, we created prediction nomograms

based on the independent prognostic analysis, which included

clinical features and IMRGs risk ratings (17). The nomograms

were analyzed using ROC curves that varied over time to

account for 1-, 3-, and 5-year survival rates. Nomogram

calibration plots displayed the concordance between observed

and anticipated 1-, 3-, and 5-year survival rates. To get a better

idea of the nomogram’s predictive power, we ran a decision

curve analysis (DCA) using the “ggDCA” package.
Immunolandscape analysis

Multiple methods were compared in order to conduct a

thorough examination of immune infiltration and function. The

“ESTIMATE” system (18) can score the immune cell content

and matrix content to forecast the immune infiltration and

matrix condition of the tumour microenvironment (TME).

The CIBERSORT algorithm (19) was used to visualize the

proportion of 22 immune-related cell subtypes in different
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groups, and the “tidyverse” and “ggExtra” packages recycled all

immune cells to obtain the correlation between the risk score

and immune cells. The putative immunomodulatory processes

are analyzed by scoring the immune function and immune cells

in the high-risk and low-risk groups using single-sample gene

enrichment analysis (ssGSEA). The TIMER2.0 database (http://

timer.cistrome.org) downloaded the immune cell infiltration

estimation file of TCGA (20), evaluated the immune

infiltration and function of the high-risk and low-risk groups,

including TIMER (21), CIBERSORT (22), quanTIseq (23), xCell

(24), MCP-counter (25), and EPIC (26), drawing the heatmap to

centrally display the results of the analysis. Also, we analysed the

47 immune checkpoint genes across the high-risk and low-risk

groups, looking for commonalities and discrepancies. The TCIA

database (https://tcia.at/home) was used to get the

Immunoapparent score (IPS) for COAD patients. This score

was used to measure how well high-risk and low-risk groups

responded to immunotherapy.
Correlation of the risk scores of IMRGs
with tumor mutation burden (TMB)
and MSI

The “maftools” package was used to evaluate mutated genes

in the various risk categories, and the oncoplots display the 20

genes with the greatest mutation frequency in each group

independently. The association between TMB and IMRGs-

associated prognostic genotyping was analysed using the

“limma” and “ggpubr” packages. The ideal cutoff of the TMB

for differentiation was determined using the “survival” and

“survminer” packages, and the survival curves of the tumour

mutation load and the combined high-risk and low-risk groups

were generated. While doing so, we also compared the two high-

risk and low-risk groups’ connections with MSI.
Drug sensitivity prediction

To compare the therapeutic effects of chemotherapy and

targeted medications in high-and low-risk patients, we utilized

the “pRRophetic” program (27) to estimate the semi-inhibitory

concentration (IC50) values for these agents.
Statistical analysis

The Pearson test was used for the correlation analysis.

Survival in each group was tested using the Log-Rank test. The

Wilcoxon test was used to compare the two sets of data. Drug

sensitivity analyses were performed using R version 4.1.2. Other

statistical analyses were performed using R version 4.2.0. The

statistical dominance threshold was set at p < 0.05.
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Results

Acquisition of IMRGs

By performing a differential analysis of 2597 IMRGs. 700 DEGs

from IMRGs, with 354 up and 346 downregulated genes, were

acquired and volcano for presentation (Figure 1A). GO

enrichment analysis of these DEGs found that they were mainly

involved in cellular components and molecular functions, and were

less involved in biological processes (Figure 1B). The clustering plot

of GO shows that theseDEGs aremainly enriched in the production

ofmolecularmediator of immune response, B cell receptor signaling

pathway, immunoglobulin production, positive regulation of B cell

activation, phagocytosis, recognition, regulation of B cell activation,

humoral immune response, complement activation (Figure 1C). The

KEGG results showed that the main enrichment in the cytokine-

cytokine receptor interaction, viral protein interaction with cytokine

and cytokine receptor, chemokine signaling pathway, rheumatoid

arthritis, IL−17 signaling pathway, neuroactive ligand-receptor

interaction, NF−kappa B signaling pathway, and natural killer cell

mediated cytotoxicity (Figure 1D). Finally, DO disease enrichment

analysis showed that diseases such as skin disease, dermatitis, pre

−eclampsia, and integumentary systemdiseaseswere associatedwith

IMRGs (Figure 1E).
Identification of subtypes, TME features,
and functional enrichment of IMRGs
in COAD

In this study, the DEGs of the obtained immune and

metabolism-related genes were classified by consensus clustering

analysis. By adding a cluster variable (k) ranging from 2 to 9, the

results found that the IMRG cluster with k = 2 is the best choice,

namely, IMRG cluster A (n = 529) and IMRG cluster B (n = 682)

