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Head and neck squamous cell carcinoma (HNSCC), the most common head

and neck malignant tumor, with only monotherapy, is characterized by poor

prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets,

the targeted drugs for HNSCC are rare. Therefore, exploring the regulation

mechanism of HNSCC and identifying effective therapeutic targets will be

beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA

molecules with a circular structure, which is widely expressed in human

body. CircRNAs regulate gene expression by exerting the function as a

miRNA sponge, thereby mediating the occurrence and development of

HNSCC cell proliferation, apoptosis, migration, invasion, and other processes.

In addition, circRNAs are also involved in the regulation of tumor sensitivity to

chemical drugs and other biological functions. In this review, we systematically

listed the functions of circRNAs and explored the regulatory mechanisms of

circRNAs in HNSCC from the aspects of tumor growth, cell death,

angiogenesis, tumor invasion and metastasis, tumor stem cell regulation,

tumor drug resistance, immune escape, and tumor microenvironment. It will

assist us in discovering new diagnostic markers and therapeutic targets, while

encourage new ideas for the diagnosis and treatment of HNSCC.

KEYWORDS

head and neck squamous cell carcinoma, miRNA sponge function, tumor regulation,

tumor microenvironment, circular RNAs
Introduction

Head and neck squamous cell carcinoma (HNSCC), originating from the mucosal

epithelium of the mouth, pharynx, and larynx, is the sixth most common cancer

worldwide (1). Approximately 42% of the patients with HNSCC are diagnosed as

intermediate or advanced disease, and these patients often have local lymph node
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metastases (2). Moreover, HNSCC has a low response to

treatment and high drug resistance, with a 5-year survival rate

of only 40-50% and a poor prognosis (3). Therefore, the early

diagnosis, intervention and seeking potential therapeutic targets

for HNSCC are of great significance to improve the prognosis

and survival quality of patients. In recent years, an increasing

number of studies have been devoted to the identification of

specific biomarkers for the clinical decision-making. Currently,

some emerging biomarkers have encouraged new ideas for the

clinical diagnosis and treatment of HNSCC, including some

non-coding RNAs (ncRNAs), like long non-coding RNAs

(lncRNAs) and microRNAs (miRNAs), whose aberrant

expression has been shown to be closely associated with the

development of HNSCC (4). Particularly, circular RNAs

(circRNAs), the newly discovered non-coding RNA molecules

with closed-loop structure, have been proven to be a kind of new

and stable biomarkers for diagnosis and treatment of HNSCC

(5). CircRNAs exist widely in different species and cell lines, and

are abundant, stable, conserved, and tissue-specific. In humans,

they can be secreted into blood, saliva, and exosomes, playing an

significant role in the tumor microenvironment. With the rapid

development of next-generation sequencing technology, the

basic structure and function of circRNAs have been fully

confirmed, among which the functions ass HNSCC

biomarkers and miRNA sponge, are extensively studied in

recent years. However, the specific regulatory mechanism of
Frontiers in Oncology 02
circRNAs in the critical process of HNSCC development is still

worth exploring. This review comprehensively described of the

regulatory role of circRNAs in the development of HNSCC,

interpreting the role and mechanism of circRNAs in the

occurrence of this cancer, offering clues for diagnostic markers

and therapeutic targets, and inspiring new ideas for the diagnosis

and treatment of HNSCC.
CircRNAs

CircRNAs, first identified in viroids in 1976, are classified as

non-coding RNA (6). They are characterized by extensive

distribution, stability and high conservation (7). In humans,

circRNAs can express in the vast majority of tissues (8–12).

However, different circRNAs express with tissue specificity or

developmental stage specificity (13). Based on different splicing

methods, circRNAs are divided into three main categories: exon

circRNAs (ecircRNAs), exon-intron circRNAs (EIciRNAs), and

intron circRNAs (ciRNAs). Many studies have focused on the

most common circRNAs, namely ecircRNAs (9, 14). According

to recent research, the cyclization modes of circRNAs can be

divided into intron cyclization and exon cyclization. There are

several explanation models for the cyclization mechanism of

circRNA: lariat-driven circularization (9, 15–19) (Figure 1A),

intron reverse complementary sequence driven cyclization (9,
frontiersin.org
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FIGURE 1

The biogenesis process and function of circRNA. (A) Lariat-driven circularization: During splicing of mRNA precursors, exon skipping produces a
lariat intermediate containing both exons and introns. This intermediate will be reverse spliced and introns will be removed to form ecircRNAs.
(B) Some introns on either side of one exon of a circRNA contain reverse complementary sequences. the RNA duplexes form two different
types of circRNAs by variable splicing: circRNAs with introns and without introns, or introns within and on either side of one exon, which can
compete for RNA pairing. (C) CiRNAs model. CiRNAs are generated by splicing reactions of introns. GU-rich elements near the 5’-splice site and
C-rich elements near the branching site stabilize CiRNAs to avoid splicing. (D) RNA-binding proteins (RBPs) drive the cyclization of circRNAs.
RBPs facilitate the formation of circRNAs by bridging the two sides of introns together. (E) CircRNAs act as endogenous competitive RNAs or
miRNA sponge in cytoplasm. (F) CircRNAs act as protein sponge or protein storage library. (G) CircRNAs regulate splicing. (H) CircRNAs regulate
transcription. (I) Translation function of circRNA.
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20, 21) (Figure 1B), ciRNAs model (22) (Figure 1C), and RNA

binding protein driven cyclization (23, 24) (Figure 1D).

