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Evaluation of the peritumoral
features using radiomics
and deep learning technology
in non-spiculated and
noncalcified masses of the
breast on mammography
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Fandong Zhang2, Jingxu Xu2, Ye Xu1, Yuanzhou Li1,
Jianghong Sun1* and Li Jiang3*

1Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China,
2Deepwise Artificial Intelligence Lab, Beijing Deepwise and League of PHD Technology Co., Ltd,
Beijing, China, 3Department of Oncology, Harbin Medical University Cancer Hospital, Harbin,
Heilongjiang, China
Objective: To assess the significance of peritumoral features based on deep

learning in classifying non-spiculated and noncalcified masses (NSNCM) on

mammography.

Methods: We retrospectively screened the digital mammography data of 2254

patients who underwent surgery for breast lesions in Harbin Medical University

Cancer Hospital from January to December 2018. Deep learning and radiomics

models were constructed. The classification efficacy in ROI and patient levels

of AUC, accuracy, sensitivity, and specificity were compared. Stratified analysis

was conducted to analyze the influence of primary factors on the AUC of the

deep learning model. The image filter and CAM were used to visualize the

radiomics and depth features.

Results: For 1298 included patients, 771 (59.4%) were benign, and 527 (40.6%)

were malignant. The best model was the deep learning combined model

(2 mm), in which the AUC was 0.884 (P < 0.05); especially the AUC of breast

composition B reached 0.941. All the deep learning models were superior to

the radiomics models (P < 0.05), and the class activation map (CAM) showed a

high expression of signals around the tumor of the deep learning model. The

deep learning model achieved higher AUC for large size, age >60 years, and

breast composition type B (P < 0.05).
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Abbreviations: AUC, area under the receiver operatin

BI-RADS, Breast Imaging Reporting and Data System;

map; GLCM, gray-level co-occurrence matrix; GLDM,

matrix; GLRLM, gray-level run-length matrix; GLSZM

matrix; NSNCM, non-spiculated and noncalcified m

operating characteristic; ROI, region of interest.
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Conclusion:Combining the tumoral and peritumoral features resulted in better

identification of malignant NSNCM onmammography, and the performance of

the deep learning model exceeded the radiomics model. Age, tumor size, and

the breast composition type are essential for diagnosis.
KEYWORDS

non-spiculated and noncalcified masses, mammography, peritumoral features, deep
learning, radiomics
Introduction

Breast cancer is a type of disease with high heterogeneity,

and its incidence has been increasing in many countries

worldwide (1). In low- and middle-income countries of Asia,

breast cancer has become a significant public health concern (2).

As one of the most effective breast cancer screening tools (3, 4),

mammography can reduce the mortality rate (5, 6). Breast mass

is one of the main signs that can be detected on mammography,

and differential diagnosis between benign and malignant lesions

is the focus of radiologists’ work (7). In practice, proper

preoperative breast mass evaluation can better assist clinicians

in making treatment decisions.

On mammography, spiculated masses are one of the apparent

signs of malignancy (8, 9). If calcifications accompany the mass,

additional information on the differential diagnosis may be

provided based on the types of calcifications (10, 11). However,

non-spiculated and noncalcified masses (NSNCM) are more

commonly detected on mammography. The mammographic

differential diagnosis is mainly based on morphology in clinical

practice. For instance, a circumscribed margin usually indicates a

benign mass. However, some malignant tumors present as

circumscribed masses on mammography (12, 13). Accurate

diagnosis of breast mass on mammography are still a challenge,

especially in early diagnosis of breast cancer (14).

Radiomics transforms medical images into high-

dimensional data through high-throughput quantitative feature

extraction (15), which is gaining importance in cancer research

(16). Furthermore, the imaging features can be automatically

extracted using deep learning technology to replace manually

designed features (17). For instance, studies on the classification

of masses on mammography have been reported, including

tumors with a spiculated margin or calcification (18–22).
g characteristic curve;

CAM, class activation

gray-level dependence

, gray-level size zone

asses; ROC, receiver
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However, mass imaging analysis only focuses on the

characteristics of the tumor itself (23–25).