(Figure 2A). The PCA analysis showed good discrimination

between the two IMRG clusters (Figure 2B). Further mapping of

the Kaplan-Meier curves of the OS of COAD patients in the two

IMRG clusters showed no significant difference between the two

subtype groups (p = 0.177; Figure 2C). Immune cell abundance

showed that immune-activated cells in patients with the IMRG

cluster A group were more abundant than those in patients with the

IMRG cluster B group. It was shown that both groups had

substantially different immune cell content for 23 of the cell

proportions studied (p < 0.05; Figure 2D). Meanwhile, we show

the relationship between two cell copper death clusters and

clinicopathological features in the form of a heatmap. It mainly

includes the gender (female or male), age (< = 65 or > 65 years),

TNM, stage (Figure 2E). The results of the GSVA analysis showed

that the IMRG cluster A was significantly enriched in the immune-

activated pathways, such as natural killer cell mediated cytotoxicity,

chemokine signaling pathway, cytokine-cytokine receptor
frontiersin.org

http://timer.cistrome.org
http://timer.cistrome.org
https://tcia.at/home
https://doi.org/10.3389/fonc.2022.1025397
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.1025397
interaction, NOD-like receptor signaling pathway, Toll-like

receptor signaling pathway, B cell receptor signaling pathway, and

T cell receptor signaling pathway (Figure 2F). However, IMRG

cluster B presents immunosuppressive features. To explore the

underlying biological behavior of the IMRG signatures, we

identified 245 IMRG subtype-associated DEGs between the two

groups. Additional research using GO and KEGG was undertaken

to supplement the GSVA enrichment findings. The results showed

that these DEGs were significantly enriched in matrix and immune

function-related terms (Figure 2G). KEGG results showed

significant enrichment in immune and inflammation-related

pathways (Figure 2H). As a whole, our findings support the idea

that IMRGs are an essential player in the immunomodulatory

function of COAD development.
Identification of gene subtypes based
on DEGs

We performed univariate Cox regression analysis to estimate

the prognostic value of 245 isotype-related genes and chose 106

prognosis-related genes in order to delve further into the
Frontiers in Oncology 05
molecular properties and prognostic value of IMRGs. At the

same time, the patients were clustered according to their

prognostic genes using a consensus cluster analysis. Gene

cluster A (n = 529) and gene cluster B (n = 682) were

identified as the two subtypes into which all samples fell after

using the best cluster stability criterion (k = 2) (Figure 3A). The

PCA showed that the two groups of genes were quite different

from one another (Figure 3B). In comparing the two prognostic

gene clusters, it was revealed that patients from cluster B had a

considerably greater OS rate than those from cluster A (p <

0.001; Figure 3C). In the meantime, a heatmap was used to

display the differences in clinicopathological aspects between the

two groups (Figure 3D).
Construction of a prognostic model
for IMRGs

In this study, the IMRGs risk score was constructed based on

the DEGs related to the IMRG subtype. We visualized the

associations between IMRG clusters, gene clusters, IMRG risk

scores, and survival status in COAD patients using a Sankey plot
A B

D E

C

FIGURE 1

Acquisition of DEGs for IMRGs. (A) Volcano plot of the DEGs of IMRGs in COAD; (B) GO enrichment analysis; (C) Cluster plot analysis of GO
enrichment; (D) KEGG analysis of the related pathways; (E) Results of the DO enrichment analysis.
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(Figure 4A). We divided the patients in a 1:1 ratio into the training

group (n = 577) and the test group (n = 578). The Lasso algorithm

was used for the IMRG subtype-related DEGs to obtain the

coefficients for the genes selected to construct the prognostic

features (Supplementary Figure S1A, B). Through the multivariate

Cox regression analysis, seven genes (VSIG4, CCDC80, FRMD6,

FGL2, SLC2A3, MMP12, and PLCB4) were finally determined to

calculate the risk score. Among them, VSIG4, FRMD6, and

SLC2A3 are the risk factors, while CCDC80, FGL2, MMP12, and

PLCB4 are the protective factors. Constructing the IMRG score:

Risk score = (0.4838 * expression of VSIG4) + (0.4142 * expression

of FRMD6) + (0.2260 * expression of SLC2A3) + (-0.5951 *

expression of CCDC80) + (-0.2569 * expression of FGL2) +

(-0.2406 * expression of MMP12) + (-0.0902 * expression of

PLCB4). We compared the IMRGs risk scores between two

IMRG clusters and two gene clusters, and found that patients in
Frontiers in Oncology 06
IMRG cluster A had significantly higher risk scores than IMRG

cluster B (p<0.001; Figure 4B). The IMRGs risk scores were

significantly different between the two gene clusters, with a

significantly higher risk score in gene cluster A than in gene

cluster B (p < 0.001; Figure 4C). Patients with a lower IMRGs

risk score than the median risk score were classified as low risk (n =

575), while patients with higher IMRGs risk scores were classified as

high risk (n = 580). Risk score distribution plots showed that

survival time decreased and deaths increased as risk scores

increased. Expression of genes VSIG4, FRMD6, and SLC2A3 was

positively correlated with the risk score, and genes CCDC80, FGL2,

MMP12, and PLCB4 were negatively correlated with the risk score

(Figure 4D). Meanwhile, the differential expression of these genes

between patients in high and low-risk groups is shown in Figure 4I.