At present, the functions of circRNAs as endogenous

competitive RNAs or miRNA sponge in cytoplasm are wide

studied (Figure 1E). Competitive endogenous RNAs (ceRNAs)

contain shared miRNA response elements (MRE), such as

mRNAs, pseudogenes, and LncRNAs), enabling them to

competitively bind miRNAs. CircRNAs with the same specific

miRNA binding site may regulate the activity of competing

endogenous RNA, thereby interfering the effect of miRNA on its

target through competitive miRNA binding (14). Cerebellar

degeneration‐related protein 1 antisense RNA (CDR1as), also

known as circular RNA sponge for miR-7 (ciRS-7), was reported

to antagonize miR-7 availability (25). By targeting different

miRNAs and mRNAs, circRNAs are involved in the

pathogenesis of a variety of diseases, including neurological

diseases (26), psychiatric diseases (27), autoimmune diseases

(28), cardiovascular diseases (29, 30), cartilage degenerative

diseases (31, 32), diabetes (33, 34), pulmonary fibrosis (35, 36),

and various cancers (10, 37–39).

CircRNAs can also function as a protein sponge or protein

storage library (Figure 1F). For example, circMBL can play a

crucial role in balancing the expression levels of MBL mRNA

and circMBL by isolating the excessive MBL protein (40).

CircRNAs regulate alternative splicing or transcription

(Figures 1G, H). Back spliced of circRNAs may compete with

linear spliced pre-mRNA for splicing sites. For example, the

circMBL generated from the second exon of MBL has MBL

binding sites flanking the intron (40). Thus, MBL level

significantly affects circMBL biogenesis. Nuclear EIciRNAs

with intronic sequences from parental genes, such as circEIF3J

and circPAIP2, can interact with U1 small nuclear

ribonucleotide proteins (snRNPs) and then bind to RNA

polymerase II (Pol II) on the promoter of the parental gene,

thereby enhancing gene expression (41). Besides, knocking

down the expression of ElciRNAs has the potential to reduce

the transcription of their parental genes (41).

Since the ring structure of circRNA is formed by attaching its

3’-end with 5’-end through a unique back splicing, reducing

essential translation elements such as 5’-caps and poly-A tails,

resulting in the blocked translation of most circRNAs. However,

some circRNAs, such as circZNF609, circMb1, circ-FBXW7,

circPINTexon2, and circ-SHPRH (42–47), exerted their

regulatory functions as polypeptides translated by ribosomes at

internal ribosome entry sites (IRESs) or by incorporating with

m6A ribonucleic acid in the untranslated region (UTR) on the

5’-end (48–53), thus exerting their regulatory functions

(22) (Figure 1I).

With the rapid development of bioinformatics, thousands of

circRNAs in humans have been identified. CircRNAs have

unique characteristics and a broad range of functions. As new

important participant in the ncRNA network, circRNAs have

been identified as key regulatory factors in various cancers.
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Based on existing knowledge of HNSCC characteristics, we

assumed that circRNAs may play a possible role in various

aspects of HNSCC.
CircRNAs regulate tumor
cell proliferation

Cancer cells can synthesize and respond to growth factors

(GFs), which in turn promote their own proliferation, forming a

positive feedback growth signaling circuit (54), that is,

continuous proliferation signal stimulation and infinite

division. This is the basis of tumorigenesis.

More than 90% of HNSCC patients were tested positive for

epidermal growth factor receptor (EGFR) (55), which is highly

expressed in a variety of solid tumors and triggers an

intracellular growth factor transduction cascade to regulate cell

growth (56, 57). EGFR is overexpressed in HNSCC and can

activate related pathways leading to the proliferation of cancer

cells (58). Previous studies have confirmed that circRNAs can

affect the proliferation of tumor cells by regulating the

expression of EGFR in lung cancer (59), colorectal cancer (60),

glioblastoma (61), melanoma (62) and other malignant tumors.

In oral squamous cell carcinoma (OSCC), hsa_circ_0005379 is

located in the upstream of EGFR. Overexpression of

hsa_circ_0005379 expression can inhibit the expression levels

of EGFR and phosphorylated EGFR, thus regulating the

proliferation of OSCC tumor cells (63) (Figure 2 and Table 1).

Overexpression of the circZNF609 can stimulate miRNA-134-

5P, and then up-regulate EGFR to promote the proliferation of

laryngeal squamous cell carcinoma (LSCC) cells and the

progression of LSCC (64) (Table 1).