Breast cancer consists of neoplastic cells and significant

a l t e ra t ions in the surrounding s t roma or tumor

microenvironment (26, 27). Tumors and the surrounding area

can be said to consist of spatially organized ecosystems, wherein

tumor cells and the immune contextures of the different

compartments are in dynamic interplay with potential clinical

effect (28). These histological changes are reflected in medical

images to varying degrees (29, 30). Few studies have focused on

the peritumoral features and classified mammographic

NSNCMs, although some papers have concerned classification

on ultrasound and magnetic resonance imaging (31, 32). The

objective of the present study was to evaluate the peritumoral

features based on radiomics and deep learning for the

classification of NSNCM on mammography.
Materials and methods

Patients

This retrospective analysis was approved by the Research

Ethics Committee of Harbin Medical University Cancer

Hospital (approval # KY2021-04). Due to its retrospective and

anonymous characteristics, required informed consent from

each participant was waived.

We retrospectively screened the digital mammography data

of 2254 patients who underwent surgery for breast lesions in

Harbin Medical University Cancer Hospital from January to

December 2018. Potential subjects with any of the following

were excluded: spiculated masses with or without calcification,

or non-spiculated masses with calcification; history of local

mastectomy or neoadjuvant therapy; breast biopsy before

examination; multiple masses; phyllodes tumor; fat-containing

masses; and masses near chest wall not fully included or blurred

mammograms due to inability to tolerate pressure. The endpoint

of interest was the postoperative pathological results of the

lesion, categorized as benign or malignant. For all included

patients, their pathological types were recorded.
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Data acquisition, segmentation, and
peritumoral region

The mammograms of included patients were obtained with a

full-field digital mammography system (MS-3500, Fuji, Japan;

Inspiration, Siemens, Germany). In the vast majority of cases,

images were acquired through the automatic exposure mode of

the device. But a few cases cannot be pressurized because the

mass is large or hard, experienced physicians used manual

exposure to obtain images. Conventional craniocaudal and

mediolateral oblique views were obtained. The examinational

pressure was based on the patient’s maximum tolerance.

Two radiologists manually segmented the tumoral region of

interest (ROI), and the segmentation tool used for annotation

was Deepwise Multi-modal Research Platform V1.0. The

attending radiologist had 8 years’ experience. For a mass with

a density different from the surrounding parenchyma, the ROI

was carefully delineated along the margin of the mass. If a mass

had no density difference with the surrounding parenchyma but

with a halo, the ROI was carefully delineated along with the

inner halo. If there was no density difference and no halo sign,

the margin was delineated as far as possible based on the convex

contour of mass. The tumoral ROI was reviewed and corrected

by an associate chief radiologist with 16 years’ mammographic

experience. Both two radiologists reached a consensus after

discussion for inconsistent cases.

Subsequently, the peritumoral region was automatically

generated. Firstly, the dilation processing of the morphological

image operation was used to expand the contour of the tumoral

region at a different range. Then, the peritumoral and combined

regions were obtained by subtracting and maintaining the

original tumoral region, respectively. Finally, the region of the

breast and pectoral muscles were automatically extracted by the

Otsu threshold method. Regions other than the breast and

pectoral muscles in the peritumoral range were removed to

obtain the final peritumoral region. Finally, 1 mm, 2 mm, 3 mm,

4 mm, and 5 mm were expanded (Figure 1).
Deep learning and radiomics models

The flow chart of the classification is shown in Figure 1.

Residual Network-based deep learning classifiers and logistic

regression-based radiomics classifiers (30-34) were separately

used to distinguish benign and malignant NSNCM. In the model

building, all cases were randomly divided into five sets with equal

proportions for five-fold cross-validation. We divided the training

set, the validation set and the test set in a 3:1:1 ratio (Figure 2). In

each fold, the five equivalent sets were taken as test set successively,

resulting in five test sets. The model with the highest AUC was

selected from the validation set as the final model, and the final

evaluation result of the model is the mean value of the 5 test sets.