The results of the risk score distribution map were confirmed in the

Kaplan-Meier survival curve, where the Kaplan-Meier survival
A B D

E F

G H

C

FIGURE 2

Subtype, clinicopathological, and biological characteristics of the IMRGs. (A) Consensus cluster analysis to construct the consensus matrix
diagram of the two related regions; (B) PCA shows the difference between the two subtypes; (C) Comparative analysis of the OS rate between
the two subtypes; (D) Differences in immune cell infiltration abundance between the two subtypes; (E) Heatmap of the differential
clinicopathological features and IMRGs expression levels between the two different subtypes; (F) GSVA of the biological pathways between the
two different subtypes, red: Activation pathway, blue: Inhibition pathway; (G,H) GO and KEGG analyses of DEGs between different IMRGs
subtypes. ***p < 0.001.
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curve showed a significantly higher OS rate in the low-risk group as

compared to the high-risk group (p < 0.001; Figure 4E). And

patients in the high-risk group had a higher mortality rate (21% vs.

39%; Figure 4G). This indicates that the higher the risk score, the

lower the OS rate, a result that is largely consistent with the OS

comparison results of the gene clusters obtained from our previous

analysis. Meanwhile, the analysis of progression-free survival (PFS)

in the high-and low-risk groups found that the PFS in the low-risk

group was significantly higher than that in the high-risk group (p <

0.001; Figure 4F). The impact of the IMRGs’ risk score on COAD

patients’ prognoses is further supported by these findings. The AUC

values of the ROC curve, including 0.663, 0.672, and 0.655,

correspond to the 1-, 3-, and 5-year survival rates of the IMRG

risk score (Figure 4H). We calculated the risk score in the training

set and the test set to better test the prognostic performance of the

IMRGs risk score from the internal (training set) and the external

(test set), respectively. The training set and test sets were each
Frontiers in Oncology 07
divided into high and low-risk groups. Mortality rates were shown

to be positively correlated with risk ratings in both the training and

testing datasets (Supplementary Figures S1C, D). The results of the

survival analysis in both the training and test sets showed better OS

in the low-risk groups (p < 0.001; p = 0.004; Supplementary Figures

S1E, H) and PFS (p < 0.001; p = 0.035; Supplementary Figures S1F,

I). The proportion of deaths in the low-risk group was lower than in

the high-risk group (19% vs. 43%; 23% vs. 35%; Supplementary

Figures S1K, L). The predicted ROC curves at 1-, 3-, and 5-year

indicate that the risk score maintains high AUC values

(Supplementary Figures S1G, J). This demonstrates that our

prediction model is accurate over both the short and long

periods. Meanwhile, we performed an independent analysis of OS

from the TCGA cohort and the GEO cohort. We found that the

results of both the TCGA and the GEO cohort demonstrated higher

OS and better prognosis for patients in the low-risk group (p <

0.001; p < 0.001; Supplementary Figures S1M, N).
A B

DC

FIGURE 3

Identification of gene subtypes based on DEGs. (A) The consensus clustering matrix (k=2) classified the COAD patients into 2 different genomic
subtypes; (B) PCA demonstrates variability between the two gene subtypes; (C) Differential analysis of OS for the 2 gene clusters; (D) Relationship
between 2 gene clusters and clinicopathological features.
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Clinical classification and clinical value of
risk score prognostic models for IMRGs

To further validate the efficacy of the IMRGs risk score in its

clinical prognostic application in COAD patients, we evaluated the

different clinicopathological characteristics (age, gender, stage,

TNM) in groups. The low-risk group had a significantly longer

OS rate on age (< = 65, p < 0.001; > 65, p < 0.001; Figures 5A, B),

gender (female, p = 0.002; male, p < 0.001; Figures 5C, D),

stage (stage I-II, p = 0.008; stage III-IV, p < 0.001; Figures 5E,
Frontiers in Oncology 08
F), T (T3-4, p < 0.001; Figure 5H), N (N0, p = 0.019; N1-2, p <

0.001; Figures 5I, J) and M (M0, p < 0.001; M1, p = 0.002;

Figures 5K, L) compared to the high-risk group. However, there

was no difference in the OS rate between the two groups on T1-2

(P = 0.597, Figure 5G).