C-Myc, a proto-oncogene and is highly expressed as a

biomarker in different types of cancer (65), is also an

important regulator for tumor cell proliferation. It has been

shown that the circRNA circ-NOTCH1 plays an important

regulatory role in the cell proliferation process of

nasopharyngeal carcinoma (NPC) by targeting the miR-34c-

5p/c-Myc axis (66) (Figure 2 and Table 1). Alternatively,

circCAMSAP1 facilitates the expression of SERPINH1, a

molecular chaperone closely associated with tumor

proliferation and metastasis, by improving its mRNA stability

through the 3’-untranslated region (3’UTR). High-level

expression of SERPINH1 can reduce the ubiquitination-

mediated degradation rate of c-Myc, boosting cell proliferation

and promotion of the occurrence of NPC (67) (Table 1). Wei

Zhao et al. suggested that circUHRF1 acts as a foam of mir-

526b-5p in OSCC, thereby positively regulating c-Myc,

promoting cell proliferation and tumorigenesis in OSCC (68)

(Table 1).

Nevertheless, tumor cells can evade from the supervision of

inhibitory growth signals by blocking the expression or

activation of tumor suppressors. MiR-7 is a tumor suppressor
frontiersin.org
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that regulates a variety of biological processes. In LSCC, the

expression of CDR1as is negatively correlated with that of miR-

7. Induced overexpression of CDR1as can promot the

proliferation of two LSCC cell lines (Hep2 and AMC-HN-8).

These effects, however, can be eliminated by knocking down

CDR1as or overexpressing miR-7. This suggests that CDR1as

acts as the miR-7 sponges. Further in vivo experiments showed

that overexpression of CDR1as can upregulat Cyclin E1

(CCNE1) and PIK3CD, the key targets of miR-7, in Hep2 and

AMC-HN-8 cells, increasing tumor proliferation index and

facilitating tumor growth (25) (Figure 2 and Table 1).
CircRNAs regulate tumor cell cycle

Multiple anti-proliferative signals serve to maintain cellular

quiescence in normal cells (54) by blocking cell proliferation in

the manner of cell cycle arrest (69). Phosphatase and tensin

homolog gene (PTEN), is a tumor suppressor that induce cell

cycle arrest, mostly at G1phase in tumor cells (70). While the

germline mutations in PTEN substantially increase the risk of

cancer (71). CircANTRL1 may act as a sponge for miR-23a-3p to

promote PTEN expression and induce cell cycle arrest,

ultimately contributing to improvement of radiosensitivity in

OSCC (72) (Figure 2 and Table 1). Research also showed that

silencing hsa_circ_0006232 in LSCC can enhance the expression

of PTEN in tumor tissues and affect the process of LSCC (73)

(Table 1).
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In addition to regulation of anti-proliferative signals,

circRNAs can regulate tumor growth by modulating cell cycle

mediators. Cyclin D1, a cell cycle regulator protein encoded by

CCND1, promotes the G1-S transition by activating cyclin

dependent kinases 4 (CDK4) or cyclin dependent kinases 6

(CDK6). The expression level of circMYLK in LSCC carcinoma

tissues was significantly higher than that in adjacent para-

cancerous tissues, can increase the level of cell cycle protein

D1 in Tu-177 cells (LSCC cell line) through miR-195/cyclin D1

axis, accelerate the G1-S transition of cells, and then promote the

proliferation of tumor cells (74) (Figure 2 and Table 1). Yan et al.

showed that circ-CCND1 can increase CCND1 levels and

promote LSCC cancer cell proliferation by interacting with

HuR and miR-646 (75) (Table 1). Kuang et al. suggested that

in OSCC, circ_0000745 promotes OSCC progression by acting

as a miR-488 sponge and by interacting with HuR proteins to

regulate the expression of CCND1 (76) (Table 1).
CircRNAs are involved in resistance to
tumor cell death

Apart from cell proliferation rate, cell death rate also

determines the number of cells (54). Apoptosis and autophagy

are the main mechanisms leading to cell depletion, and cancer

cells have the ability to resist these mechanisms (69).

Tumor cells can develop resistance to apoptosis by several

mechanisms. Mutations can result in the loss of pro-apoptotic
FIGURE 2

The regulatory roles of circRNAs in the occurrence and development of HNSCC.
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TABLE 1 Mechanisms of action and biological functions of key circRNAs involved in HNSCC.

CircRNAs Chromosome Gene Splicing Cancer Expression Targets/ Biological
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Potential
function

Gene
structure
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Therapeutic
target

– (63, 176, 177)

Therapeutic
target

(64, 178)

– (179)

Therapeutic
target

(67, 180)

Therapeutic
target

(68, 181)

Prognosis and
biomarker

(25, 182)

Therapeutic
target

– (183)

Therapeutic
target

(72)