The mammographic features were extracted from 3 types of
Frontiers in Oncology 03
regions (i.e., tumoral region, peritumoral regions with different

distances, and combined regions, including tumoral and

peritumoral regions) to train and validate the models, respectively.

Before fed into the ResNet model, each input mass image was

resized to 256 × 256 and normalized to mean value of zero and

standard deviation of one. In the training phase, data

augmentation methods of horizontally and vertically flipping

the image were employed. The ResNet structure adopted in this

study was the standard ResNet-34. We used a pre-trained weights

on about 1.3 million natural images of 1000 object classes from the

ImageNet database. The final classification layer (1000-way

softmax) of the pre-trained ResNet-34 was replaced with a

single output with sigmoid operation that predict the malignant

probability of the input mass image. The loss function was binary

cross-entropy loss. All the layers of the ResNet model were

optimized using an initial learning rate of 0.001 with a weight

decay rate of 0.00001. The learning rate was reduced by a factor of

0.1 after the validation loss plateaued for ten epochs. The

optimization was performed by the stochastic gradient descent

(SGD) optimizer with the momentum of 0.9. The training epoch

was set as 100 and the batch size was 64. We implemented the

networks using the open-source PyTorch (https://pytorch.org/)

deep learning framework. We used four Nvidia Titan Xp GPUs

for training acceleration. The training time of each batch was 0.4s

and the total training time of one fold was about 30 minutes.

To interpret how the deep learning model automatically

discriminates suspicious malignant lesions in the mammogram,

we used the class activation map (CAM) to visualize the model

features (33).

In the radiomics model, we used 6 calculation methods

provided by the open-source image toolbox Pyradiomics to

extract radiomics features (34). These radiomics calculations

consisted of the following: first-order statistics; shape (2-

dimensional); gray-level co-occurrence matrix (GLCM); gray

level run length matrix (GLRLM); gray level size zone matrix

(GLSZM); and gray level dependence matrix (GLDM). A total of

825 radiomics features were extracted from each region of interest.

To avoid model overfitting, the joint hypothesis test was used for

feature selection. When the linear correlation coefficient between

any 2 features was more significant than a threshold (0.9), the one

with less influence on the benign/malignant classification was

removed. Next, a logistic regression algorithm was employed to

construct a classification model, and L1 regularization was

introduced to mitigate overfitting further. Finally, we used

sensitivity, specificity, and receiver operating characteristic (ROC)

curves to assess the performance of different models, and model

analyses were performed at both the ROI level and the patient level.
Clinical characteristics analysis

Patients in each set were divided into 4 groups based on age

in years as follows: ≤20, 20–40,40–60, >60. Two radiologists
frontiersin.org
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respectively reviewed the mammographic views on the

specialized diagnostic workstation without knowledge of the

pathological diagnosis. Breast compositions were evaluated

and recorded using BI-RADS lexicon (35), including entirely
Frontiers in Oncology 04
fatty (type A); scattered areas of fibroglandular density (type B);

heterogeneously dense (type C); and extremely dense (type D).

The mass sizes were recorded and based on largest diameter

were analyzed as either ≤20 mm or >20 mm.
FIGURE 1

Overall flowchart of the method. Tumor region (red line). Peritumoral regions (lines with different colors outside red line). The radiomics and
deep models respectively for benign/malignant prediction.
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Statistical analysis

Patient and tumor characteristics were compared with two-

tailed two-sample t test for continuous variables and chi-square

cross-tabulation for categorical variables. In all experiments, five-

fold cross validation was performed for model evaluation. The

performance of all the models were evaluated by using the area

under the receiver operating characteristic curve (AUC). The

statistical significance for the difference among models

performance in AUC was assessed by the DeLong test using

dedicated in-house software written in python 3.6.10. All

statistical tests were two-sided, and P < 0.05 indicated significant.
Results

Participants

Overall, we screened 2254 patients while adhering to the

inclusion and exclusion criteria (Figure 2). Eventually, 1298

patients with NSNCM were included in the study, aged 45.7 ±

11.8 years. Among the included patients, the NSNCM of 771 and
Frontiers in Oncology 05
527, respectively, were benign and malignant. Among the benign

masses, there were 348 (254) cases of fibroadenoma (adenosis); 107

(36) cases of ductal papilloma (inflammation); and 25 (1) cases of

cyst (tubular adenoma). Among the malignant masses, there were

439 (61) cases of non-special (particular) invasive ductal carcinoma;

and 23 (4) cases of ductal carcinoma in situ (lymphoma).

