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Over the last 20 years, granulocyte colony-stimulating factors (G-CSFs) have

become the major therapeutic option for the treatment of patients with

neutropenia. Most of the current G-CSFs require daily injections, which are

inconvenient and expensive for patients. Increased understanding of G-CSFs’

structure, expression, and mechanism of clearance has been very instrumental

in the development of new generations of long-acting G-CSFs with improved

efficacy. Several approaches to reducing G-CSF clearance via conjugation

techniques have been investigated. PEGylation, glycosylation, polysialylation,

or conjugation with immunoglobulins or albumins have successfully increased

G-CSFs’ half-lives. Pegfilgrastim (Neulasta) has been successfully approved and

marketed for the treatment of patients with neutropenia. The rapidly expanding

market for G-CSFs has increased demand for G-CSF biosimilars. Therefore, the

importance of this review is to highlight the principle, elimination’s route, half-

life, clearance, safety, benefits, and limitations of different strategies and

techniques used to increase the half-life of biotherapeutic G-CSFs.

Understanding these strategies will allow for a new treatment with more

competitive manufacturing and lower unit costs compared with that

of Neulasta.
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Highlights
Fron
• Most of the current G-CSFs require daily injections,

which are inconvenient and expensive.

• Different strategies have been used to overcome the

short half-life of the first-generation rhG-CSFs.

• Understanding of G-CSF structure, expression, and

mechanism of action on neutrophils may contribute to

development of safe long-acting G-CSF therapies for

patients with neutropenia.
1 Introduction

In 1991, filgrastim (FIL; NEUPOGEN®) was the first

recombinant human granulocyte colony-stimulating factor

(rhG-CSF) used for hematopoietic progenitor cell (HPC)

mobilization. Filgrastim is a non-glycosylated G-CSF form

produced in E. coli. It has a molecular weight of approximately

18.8 kDa and contains a methionine group at its N-terminus. It

was the first G-CSF medicine approved by the United States

Food and Drug Administration (US FDA) for treating

neutropenia for various indications (1–3). Filgrastim is

indicated to decrease the neutrophil recovery time and the

duration of fever in patients with acute myeloid leukemia. It

can be used in patients with cancer receiving myelosuppressive

chemotherapy (MSC) to reduce the incidence of infection and

prevent febrile neutropenia (FN). Filgrastim is also used to

reduce neutropenia in patients with non-myeloid leukemia

who are undergoing myeloablative chemotherapy followed by

bone marrow transplantation. In addition, filgrastim has been

approved to treat hematopoietic syndrome of acute radiation

syndrome (the treatment plan for patients acutely exposed to

myelosuppressive doses of radiation). It is the most commonly

used growth factor for the mobilization of autologous HPCs into

the peripheral blood (4). It has a short half-life (between 3.5 and

3.8 h on average), with filgrastim concentration and neutrophil

count being the factors of clearance. The drug is cleared by the

kidney (5–8).

Lenograstim is another first-generation rhG-CSF. It is

produced from Chinese hamster ovary cells and has a single

O-glycosylated form at position Thr-133 (9). It also has a short

half-life similar to that of filgrastim, with the O-linked providing

stability by shielding the cysteine-17–containing sulfhydryl

group from oxidation by free radicals (5, 10). It was assumed

that lenograstim may show clinical benefits over filgrastim,

although an in vivo comparative study exhibited no differences

between the two rhG-CSF products (11).

Tbo-filgrastim is another short-acting G-CSFs that produced

by recombinant DNA technology using the E. coli K802
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bacterium strain. It is a non-glycosylated recombinant

methionyl human granulocyte colony-stimulating factor. It is

composed of 175 amino acids and has a molecular weight of

approximately 18.8 kDa. Tbo-filgrastim was approved by the

European Union as a biosimilar to filgrastim in 2008. Four years

later, US FDA had approved tbo-filgrastim as a biologic product

with one similar indication to filgrastim (12, 13).