Therapeutic
target

– (73, 176, 177)
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symbol type type effectors func

hsa_circ_0005379 chr10 GDI2 EIciRNAs OSCC down EGFR Oncogenic
functions

circZNF609 chr15 ZNF609 EIciRNAs LSCC up miRNA-134-5P
/EGFR

Promotes
proliferation

circ-NOTCH1 chr9 NOTCH1 EIciRNAs NPC up miR-34c-5p
/c-Myc

Oncogenic
functions

circCAMSAP1 chr9 CAMSAP1 EIciRNAs NPC up SERPINH1
/c-Myc

Oncogenic
functions

circUHRF1 chr19 UHRF1 EIciRNAs OSCC up miR-526b-5p
/c-Myc

Promotes
proliferation

circCDR1as chrX CDR1 EIciRNAs LSCC up miR-7 Promotes
proliferation

OSCC up miR-671-5p Promoted
autophagy

circANTRL1 chr10 ANTRL1 EIciRNAs OSCC down miR-23a-3p
/PTEN

Induce cell
cycle arrest

hsa_circ_0006232 chr6 TRERF1 EIciRNAs LSCC up PTEN Oncogenic
functions
t
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CircRNAs Chromosome Gene
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Expression Targets/
effectors

Biological
function
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Gene
structure
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Therapeutic
target

(74, 184)

Therapeutic
target

– (75, 176, 177)

– – (76, 176, 177)

Therapeutic
target

– (80)

Therapeutic
target

(81)

Therapeutic
target

– (83)

Therapeutic
target and
biomarker

(93)

Biomarker – (101, 176,
177)

Therapeutic
target

– (106)

Therapeutic
target

(107, 185)

Therapeutic
target

(108)

(Continued)
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circMYLK chr3 MYLK EIciRNAs LSCC up miR-195
/cyclin D1

Promotes
proliferation
accelerates cell cycle
transition

circ-CCND1 chr11 CCND1 EIciRNAs LSCC up miR-646/
CCND1

Accelerates cell cycle
transition

circ_0000745 chr17 SPECC1 EIciRNAs OSCC up miR-488/
CCND1

Induced cell cycle
arrest

has_circ_0055538 chr2 RMND5A EIciRNAs OSCC down p53/Bcl-2
/Caspase

Tumor
suppressor

circ_0005320 chr17 SEPT9 EIciRNAs OSCC up miR-486-3p
/miR-637

Oncogenic
functions

circ_0000218 – – – LSCC up miR-139-3p
/Smad3 axis

Oncogenic
functions

circPARD3 chr10 PARD3 EIciRNAs LSCC up PRKCI-Akt-
mTOR

Inhibit
autophagy

hsa_circ_0001766 chr7 PDIA4 EIciRNAs OSCC up miR-877-3p
/VEGFA

Oncogenic
functions

circRPMS1 – RPMS1 – NPC up miR-203, miR-
31,
and miR-451

Promote EMT,
Oncogenic functions

circEPSTI1 chr13 EPSTI1 EIciRNAs OSCC up miR-942-5p Promote EMT,
Oncogenic functions

circCORO1C chr12 CORO1C EIciRNAs LSCC up let-7c-5p Oncogenic functions
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CircRNAs Chromosome Gene
symbol

Splicing
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Cancer
type

Expression Targets/
effectors

Biological
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Potential
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circCRIM1 chr2 CRIM1 EIciRNAs NPC up – Prom
and

circ_0000140 chr1 KIAA0907 EIciRNAs OSCC down miR-31, LATS2 Tum

hg19_circ_0005033 – – – LSCC up miR-4521 Onco

circ_0109291 chr19 ZNF714 EIciRNAs OSCC up miR-188-3p Prom
resis

circGNG7 chr19 GNG7 EIciRNAs HNSCC down Ser78, Ser82 Tum

circ-PKD2 chr4 PKD2 EIciRNAs OSCC down miR-646, Atg13 Incre
sensi

circCUX1 chr7 CUX1 EIciRNAs HPSCC up caspase 1 Radi
toler

circBART2.2 – – – NPC up IRF3 Prom
escap

circFAT1 chr4 FAT1 EIciRNAs SCC up STAT3 Imm
envir

CircRNA, circular RNA; OSCC, oral squamous cell carcinoma; LSCC, laryngeal squamous cell carcinoma; NPC, nasopharyngeal cancers; HNSCC, he
cell carcinoma.
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regulators, most commonly in the p53 tumor suppressor gene

(54). B-cell lymphoma 2 associated X-protein gene (Bax) is

regulated by P53 gene and encodes B-cell lymphoma 2 (Bcl-2)

homologous water-soluble protein BAX, which promotes cell

apoptosis (77). Overexpression of Bax would antagonize the

protective effect of Bcl-2 and lead to cell death. Bax can also

regulate the expression of apoptotic protease activator 1 (Apaf-

1) and affect the mitochondrial apoptosis pathway (78). Apaf-1

ultimately regulates the caspase-family related proteins such as

caspase-3, the most important end cleaving enzyme in apoptosis

(79). When hsa_circ_0055538 was overexpressed in OSCC cell

lines SCC9 and CAL27 cells, the expression levels of p53, p21,

Bax, Apaf-1, caspase-3, and cleaved caspase-3 are increased,

while that of Bcl-2 is decreased. When hsa_circ_0055538 is

adjusted downward, the opposite result as above is obtained,

which suggests that hsa_circ_0055538 may regulate the

apoptotic process of OSCC tumor cells through the p53

signaling pathway (80) (Figure 2 and Table 1). Circ_0005320

knockdown can reduce the expression level of Bcl-2 and increase

the expression level of BAX by regulating mir-637/mir-486-3p,

thus promoting the apoptosis of OSCC cells (81) (Table 1).