There were significant differences in age, tumor size, and

breast composition type between the benign and malignant

groups (P < 0.001; Table 1). Specifically, the patients in the

benign group were mainly between 20 and 60 years old, while

those in the malignant group were mainly over 40 years old.

Benign tumors were mostly ≤20 mm, while most malignant

NSNCM were larger. The major breast composition type of

patients in the benign and malignant groups was type C.
Performance of radiomics models in
different regions

After correlation analysis and L1 regularization feature

selection, the initial 825 radiomics features of each ROI

significantly reduced redundant features. Finally, the modeling
FIGURE 2

Flow chart of inclusion and exclusion of patients and division of data set.
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features of the three radiomics models were respectively as:

tumoral features (n=88, tumoral radiomics model), peritumoral

features (n=107, peritumoral radiomics model), combined

features (n=130, combined radiomics model), which were

summarized in Table S1 (Supplementary material). As shown

in Figure 3, the internal texture features of malignant tumors

were complex, showing pixel gray and denser structure (red

in Figure 3).

For the prediction of all lesions, the AUC results using

features within different regions (tumoral, peritumoral,

combined) to predict benign and malignant NSNCM are

summarized in Table 2. At the patient level, the AUC of the

model with the tumoral region feature is 0.774. Regarding the

peritumor models, all the performances are comparable with

the tumoral model (P > 0.05). As for the models with combined

region, significant performances are achieved at a peritumoral

distance of 1 mm (AUC = 0.786, P = 0.046) and 2 mm (AUC =

0.793, P = 0.012), while others (3-5 mm) get comparable

results. The best performance is reached at a peritumoral

distance of 2 mm, for both the peritumor and combined

models. The AUCs at the ROI level suggest similar results

in Table 3.
Performance of deep learning models in
different regions

The benign/malignant classification performance of the pre-

trained network for all lesions under different conditions is

summarized in Table 4. At the patient level, the model with

the tumoral region achieved an AUC of 0.838. The performance

of model with a peritumoral distance of 2 mm (AUC = 0.861)
Frontiers in Oncology 06
was significantly better than the tumoral model (P = 0.033). The

performance of the models with a peritumoral distance of 3 to

5 mm were comparable to that of the tumoral model. The

performances of all the models with combined regions were

significantly better than that of the tumoral model. The best

performance is also reached at a peritumoral distance of 2 mm

for combined models (AUC = 0.884, P = 0.001), as in the

radiomics models. Similar comparison results are also presented

at the ROI level (Table 5).

The CAM analysis showed that our model after training was

responsive to the suspicious mass areas that exhibited changes,

which the radiologists also identified. The model feature

assessments of the CAM results are presented in Figure 4. The

deep features extracted from tumoral, peritumoral distances

of 1,2,3,4,5mm were shown respectively, representing the

highlighted activation area in the input image. In the

activation map, activation degree is denoted as continuous

pixel values, and in brief, red, yellow, and blue represent high,

medium, and low activation, respectively. In Figure 4-1, CAM

status of tumoral and peritumoral regions were observed on 8

patients with malignant masses, all the regions were correctly

predicted. While those of 6 patients with malignant masses

partially predicted correct were shown in Figure 4-2, tumoral

region predictions were wrong, and proximal peritumoral region

predictions as follows:1) regions of both 1 mm and 2 mm were

correct. 2) regions of 1 mm were wrong, regions of 2 mm were

correct. 3) regions of both 1 mm and 2 mm were wrong.

The models with the highest AUC under the two methods of

radiomics and deep learning were selected for detailed comparison.