To overcome the short half-life of the first-generation rhG-

CSFs, different strategies have been employed to increase G-CSF

half-life, which include increasing the molecular weight by

conjugation with another moiety such as glycosylation,

polysialation, and PEGylation to overcome rapid elimination

by renal filtration. In addition, using the mechanism of neonatal

fragment crystallizable (Fc) receptor (FcRn) recycling through

fusing several proteins with Fc portion of albumin or

immunoglobulin (14–16) (Table 1). These strategies have

successfully prolonged G-CSF half-life (40). This article

reviews the underlying principles, elimination’s route, half-life,

clearance, safety, benefits, and limitations of each of these

strategies from a chemical and structural standpoint.
2 Increasing the molecular weight of
G-CSF to extend its half-life

2.1 Polyethylene glycol

Conjugation with polyethylene glycol (PEG), known as

PEGylation, was first described in the 1970s by both

Abuchowski and Davis, who discovered that PEGylation

process may increase the longevity of different proteins and

improve their immunological properties, such as albumin and

bovine liver catalase (41). Consequently, studies have been

performed with a view to improving the PEG process,

resulting in PEGs with a wide range of molecular weights (42).

In 2003, a notable example is pegvisomant (recombinant

pegylated growth hormone antagonist), which was used to

treat patients with acromegaly (43, 44). Pegfilgrastim

(Neulasta®) is another PEGylated form of second-generation

rhG-CSF, and it is the only long-acting (once weekly) G-CSF

that has been approved by the FDA (Figure 1) (6, 45).

2.1.1 Pegfilgrastim (Neulasta®)
A single 20-kDa PEG molecule is covalently bound to the

recombinant N-terminal methionine (r-met) residue of rhG-

CSF Neupogen (Filgrastim) (Figure 1) (6, 45). Structurally, each

ethylene oxide of PEG can combine with two or three water

particles, increasing its water solubility (more hydrophilic) and

hydrodynamic radius. This increased molecule size to ~38.8

kDa, consequently decreasing renal clearance. Moreover, PEG

technology generates a hydrophilic protection that shields the

proteins from immunologic recognition and proteolysis (46, 47).
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2.1.1.1 Route of elimination, half-life, clearance, and safety

The addition of a PEG moiety to rhG-CSF reduces its renal

clearance via glomular filtration, making neutrophil-mediated

clearance the primary route of elimination (8). This elimination

route is started when pegfilgrastim binds to the G-CSF receptor on

the surface of neutrophil cells, causing the pegfilgrastim–receptor

complex to be internalized through endocytosis and then degraded

inside the cell (48). Following subcutaneous administration, the
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serum half-life of pegfilgrastim varies hugely depending on the

absolute neutrophil counts, with a range of 15 to 80 h. Forty-two

hours is the median serum half-life (8).

Pegfilgrastim has a neutrophil-induced self-regulating

clearance mechanism (48, 49). The clearance is dependent on

the neutrophil counts and body weights of the patients; the

clearance increases with an increasing number of granulocytes

and lower body weights (FDA-approved drug products).
TABLE 1 Long-acting G-CSF formulations are considered for increasing the in vivo residence time of G-CSF compared with native G-CSF,
filgrastim (rhG-CSF), and Neulasta.

Drug Technology (specific modification) Subcutaneous
elimination (half-life)

Stage of devel-
opment

References

Maxy-G34 Pegylated G-CSF with 5-kDa PEG residue attached
to 3 amino acids

Exhibited a median half-life
approximately 2.3 times that of Neulasta

Completed phase IIa (17)

Mecapegfilgramtim Covalently bonding a 19-kDa polyethylene glycol
(PEG) to the N terminus of filgrastim

55.99 h Completed phase III (18–21)

Leridistim Leridistim reacted with 30,000-MW methoxy-peg-
propionaldehyde (M-peg-ALD)

Elimination half-life from 7.8 to 33 h Completed phase III (18, 22–24)

Lonquex
Lipegfilgrastim

A recombinant methionyl hG-CSF which is altered
at the natural O-glycosylation site (i.e., threonine
134) using a technology of novel glycoPEGylation.

The average terminal half-life ranged
from approximately 32 to 62 h

phase III (25, 26)

Tandem molecule G-CSF–glycosylated linkers-G-CSF (approximatly 6–10 h intravenously
injected) three-fold longer circulating
half-life compared with native G-CSF
(1.79 h)

Preclinical (27, 28)

StimuXen
(Lipoxen)

Polysialation (attach poly Sialic acid to N-terminal
of G-CSF).