We analysed the relationship between IMRG risk scores and a

variety of clinical pathological features to learnmore about the effect

of IMRG risk scores on clinical characteristics. There were

statistically significant variations between age, stage, and TNM

and IMRG risk scores. The IMRGs risk scores were significantly
A B

D E F

G

I

H

C

FIGURE 4

Construction and validation of the IMRG risk scores. (A) Sankey plots representing the relationships of IMRG clusters, gene clusters, IMRG risk
scores, and survival status; (B) Comparison of the differential risk scores between the two IMRG clusters; (C) Comparison of the differential risk
scores for IMRGs between the two gene clusters; (D) Risk distribution, survival status, and related gene expression of IMRGs risk score;
(E) Comparison of OS rates between the high- and low-risk groups; (F) The PFS contrast between the high- and low-risk groups; (G) Survival
ratio of patients in the high-risk and low-risk groups; (H) The ROC curves were performed according to the IMRG risk scores versus the survival
sensitivity and specificity as measured at 1-, 3-, and 5-year; (I) Differential expression of the seven genes constructing the model in high-risk and
low-risk groups; ***p < 0.001; **p < 0.01.
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higher in the age (> 65), stage IV, T4, N2, and M1 subgroups than

those in the other subgroups (Supplementary Figure S2).

Additionally, by comparing high-risk and low-risk groups for

clinicopathological features, we may better understand the

differences between these populations. The results showed that

age, stage, T, N, and M were significantly different between the

high and low-risk groups (Figure 6A). Their proportion in the high

and low risk groups is shown in bar charts (Figure 6B). The results

showed that patients in the low-risk group had a smaller range of

clinical cancer progression than those in the high-risk group, as well

as a smaller proportion of patients in the late stages of each stage.

We performed both a univariate and a multivariate Cox regression

analysis by combining age, gender, stage, TNM, and IMRG risk

scores. Factor Cox regression analysis showed that the IMRG risk

score, age, stage, T, N, and M were significantly associated with OS

(Figure 6C). Multivariate Cox regression analysis further confirmed

that IMRG risk score, age, T, and M were significantly associated

with oOS, and our results demonstrated that IMRG risk score was

an independent predictor of COAD prognosis (Figure 6D). The

ROC curve combined with clinical pathological features showed

that the prognostic risk model we constructed achieved good

prediction accuracy at 1-year, 3-year, and 5-year OS (Figures 6E–

G). Univariate/multivariate Cox regression analysis and ROC

curves for clinicopathological features in the training and test sets

once again validated that the IMRG risk score was an independent
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predictor of COAD prognosis and provided good predictive

accuracy (Supplementary Figure S3).
Construction and validation of
the nomograms

This study constructed a nomogram based on the IMRG risk

score and clinicopathological factors to predict the prognosis of

COAD patients, further validating the usefulness of the risk

score in its clinical prognostic application in COAD patients

(Figure 7A). Our calibration curves show that our nomogram is

accurate for making 1-, 3-, and 5-year OS forecasts (Figure 7B).

Both the risk score and the nomogram are reliable predictors, as

evidenced by the ROC curves for 1-, 3-, and 5-year OS

(Figures 7C–E). The DCA results demonstrated that the

nomogram predicted 1-, 3-, and 5-year OS rates in COAD

patients with pretty high accuracy (Figures 7F–H).
Analysis of the immune landscape based
on risk characteristics

TME is important in the progression and treatment of

cancer, so we looked into the differences in immunological
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FIGURE 5

Relationship between IMRG risk scores and clinicopathologic characteristic subtypes in COAD patients. (A, B) age (< = 65, > 65); (C, D) gender
(female, male); (E, F) stage (stageI-II, stage III-IV); (G, H) T (T1-2, T3-4); (I, J) N (N0, N1-2); (K, L) M (M0, M1).
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features between high- and low-risk populations. We used

ESTIMATE to compare TME scores (stromalscore,

immunescore, and estimatescore) across IMRG risk categories.

In comparison to the low-risk group, both the stromal and

estimate scores were found to be considerably higher (p < 0.001;

Figure 8A). The low-risk group had substantially higher ssGSEA

scores than the high-risk group did for B cells, iDCs,
Frontiers in Oncology 10
macrophages, mast cells, and the risk of Th2 cells using

differential analysis (Figure 8B). The low-risk group had

significantly higher levels of plasma cells, CD4 memory resting

T cells, activated dendritic cells, and neurophils infiltration than

the high-risk group (Figure 8C). These findings point to the

possibility that immune cell infiltration and immunological

activity contribute to the improved prognosis of patients in the
A
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FIGURE 6

Clinical application value and independent prognostic analysis. (A) Heat map of the correlation between high and low risk scores and
clinicopathological characteristics; (B) The proportion of high and low-risk scores to clinicopathological characteristics; (C) Univariate Cox
regression analysis based on the IMRG risk score and clinicopathological characteristics; (D) Multivariate Cox regression analysis based on IMRG
risk score and clinicopathological characteristics; (E–G) The ROC curve evaluates the predictive effect of the risk model at 1-, 3-, 5-year OS;
***p < 0.001; **p < 0.01.
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low-risk category. Meanwhile, we also analysed the association