We showed the ROC curves/AUC of the six models, and the

significance test of ACC, SEN and SPE among different models in

Figure 5. The ROC curve showed that the deep learning combined
TABLE 1 Clinical characteristics between benign and malignant NSNCM, n (%).

Total Benign Malignant c2 P a

Subjects, n 1298 771 527

Age, y 252.6 <0.001

≤20 18 (1.4) 18 (2.3) Nil

20-40 414 (31.9) 348 (45.1) 66 (12.5)

40-60 715 (55.1) 383 (49.7) 332 (63.0)

>60 151 (11.6) 22 (2.9) 129 (24.5)

Size, mm 61.701 <0.001

≤20 682 (52.5) 475 (61.6) 207 (39.3)

>20 616 (47.5) 296 (38.4) 320 (60.7)

Breast composition type b 61.399 <0.001

A 32 (2.5) 9 (1.2) 23 (4.4)

B 111 (8.6) 37 (4.8) 74 (14.0)

C 1083 (83.4) 666 (86.4) 417 (79.1)

D 72 (5.5) 59 (7.6) 13 (2.5)
frontiers
aChi-square test;
bBreast composition types: A, entirely fatty; B, scattered areas of fibroglandular density; C, heterogeneously dense; D, extremely dense.
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regions (2mm) model had the highest AUC and were significantly

better than all the other models (P < 0.05). All the deep learning

models were significantly better than the models based on radiomics

(P < 0.05). In the radiomics models, the combined regions (2mm)

model were significantly better than the tumoral model (P < 0.05),

while there was no significant difference between the other radiomics

models (P > 0.05). When considering ACC, SEN and SPE, all these

indicators of deep learning combined regions (2mm) model were the

highest, and were significantly higher than those of all other deep
Frontiers in Oncology 07
learning and radiomics models (P < 0.05) except for deep learning

peritumoral (2mm) (P > 0.05).
Influence of age, tumor size, and breast
composition type

Table 6 showed the AUC performance of the three deep

learning models in different tumor sizes, patient ages and breast
B

C

D

E

F

A

FIGURE 3

Significant radiomics features of masses in tumor ROI. Benign masses (A, B). Malignant masses (C–F).
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TABLE 2 Benign/malignant classification performance of radiomics models in patient level.

Size, mm AUC (95% CI) Sensitivity Specificity P *

Tumoral 0.774 [0.748, 0.799] 0.732 (386/527) 0.678 (523/771) Reference

Peritumoral 1 0.763 [0.737, 0.789] 0.725 (382/527) 0.660 (509/771) 0.276

2 0.774 [0.749, 0.800] 0.713 (376/527) 0.686 (529/771) 0.968

3 0.771 [0.745, 0.796] 0.713 (376/527) 0.684 (527/771) 0.748

4 0.772 [0.747, 0.798] 0.719 (379/527) 0.691 (533/771) 0.896

5 0.765 [0.739, 0.791] 0.708 (373/527) 0.676 (521/771) 0.365

Combined 1 0.786 [0.761, 0.811] 0.729 (384/527) 0.702 (541/771) 0.046

2 0.793 [0.768, 0.817] 0.772 (407/527) 0.673 (519/771) 0.012

3 0.775 [0.750, 0.801] 0.784 (413/527) 0.619 (477/771) 0.857

4 0.780 [0.754, 0.805] 0.740 (390/527) 0.669 (516/771) 0.437

5 0.770 [0.744, 0.795] 0.736 (388/527) 0.668 (515/771) 0.579
Frontiers in Oncology
 08
 fronti
* Compared with tumoral.
CI, confidence interval.
TABLE 3 Benign/malignant classification performance of radiomics models in ROI level.

Size, mm AUC (95% CI) Sensitivity Specificity P *

Tumoral 0.761 [0.744,0.778] 0.722 (780/1081) 0.653 (1457/2231) Ref.