Overexpression of Smad3 can promote apoptosis of many

human cancers (82). Circ_0000218 was highly expressed in LSCC

cells, while miR-139-3p was less expressed in LSCC cells and

negatively regulated by circ_0000218. Silencing of circ_0000218

has been shown to suppress LSCC cell viability and promote

apoptosis by negatively regulating miR-139-3p expression levels,

while the effects can be reversed by Smad family member 3

(Smad3) overexpression. Thus, circ_0000218 inhibition inhibits

the growth of LSCC by targeting the miR-139-3p/Smad3 axis (83)

(Figure 2 and Table 1).

Autophagy is a lysosome-dependent cellular degradation

program that maintains energy metabolic homeostasis by

eliminating toxic and potentially compromised cellular

components, providing a source of nutrition and energy for cell

survival in a starved state (84). Higher bioenergetic and nutritional

requirements of cancer cells than normal cells. In the advanced

process of malignancy, they may enable themselves to survive

under low nutrient and hypoxic conditions by inducing

autophagy (85). The signaling pathways involved in autophagy,

including mammalian target of rapamycin (mTOR),

phosphatidylinositol-3 kinase (PI3K)-protein kinase B (AKT)

and mitogen-activated protein kinases (MAPK)/extracellular

signal-regulated kinase (ERK), and protein kinase C iota type 1

(PRKC1) have been well established (86–88). Among them,

PRKCI is a member of the kinase C protein family and is

considered to be an important target for cancer therapy (89–

91). It has been shown that PRKCI inhibits autophagy and

promotes LSCC cell proliferation, migration, invasion, and

chemoresistance. Qu et al. found that a decreasing expression of

PRKCI in the U2OS cells (LSCC cell line) can enhance autophagy
Frontiers in Oncology 08
while suppress cell phenotype (92). In contrast, circPARD3 was

able to inhibit Akt and mTOR phosphorylation and suppress

autophagy in LSCC cells by activating the PRKCI-Akt-mTOR

pathway, promoting malignant progression and chemoresistance

in LSCC cells (93) (Figure 2 and Table 1). In OSCC, circCDR1as

was significantly increased in OSCC cancer tissues (94).

Transcription factor EB (TFEB), a major regulator of lysosomal

and autophagic function, is enhanced under hypoxic conditions,

and it can coordinate autophagosomal degradation by driving

autophagy and lysosomal gene expression (95). The expression

level of lysosomal-associated membrane protein 2 (LAMP2) also

steadily increases under hypoxic conditions. CircCDR1as can act

as a sponge for miR-671-5p to promote autophagy in cells under

hypoxic conditions, thereby inducing elevated levels of TFEB and

LAMP2 and regulating lysosomal function. CircCDR1as also

promotes hypoxia-induced AKT and inhibits mTOR activity,

suggesting that AKT/mTOR pathway and lysosomal activity

contribute to circCDR1as-induced activation of autophagy

under hypoxic conditions in OSCC (96) (Table 1).
CircRNAs regulate persistent
tumor angiogenesis

The growth of tumors is often accompanied by angiogenesis.

Vascular endothelial growth factor-A (VEGFA; also known as

VEGF) is one of the main factors driving the generation and

expansion of tumor vascular beds (97). Carbonic anhydrase 9

(CAIX) is involved in cancer angiogenesis under hypoxia (98).

Tumor cells produce carbon dioxide intracellularly, which enters

the extracellular environment by diffusion, resulting in a lower

extracellular pH. Extracellular carbon dioxide undergoes a

reversible hydration reaction in the presence of CAIX to produce

bicarbonate and release protons. Subsequently, bicarbonate is

transported into the cell by the Bt transporter protein, which

binds to intracellular protons to form H2O and CO2. To overcome

the lack of nutrients in tumor cells undera hypoxic state, vascular

endothelial growth factor A (VEGFA) promotes angiogenesis by

participating in the activation of intracellular pathways associated

with angiogenesis (99), and for tumor cells, angiogenesis is an

important process that promotes their metastasis (100). A recent

study showed that hsa_circ_0001766 is involved in the ceRNA

machinery in OSCC and plays an important role in OSCC cell

progression through the hsa_circ_0001766/miR-877-3p/VEGFA

axis (101) (Figure 2 and Table 1).

Activation of the janus kinase-2 (JAK2)/activator of

transcription 3 (STAT3) pathway has been reported to play a

key role in a variety of oncogenic processes, including

angiogenesis. In OSCC, circ_0005320/miR-486-3p or

circ_0005320/miR-637 axis can activate the JAK2/STAT3

pathway on OSCC cells and promote angiogenesis (81).
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CircRNAs regulate tumor invasion
and metastasis

It is reported that 90% of death in cancer patients are caused

by metastases rather than the primary tumor (102). During the

progression of most cancers, tumor cells can migrate from the

primary site, forming new colonies at distant sites. Epithelial-

mesenchymal transition (EMT) has been shown to be an essential

process in carcinoma cell migration and tissue metastasis (103).