between seven genes for developing the predictive risk model and

immune cell abundance, and we observed that most immune cells

were substantially connected with seven genes (Figure 8D). We

also looked at how the IMRG risk score was connected to the

immune cell subtypes and found that 13 out of 22 immune-

associated cell cells had a significant relationship to the IMRG risk

score (Supplementary Figure S4). Seven immune cells (memory B

cells, M0 macrophages, M1 macrophages, M2 macrophages,

activated mast cells, nutrophils, and activated NK cells) in

particular were shown to have a significant positive correlation

with the IMRG risk score. The IMRG risk score was inversely

related to six immune cells (naive B cells, resting dendritic cells,

resting NK cells, plasma cells, CD4 memory resting T cells, and

Tregs). Meanwhile, we quantified the immune infiltration and

function between the two groups by using the TIMER,

CIBERSORT, quanTIseq, xCell, and MCP-counter and EPIC

algorithms, as presented centrally by the heatmap (Figure 8E).
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In light of these findings, the IMRG risk score may have

substantial clinical treatment relevance for patients with COAD

by influencing the immune microenvironment infiltration.

This research found a strong association between the IMRGs

risk score and the expression of 45 immune checkpoints by

assessing the connection between the IMRG risk score and 47

immune checkpoint genes (p < 0.05; Figure 9A). Meanwhile,

there were notable differences in the expression levels of the 15

immune checkpoint genes between the high- and low-risk

groups (p < 0.05; Figure 9B). However, differences between the

two groups could not be discerned using three widely used

immune checkpoint genes (CD274, CTLA-4, and PDCD1). We

got the immune cell proportion score (IPS) for COAD patients

from the TCIA database to learn more about how the high- and

low-risk groups responds to immunotherapy. The violin plot

results of the IPS score showed that the patients in the low-risk

group had a better immunotherapy effect on treatment with no

PD-1 and CTLA-4 inhibitors (p = 0.036; Figure 9C) and on
frontiersin.org
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FIGURE 7

Construction and validation of the nomograms. (A) nomogram predicting 1-, 3-, and 5-year OS of COAD patients; (B) Calibration curve of the
nomogram; (C–E) The ROC curves used to predict 1-, 3-, and 5-year of OS; (F–H) The DCA curves used for predicting the OS at 1-, 3-, and 5-year.
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treatment with CTLA-4 inhibitors alone (p = 0.014; Figure 9D)

compared to the patients in the high-risk group. Instead of using

PD-1 inhibitors alone or as a combination of CTLA-4 and PD-1

inhibitors (Figures 9E, F).
Correlation between IMRG risk score and
MSI and TMB in COAD patients

Changes in MSI and TMB can affect the effect of the

immunotherapy that patients receive. This study found that the

proportion of MSS and MSI-L in the low-risk group was higher

than in the high-risk group, while the proportion of MSI-H in the

high-risk group was significantly higher than in the low-risk group

(29% vs. 6%; Figure 10A). Patients in the MSI-H group had higher

risk scores than those in the MSI-L and MSS groups (p < 0.001;

Figure 10B). Immunotherapy was especially helpful for high-risk

patients. We analysed the TMB of high- and low-risk groups and

found statistically significant variations between the two (p < 0.001;

Figure 10C). Moreover, the TMB in the three gene clusters was

positively correlated with the IMRG risk score (p < 0.001;

Figure 10D). We compared the TMB conditions in the low-risk

and high-risk groups, where the mutation frequencies of APC and
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TP53 were higher than in the high-risk group, but lower in other

genes than in the high-risk group (Figures 10E, F). Considering the

importance of TMB in clinical prognostic value, we did a survival

prognosis study by classifying COAD patients into high-TMB and

low-TMB groups according to mutation frequency. Patients with

low-TMB had a greater chance of surviving, and the OS rate was

higher than that of patients with high-TMB, according to the

findings (p = 0.038; Figure 10G). Meanwhile, we performed a

subgroup survival analysis based on the TMB combined with the

IMRG risk score. The results showed that OS was lower in patients

with higher risk and high-TMB compared to other subgroups

(p=0.0078; Figure 10H).
Drug sensitivity analysis

Afterwards, we looked at the connection between the IMRG

risk score and the IC50 of the most commonly used

chemotherapeutic and targeted medicines for COAD. We found

that the IC50 values for lapatinib and methotrexate were lower

among patients in the low-risk group (Figures 11A, B). But the

IC50 values of other drugs, for example, bicalutamide, cisplatin,

vinblastine, and paclitaxel, were lower in the patients in the high-
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C