Peritumoral 1 0.749 [0.732,0.766] 0.708 (765/1081) 0.654 (1458/2231) 0.116

2 0.762 [0.745,0.779] 0.727 (786/1081) 0.670 (1494/2231) 0.847

3 0.760 [0.743,0.777] 0.740 (800/1081) 0.645 (1438/2231) 0.899

4 0.759 [0.742,0.776] 0.692 (748/1081) 0.674 (1504/2231) 0.818

5 0.753 [0.736,0.770] 0.728 (787/1081) 0.634 (1415/2231) 0.317

Combined 1 0.775 [0.759,0.792] 0.721 (779/1081) 0.683 (1524/2231) 0.001

2 0.778 [0.762,0.795] 0.737 (797/1081) 0.682 (1521/2231) 0.002

3 0.770 [0.753,0.787] 0.765 (827/1081) 0.632 (1409/2231) 0.079

4 0.776 [0.759,0.792] 0.734 (793/1081) 0.666 (1485/2231) 0.009

5 0.767 [0.750,0.784] 0.721 (779/1081) 0.684 (1527/2231) 0.269
ersi
* Compared with tumoral.
CI, confidence interval.
TABLE 4 Benign/malignant classification performance of deep learning models in patient level.

Size, mm AUC (95% CI) Sensitivity Specificity P *

Tumoral 0.838 [0.815,0.861] 0.753 (397/527) 0.741 (571/771)

Peritumoral 1 0.805 [0.780,0.829] 0.744 (392/527) 0.721 (556/771) 0.005

2 0.861 [0.840,0.882] 0.776 (409/527) 0.796 (614/771) 0.033

3 0.849 [0.827,0.871] 0.812 (428/527) 0.738 (569/771) 0.22

4 0.834 [0.811,0.856] 0.763 (402/527) 0.764 (589/771) 0.738

5 0.847 [0.825,0.869] 0.769 (405/527) 0.759 (585/771) 0.28

Combined 1 0.865 [0.844,0.886] 0.808 (426/527) 0.789 (608/771) 0.003

2 0.884 [0.863,0.904] 0.820 (432/527) 0.817 (630/771) 0.001

3 0.860 [0.838,0.881] 0.801 (422/527) 0.780 (601/771) 0.006

4 0.872 [0.852,0.893] 0.810 (427/527) 0.785 (605/771) 0.001

5 0.863 [0.842,0.884] 0.786 (414/527) 0.803 (619/771) 0.005
* Compared with tumoral.
CI, confidence interval.
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composition types. The results showed that the AUC of the large

mass (diameter > 20mm) group was significantly higher than

that of the small mass (diameter ≤ 20mm) group (P < 0.05), and

the age > 60 group was significantly higher than that of 40 < age

≤ 60 and 20 < age ≤ 40 groups (P < 0.05). The AUCs of the

combined model in all the sizes and ages groups was higher than

or comparable with tumoral and peritumoral models. In

different breast composition types, the AUCs of group B was

significantly higher than other three types (P < 0.05) and group

C followed in both tumoral and combined models (P < 0.05).

While in peritumoral models, group A and B showed higher

performance and then the group C and D followed. From the

aspect of models, we noticed that the combined models showed

higher performance than tumoral and peritumoral models in

group B and C (P < 0.05), especially AUC of breast composition

type B which reached 0.941, while in the groups A and D the

peritumoral models were better than the other models (P < 0.05).

Forest map displayed the AUC of the three models in subgroup

analysis, and it is clear that the combined model was

better (Figure 6).
Discussion

In this study, we developed deep learning and radiomics

models that combined the tumoral and peritumoral image

features of masses to explore the high correlation factors on

mammography for effectively distinguishing benign and

malignant NSNCM. Three regions, including tumoral,

peritumoral distances of 1, 2, 3, 4, 5 mm, and corresponding

combined regions, were used to construct Resnet-based deep

learning classifiers and LR-based radiomics classifiers. The

classification performance of the combined model was

superior to that of the peritumoral and tumoral models,

whether based on deep learning or radiomics. In addition,
Frontiers in Oncology 09
some improvement of the peritumoral model relative to the

tumoral was shown by the deep learning method. This

confirmed that peritumoral features contributed greatly to

identify malignant NSNCM on mammography. The best

model was the deep learning combined with peritumoral

2 mm region, which had high diagnostic performance. This

indicated that the peritumoral region was noteworthy before

making clinical treatment decisions.