EMT involves a process of cellular reprogramming that convert

epithelial cells into a mesenchymal-like phenotype. And this

process is characterized by the loss of epithelial surface markers

such as E-cadherin and the acquisition of mesenchymal markers

such as vimentin and N-cadherin (104, 105). It has been

demonstrated that circRPMS1 can act as a sponge for miR-203,

miR-31, and miR-451 to promote the deletion of E-cadherin and

the upregulation of N-cadherin and vimentin in the NPC cell line

C666-1 cells, thereby regulating the EMT and invasiveness of NPC

cells (106) (Figure 2 and Table 1). In OSCC, circEPSTI1 functions

as a sponge for miR-942-5p to activate EMT, which in turn

promotes migration and invasion of OSCC cells (107) (Table 1).

In addition, circCORO1C can bind to let-7c-5p and block it to

reduce the level of Pre-B-cell leukemia homeobox transcription

factor 3 (PBX3), thus promoting EMT and stimulating LSCC cell

invasion and migration in vitro and in vivo (108) (Table 1).

CircCRIM1 is overexpressed in NPC cells and distantly

metastasized NPC tissues, and it induces EMT during the

progression of NPC. When circCRIM1 expression was knocked

down in NPC cell lines S18 and HONE1, NPC cell morphology

changed from a spindle or elongated mesenchymal morphology to

an epithelial morphology. Meanwhile, the expression of the

epithelial marker E-cadherin was significantly increased and the

expression of the mesenchymal markers N-cadherin and

Vimentin were decreased in NPC cells, suggesting that

circCRIM1 has oncogenic potential and may be a marker for

predicting NPC metastasis (109) (Table 1). Circ_0000140 derived

from exons 7-10 of the KIAA0907 gene is downregulated in

OSCC tissues and negatively correlates with the prognosis of

OSCC patients. Further studies have shown that circ_0000140 can

bind to miR-31 and upregulate its target gene large tumor

suppressor kinase 2 (LATS2), thereby affecting the EMT of

OSCC cells (110) (Table 1).

Epithelial splicing regulatory protein 1 (ESRP1), also known

as RNA-binding motif protein 35A (RBM35A), is a key

component in the EMT process in malignant tumors (111–

114), and it has been shown to be one of the splicing factors

associated with EMT in tumor metastasis (8). The circUHRF1/

miR-526b-5p/c-Myc axis was found to promote ESRP1

transcript levels in OSCC, and ESRP1 was also identified to

target the flanking introns of circUHRF1 and accelerate its

cyclization, forming a circUHRF1/miR-526b-5p/c-Myc/TGF-
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b1/ESRP1 feedback loop in the EMT progression (68) (Figure

2 and Table 1).
CircRNAs regulate the
stemness of HNSCC

Cancer stem cells (CSCs) are a fraction of cancer cells that have

the ability to renew and initiate themselves, and are responsible for

the metastasis and spread of cancer cells in the body and the failure

of treatment (115–117). CircRNAs have been shown to regulate the

activity of tumor stem cells. CD133+ and CD44+ CSCs, also known

as TDP cells, isolated from LSCC cells and highly express the stem

cell markers Sex determining Region Y (SOX2) and octamer-

binding transcription factor 4 (OCT4), have enhanced

proliferation, migration, and colony formation, and are more

resistant to chemotherapy and radiotherapy (118). Compared

with parental cells, RNA sequencing of TDP cells showed 3684

differentially expressed circRNAs (p < 0.01, log2FC > 1) (119).

Among them, Hg19_circ _0005033 upregulated in TDP cells, and

acted as a sponge for miR-4521 to upregulate the target STAT5A

expression thus inducing stem cell-like cells (120). Therefore,

Hg19_circ_0005033 may support the stem cell properties of

CD133+ CD44+ laryngeal CSCs through miR4521/STAT5A axis,

which needs to be verified by further studies. SOX2 has been shown

to regulate self-renewal and tumorigenicity of stem cell-like cells in

HNSCC (121) (Figure 2 and Table 1). In nude mouse models with

HNSCC, circFat1 KD can significantly inhibit SOX2 + cells and

tumor stemness (122).
CircRNAs regulate chemotherapy and
radiation therapy resistance in tumors