———– Preclinical (29)

3DHSA-G-CSF Domain III of human serum albumin fused to G-
CSF

Serum half-life (3.425 ± 0.098 h) in
comparison with native G-CSF (2.071 ±
0.037 h)

Preclinical (30)

ABD-GCSF Albumin-binding domain (ABD) fused to N
terminal end of G-CSF

Serum half-life (9.3 ± 0.7 h) in
comparison with Filgrastim (1.7 ± 0.1 h)

Preclinical (31)

Balugrastim Fusion of G-CSF N-terminal to the C-terminal of
recombinant serum human albumin

Median terminal elimination half-life ≈37
h compared with pegfilgrastim (≈45 h)

Completed
phase III

(18, 32–34)

G-CSF/IgG-Fc and
G- CSF/IgG-CH

Fusion of G-CSF to IgG1 and IgG4 (Fc and CH
domains), respectively.

A longer circulating half-life (five- to
eight-fold) than native G-CSF

Preclinical (35)

Eflapegrastim
(Rolvedon)

Fusion of G-CSF to the human IgG4 Fc fragment
via a 3.4-kDa PEG

36.4 h and has greater potency than
pegfilgrastim in chemotherapy-induced
neutropenic rats

Approved by the FDA (36–39)

Pegfilgrastim
(Neulasta®)

20-kDa PEG molecule is linked to the recombinant
N-terminal methionine (r-met) residue of rhG-CSF
Neupogen (Filgrastim)

15 up to 80 h Approved by the FDA (8)
FIGURE 1

Plan structures of pegfilgrastim. Covalently bound of a single 20-kDa PEG molecule attached to the recombinant N-terminal methionine (r-met)
residue of rG-CSF.
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Following chemotherapy-induced neutropenia, pegfilgrastim

remains in the blood until neutrophils begin to recover; as

neutrophil numbers increase, pegfilgrastim’s elimination

increases (49). The obvious clearance of serum is 14 ml/h/kg

(Cancer Care Ontario Drug Information: Pegfilgrastim).

The highest dose of pegfilgrastim reported in clinical trials

was 300 mcg/kg (50). Pegfilgrastim’s overdosage may result in

bone pain and leukocytosis. In case of overdose, patients should

be observed for signs and symptoms of toxicity and given general

supportive care as necessary (50, 51).

2.1.1.2 Benefits and limitations

The advantage of pegfilgrastim over filgrastim was its ability

to avoid renal clearance. However, it is still cleared via

neutrophil-mediated clearance (52), which is reliant on the

number of circulating neutrophils. Hence, pegfilgrastim’s

concentration remains high in serum during neutropenia and

begins to clear once the neutrophil starts to normalize.

Therefore, a single dose of pegfilgrastim is equal to seven daily

injections of filgrastim (53).

In addition to the high cost of PEGylated proteins (54), they

are usually excreted through the renal system without

undergoing primary biodegradation that causes renal toxicity

(55) as evidenced by the presence of PEG in bile (56) and

vacuoles in renal tubules (29). It has been shown that

PEGylation reduced the in vitro bioactivity of rhG-CSF to

two- or three-fold, mainly due to the structural changes in the

macromolecule that could attenuates its potency (57, 58).

Furthermore, administration of first dose of PEGylated

proteins could induce the production of anti-PEG

immunoglobulin M (IgM). However, upon the administration

of subsequent doses, liver Kupffer cells start to eradicate these

harmful IgMs (59).
2.2 Glycosylation

Glycosylation is a common enzymatic modification and refers

to the process of adding glycans to macromolecules (60).

Glycosylation increases the molecular weight of proteins,

improves thermal stability, and prevents proteolytic degradation.

The cell membrane surface of glycoproteins contains sialic acid,

which induces the overexpression of negatively charged

monosaccharides, thereby inhibiting the passage of glycoproteins

via charge repulsion alongside the glomerular filtration membrane

of the kidney and extending their circulatory half-life (61, 62).

Glycosylation might help to reduce the immunogenicity

of polypeptides by enhancing their solubility, shielding the

hydrophobic residues, and decreasing the possibility of

aggregation that may result of a stationary precipitate for

antibody recognition (63). An additional proposed theory

suggests that sialylation (sialic acid located at the terminal of
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glycan) shields peptides by reducing the visible surface area

that is exposed to antibody recognition sites. Darbepoetin

alfa was the first to report this mechanism (a recombinant

human erythropoietin analogue consisted of two N-linked

glycosylation sequences) (64, 65).