We applied deep learning models in the study, and

performance exceeded that of the radiomics models. The

significantly different models in deep learning may be caused

by the different feature extraction methods between radiomics

and deep learning. In deep learning models, with hierarchical

convolutional layers and down-sampling effect, extracted

features fused more information at different scales. When the

data is sufficient, the deep learning model mines richer features,

so the performance is usually better. Therefore, the overall high

diagnostic performance of deep learning may potentially assist

patient management.

While, there were some limitations. Firstly, the data set came

from a single center, which may influence its external validity.

Therefore, we planned a multi-center analysis in the future to

further verify our conclusions. About the tumoral ROI, both two

radiologists reached a consensus after discussion for inconsistent

cases. The intraclass correlation coefficients was not carried out.

Secondly, we did not establish a quantitative or qualitative

mapping relationship between the malignant probability value

of artificial intelligence and the BI-RADS evaluation classification

criteria. The mapping relationship can help apply the artificial

intelligence model in clinical practice to assist radiologists in

diagnosis and to assist radiologists in understanding the

artificial intelligence model better. Finally, adding more factors,

such as breast density (36), clinical features (37), and semantic

features (38), may help improve the diagnostic performance. In

the future, we will explore these factors in depth.
TABLE 5 Benign/malignant classification performance of deep learning models in ROI level.

Size, mm AUC (95% CI) Sensitivity Specificity P *

Tumoral 0.826 [0.810,0.841] 0.763 (825/1081) 0.708 (1580/2231)

Peritumoral 1 0.793 [0.776,0.809] 0.741 (801/1081) 0.731 (1630/2231) <0.001

2 0.844 [0.830,0.859] 0.747 (808/1081) 0.788 (1759/2231) 0.018

3 0.831 [0.816,0.846] 0.753 (814/1081) 0.748 (1668/2231) 0.464

4 0.825 [0.810,0.841] 0.751 (812/1081) 0.757 (1689/2231) 0.974

5 0.830 [0.815,0.846] 0.743 (803/1081) 0.756 (1687/2231) 0.519

Combined 1 0.851 [0.836,0.865] 0.825 (892/1081) 0.741 (1653/2231) 0.027

2 0.870 [0.857,0.884] 0.800 (865/1081) 0.797 (1779/2231) <0.001

3 0.849 [0.834,0.864] 0.791 (855/1081) 0.767 (1711/2231) 0.025

4 0.849 [0.834,0.864] 0.781 (844/1081) 0.774 (1726/2231) 0.002

5 0.852 [0.837,0.866] 0.796 (860/1081) 0.765 (1707/2231) 0.021
frontiers
* Compared with tumoral.
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FIGURE 4-1

CAM status of tumoral and peritumoral regions were observed on 8 patients with malignant masses. All the regions were correctly predicted.
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FIGURE 4-2

CAM status of tumoral and peritumoral regions were observed on 6 patients with malignant masses. Tumoral region predictions were wrong.
Proximal peritumoral region predictions as follows:1) regions of both 1 mm and 2 mm were correct. 2) regions of 1 mm were wrong, regions of
2 mm were correct. 3) regions of both 1 mm and 2 mm were wrong.
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B

C

A

FIGURE 5

1–6 are respectively: radiomics-tumoral; radiomics-peritumoral 2 mm; radiomics-combined 2 mm; deep learning-tumoral; deep learning-peritumoral
2 mm; deep learning-combined 2 mm models. (A) ROC curve and AUC of the radiomics models, including 1–3. (B) ROC curve and AUC of the deep
learning models, including 4-6. (C) Differences among all models in accuracy, sensitivity, and specificity. *Statistical significance.
TABLE 6 AUC of three regions (Tumoral, Peritumoral of 2mm, Combined of 2 mm) in subgroups (Size, Age, breast composition types) a.