FIGURE 8

An immune landscape analysis based on risk characteristics. (A) The ESTIMATE algorithm evaluates the correlation of different IMRG risk score
groups with TME scores; (B) Differential analysis of immune cells and immune function between high- and low-risk groups based on ssGSEA;
(C) Differences in immune cell levels between high- and low-risk groups; (D) Correlation between immune cell abundance and the seven genes
for constructing the model; (E) Heatmap shows the expression differences of each immune cell in the high- and low-risk groups based on
different algorithms; ***p < 0.001; **p < 0.01; *p < 0.05.
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risk group (Figures 11C–F). This result suggests that the IMRG

risk score is associated with drug sensitivity.
Discussion

The survival rate of cancer patients has increased somewhat due

to the promotion of immunotherapy, but only for specific COAD

patients. The complexity and heterogeneity of the immunotherapy

responses observed during treatment in COAD patients may be due

to the interplay between immunity and metabolism in the TME. It

has been shown that immunity andmetabolismare two independent

key factors affecting the TME (28). And in tumor therapy, targeting

inflammatory metabolic pathways can translate drug resistance into

immunotherapy (29). COAD is a common cause of cancer-related

death worldwide, and some studies have constructed prognostic

models for immune-related genes (30). And through the

metabolomics analysis of determining the serum metabolite

biomarkers and related metabolic pathways in COAD (31), which

helps to improve the prognostic outcomes of COAD patients.

Therefore, a comprehensive comprehensive analysis of immune

and metabolic gene characteristics in COAD may help us to

further explore the methods and pathways to improve the

prognosis of COAD patients and improve the effectiveness of

immunotherapy. Therefore, a comprehensive comprehensive

analysis of immune and metabolic gene characteristics in COAD
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mayhelpus to further explore themethods andpathways to improve

the prognosis of COAD patients and improve the effectiveness of

immunotherapy. However, no relevant studies have been

reported yet.

In this study, we first screened the IMRGs and then typed the

extracted differentially expressed genes. With the identification

of two different sets of related gene subtypes by consensus

clustering, we found that IMRG cluster patients had more

enriched immune cells in cluster A, and the GSVA results

showed significant enrichment of IMRG cluster A on immune

activation pathways. However, the KEGG analysis of DEGs of

related gene subtypes showed that these genes were significantly

enriched in immune and inflammation-related pathways,

providing a more comprehensive complement to the biological

behavior of IMRGs. To further evaluate the prognostic value of

these IMRGs, we identified two gene clusters based on the DEGs

between the two IMRG clusters. Our results suggest that there

are significant differences in survival outcomes between the two

gene clusters, and that IMRGs may serve as predictors for

assessing the clinical outcomes of COAD and the response to

immunotherapy. We constructed an IMRG risk scoring system

and then constructed a prognostic model based on seven IMRGs

(VSIG4, CCDC80, FRMD6, FGL2, SLC2A3, MMP12, and

PLCB4). The accuracy of the prediction effect was evaluated

and verified by the training set and the test set, and the OS rates

from different cohorts (TCGA and GEO) were evaluated,
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FIGURE 9

Based on the correlation between risk characteristics and immune checkpoint genes. (A) Correlation between the IMRG risk score and the 47
immune checkpoint genes; (B) Differential expression levels of immune checkpoint genes in the high- and low-risk groups; (C–F) The IPS
evaluates the response to immunotherapy in the high- and low-risk groups; ***p < 0.001; **p < 0.01; *p < 0.05.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1025397
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.1025397
respectively, and the results further verified the prognostic

accuracy of our model construction. Meanwhile, we found that

the IMRG risk score can affect the OS rate of patients with

clinical pathological characteristic subtypes, especially when the

clinicopathological factor typing of age, stage, and TNM can

show good differential results, demonstrating the universality of

the IMRGs-based prognostic model we constructed. Univariate

and multivariate independent prognostic analyses showed that

the IMRG risk score can serve as an independent predictor of

COAD prognosis and has good predictive accuracy. Next, we

further drew a nomogram combining the IMRG risk score and

clinicopathological features and verified it. The above results
Frontiers in Oncology 14
indicate that IMRG prognostic features have better predictive

ability in COAD patients’ survival outcomes.

V-set immunoglobulin-domain-containing 4 (VSIG4), a B7

family-related protein, is a negative regulator of T cell activation

(32), which can inhibit pro-inflammatory macrophage activation by

reprogramming mitochondrial metabolism (33) with pyruvate

metabolism. VSIG4 expression may be associated with cancer and

inflammatory diseases, and its high expression affects the poor

prognosis in patients with tumors such as glioma, ovarian cancer,

and gastric cancer (34) (35) (36). Studies that were similar showed

that overexpressing VSIG4 in glioma U87-MG and U251-MG cells

effectively reversed the apoptosis and sensitivity to temozolomide
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FIGURE 10