Different classes of protein glycosylation have been

identified, such as the addition of N-linked glycans, O-linked

glycans, glycosam inoglycans, phosphorylated glycans, and

formation of glycosylphosphatidylinositol anchors to peptide

backbones as well as residues of C-mannosylation-tryptophan

(60). However, the two major forms of glycosylation associated

with G-CSF are N-linked and O-linked glycosylation (66).

Understanding the forms and functions of the glycosylation to

G-CSF is essential for an optimal conjugation of glycosylation

moieties to G-CSF, as evidenced in lipegfilgrastim development.

O-linked glycosylation is a diverse protein glycan that is

naturally attached to the oxygen atom of hydroxyl groups (-OH)

of serine (Ser), threonine (Thr), or tyrosine (Tyr) residues within

a protein (60, 67). Nevertheless, no specific consent sequences or

motifs have been documented for this attachment. Furthermore,

it is unknown why certain Ser/Thr residues are oppositely

glycosylated to other residues. It is possible that the protein’s

alternative structure contributes to the glycosylation site’s

availability (64). The O-glycan biosynthetic pathways start in

the Golgi apparatus, where polypeptide GalNAc transferase

(GlcNAcT) catalyzes the transfer of the GalNAc moiety of

uridine diphosphate to the hydroxyl of Ser or Thr (68). Later,

a few glycosyltransferases can convert the resulting glycoprotein

into different core structures linked by different a- or b-
glycosidic linkages (69). O-linked glycosylation is found at

Thr-134 site of rhG-CSF and recognizable as the only site

altered with a single mannose, allowing glycoengineered

Pichia. Pastoris is used as a possible model for biotherapeutic

rhG-CSF production (70).

In N-linked glycosylation, an N-acetylglucosamine (GlcNAc)

residue attaches to the amide group of an asparagine residue. It

occurs in consensus sequences Asn-X-Ser/Thr, where X indicates

any residue except proline (Pro) (71). N-glycosylation has also

been observed at non-canonical motifs in some publications, many

of which were found in the conformation Asn-X-Cys (cysteine)

(72). N-glycosylation biosynthetic pathways start in endothelial

reticulum (Figure 2). An early attachment of a 9-mannose glycan

to the peptides of an N-linked glycan identifies it as a high

mannose type. The inclusion of N-glycans is critical for the

folding of newly synthesized proteins to be regulated. Following

the effective folding of newly synthesized proteins, the glycoprotein

migrates to the Golgi apparatus, where mannosidases remove the

mannose sugar group. Later, specific glycosyltransferases assist in

the binding of various monosaccharides into a developing glycan

chain. This hybrid type has a high mannose content (73). The

biosynthetic process in the Golgi apparatus is now complete, with a

fully sialylated glycan complex containing six sugars: mannose
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(Man), galactose (Gal), N-acetylglucosamine (GlcNAc), fucose

(Fuc), sialic acid (NeuAc), linked by different a- or b-glycosidic
linkages (recognized as a complex type) (74, 75).

The N-linked glycan terminal site contains sialic acid (N-

acetylneuraminic acid, NeuAc), characterized by a diverse

group of nine carbon-containing carbohydrates with a

negatively charged carboxylate (C1), and has been shown to

be critical in maintaining the half-life of several glycoproteins

in the bloodstream (74, 76, 77). Sialic acids can confer

glomerular filtration or blood cell charge repulsion due to

their negative charge and hydrophilicity, which may delay

glycoproteins in the blood circulation as evidenced in human

erythropoietin (78, 79).
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2.2.1 Application of N-linked glycan in G-CSF
drug development