Group Total Positive Negative Tumoral Peritumoral b Combined b

Size, mm Small 682 207 475 0.811 ± 0.019 0.826 ± 0.018 0.872 ± 0.017

Large 616 320 296 0.846 ± 0.016 0.878 ± 0.014 0.884 ± 0.014

Age, y 20 to 40 414 66 348 0.756 ± 0.040 0.784 ± 0.037 0.802 ± 0.040

40 to 60 715 332 383 0.835 ± 0.015 0.859 ± 0.034 0.880 ± 0.013

>60 151 129 22 0.857 ± 0.035 0.904 ± 0.034 0.924 ± 0.021

Composition A 32 23 9 0.761 ± 0.103 0.928 ± 0.061 0.703 ± 0.139

type B 111 74 37 0.893 ± 0.031 0.899 ± 0.029 0.941 ± 0.020

C 1083 417 666 0.839 ± 0.013 0.851 ± 0.013 0.882 ± 0.012

D 72 13 59 0.572 ± 0.097 0.820 ± 0.078 0.711 ± 0.084
Frontiers in Oncolo
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aReported as n, unless indicated otherwise
b2 mm.
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However, some practical implications were found in this

study. Combining tumoral and peritumoral features helped

distinguish benign from malignant masses. Some studies that

focused on tumoral masses used machine learning to construct the

classifier for benign and malignant masses, to achieve an accuracy

of over 85% on mammography (25, 39, 40). In addition, Yan et al.

(39) found that combining imaging biomarkers improved the

prediction of benign and malignant breast masses.

Our study designed various ROI extraction strategies

containing mass and context features, with 3 main results. Firstly,

the classification ability of the combined model was significantly

higher than that of the pure tumoral or peritumoral model. The

rationale may fall into the following mechanisms: desmoplastic

reaction (41), increased lymphedema, and extracellular matrix

remodeling in the peritumoral area (42) may be markers of local

malignancy, which were considered to be a response of the host

tissue against tumor (43). Yi et al. (44) similarly found that

peritumoral regions showed abnormal ADC values.
Frontiers in Oncology 13
Secondly, the 2mm peritumoral region might provide more

information to distinguish between benign and malignant

masses, while the 1mm and 3,4,5mm peritumor regions were

mediocre and comparable with each other. This suggests

indirectly that malignant tumor cell invasion is more likely to

occur actively in the peritumoral distance of 2 mm. Shin et al.

(45) presumed that there might be more active tumor

proliferation proximal to the tumor.

Thirdly, the performance of deep learning models exceeds

that of the radiomics models. The results showed that the

classification capability of the deep learning model with

combined region of 2mm was significantly higher than that of

all the other models. In the radiomics model, the AUC of the

combined model was significantly higher than that of the pure

tumoral and peritumoral models. After a detailed analysis of the

radiomics features, we found that GLCM, GLSZM, and first-

order features all had high weights in the 3 regional models

(tumor, peritumor, and combination), showing that the texture
B

C

D

A

FIGURE 6

Forest map displayed the AUC of the three models in subgroup analysis.
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and grayscale information may be more valuable in

differentiating benign and malignant masses.

Based on the statistical analysis, we reported the relative

influence of the subgroups on ability of the deep learning model

to classify. The chi-squared test showed significant differences

between the benign and malignant groups in size, age, and breast

composition type (P < 0.001).We further explored the hierarchical

analysis results of the deep learning model, which showed that the

model achieved significantly higher AUC for large size, age older

than 60 years, and breast composition type B. This suggests that it

is essential to improve further diagnosis for groups categorized as

small mass, other age, and breast composition types. Risk

stratification with clinical characteristics is necessary.
Conclusion

Combining the tumoral and peritumoral features could best

identify malignant NSNCM on mammography. The

performance of the deep learning model exceeded the

radiomics model. In addition, age, tumor size, and breast

composition type are essential for the diagnosis. These

findings can contribute to patient management before clinical

treatment decisions, and provide research ideas in NSNCM.
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