Correlation of IMRG risk score with MSI and TMB in COAD patients. (A, B) Relationship between the IMRG risk score and the MSI; (C) Comparison of
TMB differences in the high- and low-risk groups; (D) Spearman correlation analysis of IMRG risk score and TMB; (E, F) Oncoplots of somatic mutations
established by the IMRG risk score; (G) Prognostic analysis of the TMB; (H) Prognostic analysis between the IMRG risk score and TMB.
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that was caused by silencing Rab18 (37). Meanwhile, the expression

level of VSIG4 was also found to be significantly increased in aging

tissues (e. g., adipose tissue, thymus) (38). Interestingly, in an animal

model of liver damage,micewith a deletion ofVSIG4would develop

severe hepatitis (39). VSIG4 has been reported to be downregulated

in hepatocellular carcinoma (HCC), and its low expression is linked

to a poor prognosis in patients with hepatitis B (HBV)-associated

HCC (40). Coiled-coil domain-containing 80 (CCDC80) is a protein

secreted by adipocytes, which is one of the adipokines that play an

important role in adipocytes and systemic metabolic homeostasis

(41). Related studies have shown that CCDC80 can be used as a

prognostic stem biomarker to regulate the acquired drug resistance

and immune infiltration in colorectal cancer (42). Currently, DRO1/

CCDC80 has been identified as a tumor suppressor in the tumor

microenvironment, and DRO1/CCDC80 activation in the stroma

inhibits colorectal cancer growth and promotes the apoptosis of

cancer cells (43).TheFERMdomain-containingprotein6 (FRMD6),

also known as Willin, is an Ezrin/Radixin/Moesin (ERM) family

protein. FRMD6 is an upstream regulator of the Hippo signaling

pathway controlling tumorigenesis (44) and is responsible for

coordinating mammalian peripheral neurofibroblasts (45) and

antagonizing the oncogene Yes-associated protein (YAP) (46). It

hasnowbeen screened and identified as a relevant factor affecting the

prognosis of COAD patients (47). Fibrinogen-like protein 2 (FGL2)

is involved in a variety of inflammatory and tumor signaling

pathways (48). It has been identified as a novel effector molecule of

Treg cells andplays an important role in regulating immune function

(49). InCOAD,FGL2canbeusedas anewprognosticmarker andan

effective therapeutic target, and theoverexpressionof FGL2enhances
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cancer cell invasion, induces epithelial mesenchymal transition

(EMT), and promotes COAD invasion and metastasis (50).

SLC2A3 is a glucose transporter and a central regulator of cellular

energetics, and its high expression contributes to increased glucose

uptake and oncogenic growth (51) (52). Related research found that

overexpression of the SLC2Aprotein isoform is associatedwith poor

clinical outcomes in COAD patients (53), and that SLC2A3 may

participate in the immune response of COAD through PD-L1 (54).

The matrix metalloproteinase (MMP) family is involved in

angiogenesis, tumor invasion, and metastasis formation (55).

MMP12 is expressed in a variety of tumors and can affect the

tumor inflammatory response by affecting the secretion and

expression of macrophages (56). Currently, it is believed that its

expression function is bidirectional, that is,MMP12expression in the

tumor periphery can inhibit tumor growth while in the tumor, the

expression promotes tumor growth (57) (58). At present, a study has

shown that the high expression of MMP12 in the serum of COAD

patients leads to the impaired overall survival of cancer patients (59).

PLCB4 encodes the ß4 isoform of phosphoinositide-specific

phospholipase C (PLC) isoenzymes, a superfamily orchestrating

the metabolism of inositol lipids (60). PLCB4 is highly expressed in

a variety of tumors and leads to a poor prognosis in cancer patients

(61) (62). However, no study has specifically elucidated the

mechanism of PLCB4 in the development of COAD. The

association between PLCB4 expression and COAD needs

further research.

The immune response in the TME is considered to be an

important factor in determining tumor aggressiveness, progression,

and response to immunomodulators (63). To explore the
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FIGURE 11

The IMRG risk score and drug sensitivity. (A) Lapatinib; (B) Methotrexate; (C) Bicalutamide; (D) Cisplatin; (E) Vinblastine; (F) Paclitaxel.
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relationship of IMRGs with TIME, we analyzed the immune

landscape based on immune and metabolic features. We evaluated

the TME score in the high- and low-risk groups through the

ESTIMATE package, while the high matrix score and the high

immune score reflect the lower the purity of the tumor and the

more conducive to tumor genesis and progression. In this study, the

matrix score and ESTIMATE score were significantly higher in the

high-risk group than in the low-risk group, which means that the

IMRG risk score was positively correlated with the matrix score and

ESTIMATEscoreandnegatively correlatedwith tumorpurity,which

was unfavorable to the prognosis of cancer patients. The degree of

immune infiltration significantly affects theprognosis ofCOAD(64).

Combined with the differences in immune function scores and

immune cell infiltration levels between the high- and low-risk

groups. We found that the levels of T cells, B cells, mast cells,

macrophages, plasma cells, and dendritic cells were all significantly

higher in the patients, as seen in the IMRG low-risk group, as

compared to the high-risk group. These tumor-infiltrating immune

cells are the key components in regulating tumor development and

treatment response (65), and play an important role in activating

immune function and tumor suppression (66). Immunotherapy has

been studied in a variety of solid tumors, including COAD (67), and

the long-term immunotherapy-related responses and better

prognosis of ICIs and MSI are significantly associated (68). The

mainpredictivemarkersof treatment response in ICIs includePD-L1

expression and several biomarkers, including TMB andMSI (69). At

present, although ICIs show better antitumor effects, this therapeutic

intervention does not achieve the expected response in somepatients

(70). In particular, in COAD, only the dMMR/MSI-H tumors can

achieve better clinical treatment benefits through ICI (71). In this

study,we foundasignificantcorrelationbetween the IMRGrisk score

and the45 immunecheckpointgenes.However, in thehigh-and low-

risk groups, we did not observe the expected differences in the key

immune checkpoint genes CD274, CTLA-4, and PDCD1, a result

that may affect the effect of immunotherapy in COAD patients.