O-linked glycosylation occurs most commonly at clustered

Ser or Thr residues, making N-glycan profiling more feasible

than O-glycan profiling, as evidenced by a universal

endoglycosidase. Peptide-N-glycosidase F catalyzes the

deglycosylation of most N-glycans and cleaves 9-high-

mannose, hybrid, and complex monosaccharide chains but has

not been identified forO-glycan (80, 81). Hence, N-linked glycan

is preferred in several technologies of protein modification and

biopharmaceutical functioning (82, 83). Recent strategies of N-

linked glycan can be classified into site-directed mutagenesis and

glycosylated linker.
A

B

FIGURE 2

Biosynthesis and structure of O- and N-linked glycans. (A) Initial biosynthetic pathway of O-glycans with an O-GalNAc moiety starts in the
Golgi apparatus, where a GalNAc residue is attached by different polypeptide polypeptide GalNAc transferases (GlcNAcT). Later, a few
glycosyltransferases can convert the resulting glycoprotein into different core structures. (B) The biosynthetic pathway of the early input glycan
(9-mannose glycan) begins in the endothelial reticulum (Top). Then, glycoprotein migrates to the Golgi, where the mannose group is removed,
and other monosaccharides are added in a hybrid type process (mid). The biosynthetic process is then finished as a completely sialylated
glycan complex in the Golgi (Bottom). Man, mannose; Gal, galactose; GlcNAc, N-acetylglucosamine; Fuc, fucose; NeuAc, sialic acid; GalNAc,
N-acetylgalactosamine.
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2.2.1.1 Site-directed mutagenesis (glycoengineering)

Glycoengineering is a process of enhancing the properties of

therapeutic proteins through altering their glycosylation to

improve its pharmacokinetic and biological activity (84). One

of the most common methods for glycoengineering is DNA

mutagenesis. In vivo, additional glycosylation sites can be added

to DNA viamutagenesis. This can be performed, for example, by

detecting the third position of Thr/Ser residues in a protein’s

sequence and mutating the first amino acid to Asn or by

detecting Asn residues in a protein’s sequence and mutating

the third amino acid to Thr/Ser (85). Site-directed DNA

mutagenesis was used to generate new darbepoetin alfa, by

mutating Ala-30, His-32 to Asn-30, Thr-32, Pro-87, Trp-88,

Pro-90 to Val-87, Asn-88, and Thr-90. Alterations were found to

be glycosylated, with a molecular weight increase from 35 to

approximately 43 kDa while retaining biological activity (86). G-

CSF has also been performed to site-directed mutagenesis by

mutating Phe-140 to Asn-140, resulting in an N-linked

glycosylation site on rhG-CSF. This novel mutant was

exhibited to be glycosylated and had more efficiency at

stimulating hematopoietic cell proliferation and differentiation

than native G-CSF (16).

2.2.1.2 Glycosylated linker (tandem molecules)

The use of glycosylated linker is another approach for

increasing longevity and enhancing bioactivity of some
Frontiers in Oncology 06
therapeutic proteins in serum. Glycosylated linkers have been

shown to be incorporated between two ligands of the same

protein, as demonstrated in the development of recombinant

human follicle-stimulating hormone (rhFSH), where either an

O- or N-linked glycosylated linker was used between the a and b
subunits of rhFSH. As a result, glycosylated linker increased half-

life of the new tandem rhFSH by up to two-fold compared with

native FSH (87, 88).

To generate a long-acting G-CSF, the advantages of

glycosylated linker design have been used. Two G-CSF ligands

were linked via a flexible (Gly4Ser)n linker including different

glycosylation sites to form a tandem [G-CSF contains two

glycosylation motifs (G-CSF2NAT): G-CSF4NAT and G-

CSF8NAT] and their respective controls (QAT instead of

NAT; Q = glutamine, therefore, is not recognized by cell for

glycosylation). Using Western blot, the preclinical study

demonstrated an increase in the molecular weight of isolated

glycosylated G-CSF tandems compared with controls (Figure 3).

In comparison to rhG-CSF, all G-CSF tandems exhibit increased

bioactivity with two- to three-fold lower half maximal effective

concentration (EC50s) (27). After intravenous injection to rats,

G-CSF2NAT, G-CSF4NAT, and G-CSF8NAT, including two,

four, and eight glycosylation sites, respectively, exhibited a lower

rate of clearance in comparison to rhG-CSF (achieved a longer

circulating half-life, nearly three-fold compared with rhG-CSF)