For the treatment of locally advanced disease, radiation

therapy is used as an adjunct to surgery or in conjunction with

chemotherapy (2). However, acquired chemotherapy resistance is

one of the main reasons for treatment failure in patients with

advanced tumors (123). ATP-binding cassette B1 (ABCB1) is a

multidrug resistance-associated protein that is highly expressed in

resistant cell lines and can promote chemotherapy resistance by

pumping intracellular drugs extracellularly (124, 125). Therefore,

inhibition of ABCB1 expression is an effective way to reduce

tumor drug resistance (126). Circ_0109291 promotes cisplatin

resistance in oral squamous carcinoma by regulating ABCB1

expression mainly through adsorption of miR-188-3p. This

provides a theoretical basis for reducing the incidence of drug

resistance in OSCC (127) (Figure 2 and Table 1). Heat shock

protein 27 (HSP27, also known as HSPB1), is a member of the

small heat shock protein superfamily with Phospho-HSP27

(Ser15), Phospho-HSP27 (Ser78), and Phospho-HSP27 (Ser82)
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receptor sites (128). The function of HSP27 is regulated by post-

translational phosphorylation (129, 130). HSP27 enhances

multidrug resistance in tongue squamous cell carcinoma

(SCCT) by activating NF-kB (131). In LSCC, HSP27

overexpression creates cellular resistance to various cellular

agents, such as cisplatin and staurosporin, by inducing cell cycle

arrest and remodeling actin polymerization associated with drug

uptake, respectively (132). CircGNG7 can block the

phosphorylation sites of Ser78 and Ser82 and inhibit the

phosphorylation of HSP27 in HNSCC, thus inhibiting the

phosphorylation of HSP27 in the malignant signaling cascade,

which may therefore reduce the chemotherapeutic resistance of

HNSCC (133) (Table 1). In addition, in OSCC, circ-PKD2 is a

tumor suppressor gene that promotes autophagy related 13

(Atg13) expression by sponging miR-646, thereby accelerating

cisplatin sensitivity (134) (Table 1).

Radiotherapy tolerance is also an important prognostic

predictor for patients with HNSCC (135). CircCUX1,

upregulated in patients with radiation-resistant hypopharyngeal

squamous cell carcinoma (HPSCC), predicts poor survival

outcomes. CircCUX1 binds to caspase 1 (a member of the

caspase aspartate-specific protease family, also known as

interleukin-1 b invertase) (136) mRNA and inhibits its

expression, thus modulating the inflammatory response of

tumor cells to radiation therapy and thereby producing

radiation therapy tolerance (135) (Figure 2 and Table 1).
CircRNAs regulate immune escape

The programmed cell death-1/programmed cell death

ligand-1 (PD-1/PD-L1) signaling pathway is an important

mechanism mediating tumor immunosuppression (137, 138).

PD-L1 is often expressed on the surface of tumor cells and

immunosuppressive cells, and interacts with PD-1 on T cells,

thus preventing tumor antigen-specific T cells from activating

and killing tumor cells and leading to tumor immune escape

(139–144). It has been shown that circBART2.2, which is highly

expressed in NPC, can activate the transcription factors

interferon regulatory Factor 3 (IRF3) and nuclear factor

kappa-B (NF-kB) upon binding to the decapping enzyme

region of retinoic acid inducible gene protein I (RIG-I), which

promotes the transcription of PD-L1 and thus leads to tumor

immune escape (122) (Figure 2 and Table 1).

Juan Sun et al. proposed the following hypothesis:

hsa_circ_001859, hsa-circ_001373, and hsa_circ_002179 may

regulate the expression of PD-L1 and immunosuppressive

molecule IL-10 through the ceRNA network to affect the

immune evasion of LSCC, and then affect the degree of

malignancy of LSCC. This hypothesis is likely to represent an

important mechanism of immune evasion in LSCC, however,
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this hypothesis needs to be tested by large-scale scientific studies

in the future (145).
CircRNAs regulate tumor
microenvironment

Since 1989, the association between cancer and the tumor

microenvironment (TME) has received increasing attention with

the “seed and soil theory” hypothesis proposed by Stephen Paget

(146, 147). Growing amount of evidences have confirmed that

tumor cells must recruit and reprogram surrounding normal

cells in order to promote tumor progression (148). TME is

mainly composed mainly of stromal cells and extracellular

matrix (ECM) components. Stromal cells include immune

cells, cancer-associated fibroblasts (CAFs), endothelial cells,

and pericytes.

ECM is a highly dynamic structural network consisting of

many stromal components bearing continuous remodeling

mediated by several stromal degrading enzymes during

tumorigenesis and progression (149). The protease matrix

metalloproteinases (MMP) family supports the tumor cell

invasion toward the basement membrane and stroma, the

penetration of blood vessels, and metastasis by interacting with

macromolecules on the basement membrane to degrade and

stimulate ECM remodeling (150). Silencing of circZNF609

inhibited the proliferation and invasiveness of LSCC cells, and

significantly increased the expression of MMP-2 protein (64),

which may affect the degradation and remodeling of ECM in

LSCC (Table 1). Moreover, in other tumors, like gastric cancer

cells, protein expression levels of VEGF and migration-associated

proteins MMP-2 and MMP-9 were significantly reduced after

knockdown of circ-0000096, suggesting that circ-0000096 may

affect cell growth and migration by regulating stromal remodeling

and angiogenesis (151), as well as the TME. CircLMNB1, which is

highly expressed in colorectal cancer (CRC), can downregulate

MMP-2 and MMP-9 expression and inhibit EMT when its

expression is knocked down, thereby affecting tumor

dissemination and invasion (152). Silencing circDENND4C

under hypoxic conditions downregulates the protein expression

levels of MMP-2 and MMP-9 (153). All these provide a basis for

future studies on the changes of TME in HNSCC.