However, the IPS score showed that the CTLA-4 inhibitor alone

achieved better immunotherapy in the low-risk group compared

with the high-risk group. Therefore, we speculate that the IMRG risk

score could facilitate the development of personalized

immunotherapy strategies. Based on this study, we further

investigated the correlation of the IMRG risk score with TMB and

MSI. The proportion of MSI-H in the high-risk group in this study

was significantly higher than that in the low-risk group, which

indicates that patients in the IMRG high-risk group had a better

immunotherapy benefit in COAD patients, which is basically

consistent with previous reports. When we looked at the results of

the analysis of the TMB group, we found that the TMB was

significantly higher than that of the low-risk group. We also found

that the IMRGs risk score was positively correlated with the TMB,

which could be an indication of how well the high-risk group

responded to immunotherapy. But combined with survival data,

we found that the poor prognosis of patientswith high-risk groups of

mutation and immunotherapy may be the best way to solve the
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prognosis problem of patients with high-risk groups of mutation.

Therefore, the IMRG risk score model we constructed may provide

new insights for predicting immunotherapy in COAD patients.

Finally, we evaluated the IC50 of different anticancer drugs in

patients with high- and low-risk groups and screened potential

effective treatments for high-risk groups with poor prognosis, such

as bicalutamide, cisplatin, vinblastine, and paclitaxel. So, the IMRG

risk score can be used as a possible predictor before chemotherapy in

COAD patients, and choosing chemotherapeutic agents based on

subtype helps to avoid drug resistance.

Our study demonstrates that the IMRG prognostic model

constructed using a comprehensive analysis demonstrates the

accuracy and clinical relevance of IMRG features by evaluation

and validation of multiple datasets, including internal and

external cohorts. Through immune landscape analysis and

drug sensitivity screening of IMRG characteristics, our

findings can help figure out the immunophenotype of COAD

and design personalized immunotherapy regimens.
Conclusion

Our exhaustive analysis of IMRG has unearthed a wide

variety of regulatory mechanisms that have an effect on the

TME, immunological landscape, cl inicopathological

characteristics, and prognosis, as well as promising

medications for the treatment of the illness. It will help us

learn more about the molecular processes that cause COAD and

give us ideas for new ways to treat illness.
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SUPPLEMENTARY FIGURE 1

Validation of the prognostic IMRG risk score model. (A, B) The Lasso
algorithm was used to construct the coefficients for genes with

prognostic features; (C, D) Risk distribution, survival status, and related

gene expression of IMRG risk score in the training set and test sets; (E, H)
Comparison of the OS rate between the high-risk and low-risk groups in

the training set and test sets; (F, I) Comparison of the progression free
survival between the high-risk and low-risk groupsin the training set and

test sets; (G, J) ROC curve of 1-, 3-, 5-year OS of IMRG risk score in the
training set and test sets; (K, L) OS ratio of patients in the high- and low-

risk groups in the training set and test sets; (M, N) Comparison of the OS

rate between the high- and low-risk groups in the TGGA and GEO.

SUPPLEMENTARY FIGURE 2

Correlation between IMRG risk score and clinical typing. (A) age; (B)
gender; (C) stage; (D) T; (E) N; (F) M.

SUPPLEMENTARY FIGURE 3

Independent prognostic analysis validation for the training and test sets.
(A, B) The training set included univariate and multivariate Cox regression

analysis based on IMRG risk score and clinicopathological characteristics;
(C–E) The ROC curve in the training set evaluated the prediction effect of

risk models at 1-, 3-, and 5-year; (F, G) The test set included univariate and
multivariate Cox regression analysis based on IMRG risk score and

clinicopathological characteristics; (H–J) The ROC curve in the test set

evaluated the prediction effect of risk models at 1 -, 3-, and 5-year.

SUPPLEMENTARY FIGURE 4

Correlation between IMRG risk score and immune cell subtypes. (A)
Memory B cells; (B) Naive B cells; (C) Resting dendritic cells; (D) M0
macrophages; (E) M1 macrophages; (F) M2 macrophages; (G) Activated
mast cells; (H) Restingmast cells; (I)Neutrophils; (J) Activated NK cells; (K)
Plasma cells; (L) CD4 memory rest ing T cel ls; (M) T cel ls
regulatory (Tregs).
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