(27). Although tandem G-CSF is still in the preclinical stage, we
FIGURE 3

Analysis of Western blot expressing and comparing G-CSF tandems and their controls. First lane, GCSF2QAT_control (2 × QAT). Second lane,
GCSF2NAT (2 × NAT). Third lane, GCSF4QAT_control (4 × QAT). Fourth lane, GCSF4NAT (4 × NAT). Fifth lane, GCSF8QAT_control (8 × QAT).
Sixth lane, GCSF8NAT (8 × NAT). Analysis of Western blot displays an obvious increase in molecular weight for glycosylated GCSF tandems
(GCSF2NAT, GCSF5NAT, and GCSF8NAT) when compared with non-glycosylated controls (GCSF2QAT, GCSF4QAT, and GCSF8QAT).
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point out that the use of glycosylated linkers is safer than the use

of site-directed mutagenesis to avoid mutating G-CSF itself,

which may affect the protein’s bioactivity.

2.2.2 Application of O- linked glycan in G-CSF
drug development
2.2.2.1 Lipegfilgrastim (Lonquex)

Lipegfilgrastim is novel long-acting G-CSF, site-specific

glycolpegylated r-metHu G-CSF formed by conjugation of a

single 20-kDa PEG–sialic acid (Sia) to the O-linked glycan

bound at the Thr-134 residue site of G-CSF, using the

technology of glycopegylation (Figure 4) (25, 89).

Lipegfilgrastim provides a therapeutic alternative to

pegfilgrastim but has more limited global distribution

(obtainable in Europe) and, therefore, less experience with its

use. Clinical trials of pegfilgrastim have been shown to have a

favourable competence and safety profile for prophylactic usage

in patients with cancer receiving chemotherapy and at risk of

severe neutropenia and may be preferred by both physicians and

patients over short-acting G-CSF due to enhanced adherence

and a simple once-per-cycle subcutaneous injection (90–92).

Lipegfilgrastim was found to be an effective option for reducing

the duration of severe chemotherapy-induced neutropenia and

preventing FN in older patients with aggressive B-cell NHL

receiving MSC (36). Although the current studies published for

lipegfilgrastim are still limited, there is an indication that it is a

promising treatment for chemotherapy-induced neutropenia.

2.2.2.1.1 Route of elimination, half-life, clearance,
and safety

Lipegfilgrastim has two different clearance pathways: a linear

pathway involving proteolytic enzyme degradation and a non-

linear pathway involving neutrophil-mediated clearance (93).

However, at higher doses, the elimination pathway by

neutrophil-mediated clearance is saturated, and its degraded

fragments may undergo renal clearance (26, 94). After a single

subcutaneous injection of 6 mg of lipegfilgrastim in healthy

individuals, the average terminal half-life ranged from 32 to 62 h,

which was 7–10 h longer for lipegfilgrastim 100 mcg/kg

compared with that reported for pegfilgrastim at 100 mcg/kg

(26). In phase I of a different multinational, open-label, single-

arm study of pediatric patients with the Ewing family of tumors

or rhabdomyosarcoma treated with MSC, the average evident
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clearance (CL/F) was nearly 70 ml/h for patients aged 2–6 years,

120 ml/h for patients aged 6–12 years, and 116 ml/h for patients

aged 12–18 years (94).

In studies on the safety of lipegfilgrastim in dogs and rats, a

single subcutaneous dose of 10 mg/kg was well tolerated.

Similarly, an intravenous dose of 250 mcg/kg was well effective

and tolerated in the renal excretion of rats. In a study of 139

patients, adverse events related to lipegfilgrastim occurred in 55

(39.5%) patients; bone pain and back pain were the most

common (95).

2.2.2.1.2 Benefits and limitation

It appears that glycolpegylation alters the pharmacokinetic

and pharmacodynamic profiles of lipegfilgrastim. In phase I

studies involving healthy volunteers, lipegfilgrastim at

subcutaneous dose of 6 mg demonstrated 64% greater

cumulative exposure and 36% greater peak exposure than

pegfilgrastim with the same dose. In addition to pegfilgrastim,

lipegfilgrastim had a longer half-life (geometric means, 32.4 h vs.