Growing evidence suggests that the innate immune cells

(macrophages, neutrophils, dendritic cells, innate lymphocytes,

myeloid suppressor cells, and NK cells) as well as adaptive

immune cells (T cells and B cells) contribute to tumor

progression when present in TME (154). HNSCC is well known

for having an immunosuppressive TME with low number of

tumour infiltrating lymphocytes (155). In particular, the

infiltration of CD8+ T cells into the TME was low. Increasing

the expression of circFAT1 in HNSCC can significantly increase
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the infiltration of CD8+ T cells into tumors, which is an important

molecular mechanism mediating the immunosuppressive

environment of HNSCC (122) (Figure 2 and Table 1).

CircRNAs can interact with stromal cells, fibroblasts, and

endothelial immune-related molecules in the TME of a variety of

tumors, as well as various immune cells such as macrophages

(156). However, the key role of more circRNAs in the TME of

HNSCC is a challenge to be faced in the future.
Discussion

There are growing evidences that circRNAs have great

potential in the diagnosis, treatment and prognosis of HNSCC.

It is worth mentioning that regulatory effects of circRNAs

described in our review are not independent of each other, but

is usually closely related to various biological behaviors of cancer

cells. For example, circZDBF2 promotes malignant cell behavior

in OSCC, including cell proliferation, invasion, migration, and

EMT processes (157). Upregulation of circRNA_100290

expression promotes proliferation, migration and invasion of

LSCC cells while inhibiting apoptosis (158).

Current studies mostly focus on the clarification of

mechanism of circRNAs based on full transcription sequencing

of cancer tissues and normal adjacent tissues, and lack of circRNA

expression data at the single-cell level of HNSCC. And these

studies may be crucial for our future insight into circRNA

function and advance the development of new biomarkers.

However, to date, only a small number of functional circRNAs

identified in HNSCC. Most of these circRNAs regulate the

progression of HNSCC through miRNA sponge function. In

addition, circRNAs interact with functional proteins, some of

which have protein-coding potential. For example, circGNG7

mentioned in this paper can bind to serine residues 78 and 82

of HSP27 to reduce carcinogenic signal transduction.

Recent studies have also shown that circRNAs can regulate

immune metabolism of HNSCC, and circ_0008068 may affect

glycolysis by targeting mir-153-3p/acylglycerol kinase (AGK)

axis and facilitate the CD8+ T cell response (159). It provides a

better understanding of the interaction between HNSCC cellular

immunity and metabolic rate, and we look forward to opening

up new immune-related therapies for HNSCC. The potential

network of circRNAs-RBPs and other functions of circRNAs in

HNSCC have important research value and potential application

value. It is expected that circRNAs can be used as important

biomarker for clinical diagnosis and treatment of HNSCC.

Studies have shown that circRNA has great potential in

diagnosing pathological types of lung cancer (160) and

molecular subtypes of breast cancer (161). Moreover,

hsa_circ_0000190 and 0001649 could be used as biomarkers to

predict recurrence and treatment response in patients with

OSCC (162). CircRNAs have the advantages of high

abundance and good stability, and can be detected in body
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fluids and blood (163, 164), so it can be used as ideal diagnostic

and predictive biomarkers for HNSCC diagnosis. In addition,

Zhuo et al. analyzed the diagnostic value of various RNAs in

hepatocellular carcinoma and with result showing that circRNAs >

lncRNAs > microRNAs (165).

CircRNAs have shown great potential as therapeutic

molecular tools in many cancers such as HNSCC (110, 166,

167), breast cancer (168), hepatocellular carcinoma (169),

papillary thyroid cancer (170) gastric cancer (171). Compared

with existing linear miRNA antagonists, circRNAs are

structurally more stable, more resistant to degradation by

nucleases without chemical modification, and well tolerated in

vivo (172). The knockdown of oncogenic circRNAs in preclinical

animal models validated circRNAs RNAi effect on tumor

treatment (169, 173, 174). Some researchers have attempted to

design and synthesize tumor suppressive circRNAs in vitro for

delivery into disease models to explore the potential of circRNA-

like drug development. In the treatment of heart disease (172)

and gastric malignancies (175), engineered circRNAs were

delivered to in-vivo and in-vitro disease models to reverse

pathogenic mechanisms. CircRNAs will be better diagnosis

and treatment targets for HNSCC patients, which will benefit

for the translation of basic to clinical medicine.

In conclusion, although the technical challenges concerning

circRNAs have not been fully overcome yet, with the

development of biological methods, informatics techniques,

and further research, we will gain more and more

understanding of the physiological functions and roles of

circRNAs. The new diagnostic and therapeutic strategies for

HNSCC based on circRNAs will effectively serve for the clinical

work in the future.
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