27.2 h, respectively). In a randomized, double-blind, phase III

trial, it was determined that lipegfilgrastim was non-inferior to

pegfilgrastim in terms of the duration of severe neutropenia in

patients with breast cancer (96, 97). Back pain and bone pain

were the only limitations, as mentioned previously.
3 Prolonged the serum half-life of
G-CSF using neonatal Fc receptor

One of the most common antibodies found in extracellular

fluids and circulation is immunoglobulin G (IgG). Although it

can directly protect the body from infections by activating its

antigen binding site, IgG immune functions are mostly mediated

through receptors and proteins expressed by special cell subsets

that bind to a region of IgG called Fc. The neonatal FcRn belongs

to a large family of Fc gamma (g) receptors (FcgRs) and has

become increasingly important on binding IgGs and albumin.

FcRn is known as a recycling receptor and has been shown to

bind and maintain IgGs and albumin in the blood circulation

and to bidirectionally transport both ligand molecules through

polarized cellular barriers (98).

In general, FcRn can attach to albumin and IgGs at the cell

membrane in a pH-dependent way. Because of the presence of
FIGURE 4

Plan structures of lipegfilgrastim. Conjugation of a single 20-kDa PEG–sialic acid (Sia) to a natural O-linked glycan moiety bound at the Thr-134
residue site of rG-CSF.
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histidines in albumin and IgGs, the imidazole group of histidine

protonates at a pH of 6.0 and binds to the FcRn receptor. The

FcRn–IgG or FcRn–albumin complex interaction is then

internalized and absorbed through the cell membrane,

protecting albumin or IgGs from lysosomal degradation (99–

101). The FcRn–albumin or FcRn-IgG complex is then recycled

to the blood circulation, where it is liberated when exposed to

physiological pH 7.4 (Figure 5) (102–104).
3.1 Application of human serum albumin
in G-CSF drug development

Human serum albumin (HSA) is the main protein produced in

the liver and serves a variety of physiological functions, including

bilirubin, fatty acids, ion transport, and regulation of colloid blood

pressure control. Because albumin is a massive protein (molecular

weight of 66.5 kDa and an average half-life of 19 days), it can be

used to conjugate with multiple recombinant proteins to prolong

their half-lives. Consequently, these conjugated proteins will

eventually acquire a molecular weight that is too large and

challenging for the kidney to filter, extending the residency time

of plasma proteins in the blood circulation (100, 105).

Later, the importance of carboxy-terminal domain III

human serum albumin (HAS) was recognized and genetically

merged with the N-terminus of rhG-CSF. As a result,

pharmacokinetic and pharmacodynamic experiments revealed

a longer circulating half-life and a high number of white blood
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cells (WBC) counts in neutropenic mice when compared with

rhG-CSF (30).

3.2 Fusion of G-CSF to immunoglobulins
(Fc and CH domains)

IgG1 and IgG4 immunoglobulins have a circulation half-life

of 23 days in serum and have been utilized to generate various

long-acting fusion proteins (106). As a result, immunoglobulins

were chosen as the ideal antibodies for Fc fusion proteins. They

are structurally made up of two identical heavy and light chains

that are linked via disulfide linkages. Both chains have two

regions: the antigen-binding fragment (Fab), an antibody’s head

portion, is essential for detecting immunogenicity, whereas the

Fc, an antibody’s tail component that interacts with a cell surface

receptor, is crucial to maintaining IgG circulation (106).

IgG immunoglobulin is composed of two fragment domains:

Fc (Hinge-CH2-CH3) and CH (CH1-Hinge-CH2-CH3). The

Hinge domain connects the Fc and Fab areas and allows for

more flexibility, and it has been reported that various

biotherapeutic proteins can be linked via the carboxy-termini

of human IgGs’ Fc (Hinge-CH2-CH3) and CH (CH1-Hinge-

CH2-CH3) domains (35). IgG fusion proteins are made and

released from mammalian cells as disulfide-linked homodimers.

This is because cysteine residues in the hinge region of IgGs form

inter-chain disulfide bonds with each other. Furthermore, the

dimeric structure of IgG fusion proteins increases their effective

size and circulation half-life (15, 35).
FIGURE 5

Proposed model of albumin to FcRn in a pH-dependent manner at the cell membrane. Green (domain I), blue (domain II), and red (domain III)
indicate the three domains of albumin. Domain III albumin binds to the FcRn receptor at an acidic pH of 6.0, protecting it from lysosomal
destruction, and then recycles to the blood circulation, where it is released when exposed to physiological pH 7.4.
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The carboxy-terminus of rhG-CSF has been fused to the

amino termini of the Fc (Hinge-CH2-CH3) and CH (CH1-

Hinge-CH2-CH3) domains of human IgG4 and IgG1

immunoglobulins, which are connected by a 7–amino acid

flexible linker (Ser-Gly-Gly-Ser-Gly-Gly-Ser) (Figure 6).

Fusions of rhG-CSF to the IgG domain resulted in

homodimers with a massive molecular weight, longer

circulation half-lives (approximately five- to eight-fold longer

than reported for native G-CSF), and a high number of

neutrophil counts in vivo, without affecting G-CSF bioactivity

in vitro (15, 35).

3.2.1 Eflapegrastim (Rolvedon)
Eflapegrastim (Rolvedon), a novel long-acting rhG-CSF, is

created by fusing the rhG-CSF to the Fc fragment of human

IgG4 via a PEG linker to increase G-CSF half-life (38, 107). The

findings suggested that the human IgG4 Fc fragment of

eflapegrastim interacts with FcRn, which is expressed on

various tissues including bone marrow, and thus reduces

eflapegrastim renal clearance, protects it from lysosomes, and

prolongs its retention in bone marrow (Figure 7) (108).

Preclinical studies of phase I and II pharmacokinetic and

pharmacodynamic data exhibited an increased potency for

neutrophil count for eflapegrastim compared with pegflgrastim

(40, 108, 109). Phase III results showed noninferiority and

analogous safety for eflapegrastim at a lower dose of G-CSF

compared with pegflgrastim. Therefore, eflapegrastim has a high

potential to provide improved clinical benefit and permit more

clinical studies in patients at higher risk for contrast-induced

nephropathy (37, 38). A recent study by Jeon et al. (2022)

showed that eflapegrastim has greater potency than
Frontiers in Oncology 09
pegfilgrastim in chemotherapy-induced neutropenic rats (39,

110). In September 2022, the US FDA approved eflapegrastim as

a prophylactic against infection, as evidenced by FN, in patients

receiving certain myelosuppressive anti-cancer drugs.
3.2.1.1 Route of elimination, half-life, clearance,
and safety

Eflapegrastim is not detectable in the urine after

subcutaneous dose administration (109). In patients with

breast cancer, eflapagrastim has a median half-life of 36.4 h.

Eflapegrastim clearance decreased with increasing dose,

indicating target-mediated clearance by neutrophils. Clearance

appears to increase with repeated dosing, possibly due to the

subsequent increase of neutrophils in the circulation (FDA-

approved drug products).

Leukocytosis and bone pain may result from an

eflapegrastim overdose. In this case, patients must be

monitored for these adverse effects, and general supportive

measures should be taken as required (FDA-approved

drug products).
3.2.1.2 Benefits and limitation

A study in rat models showed that eflapegrastim improved

clinical benefit and was associated with higher bone marrow and

serum concentrations than pegfilgrastim, which resulted in a

significantly shorter duration of neutropenia when administered

24 h after chemotherapy compared with pegfilgrastim (111).

Leukocytosis and bone pain due to eflapegrastim overdose are

considered the only limitations, as mentioned previously (FDA-

approved drug products).
A

B

FIGURE 6

Fusion of G-CSF to Fc and CH domains. (A) The carboxy-terminus of human GCSF is fused to the amino termini of the IgG-Fc and IgG-CH
domains by a 7–amino acid fixable linker (L). (B) The CH1, CH2, and CH3 sections of the IgG domains, as well as the hinge (H), are also shown.
The presence of disulfide bonds (SS) that occur between cysteine residues causes fusion proteins in the IgG hinge region to be dimeric (15, 35).
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4 Conclusion

All the long-acting G-CSFs in development rely on

pegylation, glycopegylation, conjugation to IgG fragments, or

serum human albumin (Table 1). Nonetheless, understanding

G-CSF structure, expression, and mechanism of action on

neutrophils may contribute to the development of a safe long-

acting G-CSF therapy for patients with neutropenia that

maintains the pharmacodynamic and pharmacokinetic of

pegfilgrastim (Neulasta), but with more competitive

manufacturing and lower unit costs compared with Neulasta

(the cost for Neulasta is $6,417.99* per dose as of 18

August 2021).
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