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Stratification of malignant renal
neoplasms from cystic renal
lesions using deep learning and
radiomics features based on a
stacking ensemble CT machine
learning algorithm

Quan-Hao He1†, Hao Tan1†, Fang-Tong Liao1, Yi-Neng Zheng2,
Fa-Jin Lv2, Qing Jiang3* and Ming-Zhao Xiao1*

1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
China, 2Department of Radiology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 3Department of Urology, The Second Affiliated Hospital of Chongqing Medical
University, Chongqing, China
Using nephrographic phase CT images combined with pathology diagnosis, we

aim to develop and validate a fusion feature-based stacking ensemble machine

learning model to distinguish malignant renal neoplasms from cystic renal

lesions (CRLs). This retrospective research includes 166 individuals with CRLs

for model training and 47 individuals with CRLs in another institution for model

testing. Histopathology results are adopted as diagnosis criterion.

Nephrographic phase CT scans are selected to build the fusion feature-

based machine learning algorithms. The pretrained 3D-ResNet50 CNN

model and radiomics methods are selected to extract deep features and

radiomics features, respectively. Fivefold cross-validated least absolute

shrinkage and selection operator (LASSO) regression methods are adopted to

identify the most discriminative candidate features in the development cohort.

Intraclass correlation coefficients and interclass correlation coefficients are

employed to evaluate feature’s reproducibility. Pearson correlation coefficients

for normal distribution features and Spearman’s rank correlation coefficients

for non-normal distribution features are used to eliminate redundant features.

After that, stacking ensemble machine learning models are developed in the

training cohort. The area under the receiver operator characteristic curve

(ROC), calibration curve, and decision curve analysis (DCA) are adopted in

the testing cohort to evaluate the performance of each model. The stacking

ensemble machine learning algorithm reached excellent diagnostic

performance in the testing dataset. The calibration plot shows good stability

when using the stacking ensemble model. Net benefits presented by DCA are

higher than the Bosniak 2019 version classification when employing any

machine learning algorithm. The fusion feature-based machine learning

algorithm accurately distinguishes malignant renal neoplasms from CRLs,
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which outperformed the Bosniak 2019 version classification, and proves to be

more applicable for clinical decision-making.
KEYWORDS

renal neoplasms, machine learning, Bosniak-2019 classification, cystic renal lesions,
radiomics analysis
Introduction

The detection rate of cystic renal lesions (CRLs) is increasing

rapidly due to the growing use of computed tomography (CT).

However, a considerable number of CRLs are simple renal cysts

or benign cystic renal neoplasms according to histopathologic

results after surgery; only a proportion of CRLs are malignant

renal neoplasms. Cystic renal neoplasms refer to a diverse

category of kidney tumors according to the WHO kidney

tumor classification, which have a wide range of biological

profiles, and the necessity of early surgical treatment for

malignant CRL cannot be overstated (1). Since the

components of CRL must be identified correctly in order to

determine the appropriate treatment strategies, CT imaging is

routinely used to distinguish CRLs. Meanwhile, CRLs are

difficult to diagnose and manage especially in the early stage as

they show a complex pattern in CT images including thickness

of septation, enhancement of the mural nodule, and

calcifications (2). In an attempt to identify malignant CRL at

early stage, standardize the terminology explaining complicated

renal cysts, and provide classification standards for stratifying

surgically required renal lesions, the Bosniak classification

system was created (3). In the 2019 version of the Bosniak

classification system, more discriminative and quantitative

criteria were introduced to improve the specificity in

identifying higher-risk CRL categories and explicit detailed

meanings about key terms to promote agreement

and consistency among different readers. Based on the

updated Bosniak classification, one or more enhancing nodules

in CRL with obtuse margins (more than 4 mm) or with acute

margins represent malignant renal neoplasms. Thickened wall or

septa with enhancement in CRL also suggests the possibility of

malignancy (4). However, according to the Bosniak

classification, these high-risk CRL (IIF, III, and IV) could still

be benign renal cysts rather than malignant neoplasms.

Inaccurate treatment and related diagnostic errors caused by

the misapplication of Bosniak classification may increase

excessive medical care following undesirable outcomes

including renal function impairment, re-operation, and

neoplastic transplantation (5, 6). It has been shown that the

diagnostic performances of the Bosniak 2019 classification
02
criteria do not improve considerably compared with the

previous version. A large number of previous Class III lesions

will be reclassified as IIF according to the 2019 Bosniak version,

resulting in decreased sensitivity (7, 8). The majority of Bosniak I

and II lesions are benign renal cysts and Bosniak IIF, III, and IV

lesions are more likely to be renal neoplasms. Approximately

10%–20% of Bosniak IIF lesions, 50% of Bosniak III lesions, and

90% of Bosniak IV lesions are considered to be renal neoplasms

according to the latest research (9). To increase the diagnosis

sensitivity and overcome the limits of biased visual image

assessment, quantitative image analysis approaches using

machine learning techniques also known as radiomics have

gained popularity in recent years (10). In this study, we aim to

develop and validate a stacking ensemble-based machine

learning model using deep learning and radiomics features to

stratify malignant cystic renal neoplasm more precisely.
Materials and methods

Participant enrollment and
pathology assessment

In this retrospective study, data originated from abdominal

CT scans or dedicated CT urography (CTU) scans in two

separate institutions comprising unenhanced phases,

corticomedullary phases, and nephrographic phases (Vue

PACS, Carestream Health Inc & General Electric Advantage

Workstation). Ethics committees in both institutions approved

this retrospective investigation. Candidate participants included

those with renal cysts larger than 1 cm, those with no surgery

history (renal needle biopsy, nephrolithotomy, nephrectomy, or

partial nephrectomy), those without conditions linked to

multiple renal cysts (polycystic disease, Von Hippel–Lindau

syndrome, or autosomal dominant polycystic kidney disease),

and those with less than 25% solid portion in cystic lesions. Each

individual in this study could only include verified cystic renal

masses based on the final pathology findings, ensuring a realistic

and reliable model’s presentation. The detailed selection process

and the pathological results of two cohorts are displayed

in Figure 1.
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Radiomics feature extraction

For extracting handcrafted radiomics features, radiomics

feature class can be divided into three groups (1): first-order

statistics, (2) shape features, and (3) second-order features. The

image type of radiomics features can be divided into three

groups: (1) original, (2) log, and (3) wavelet. Using the

standard sample parameters setting provided in the official

Pyradiomics YAML file, we extracted 1,231 handcrafted

radiomics features in each individual.
3DResnet50 feature extraction

For extracting deep learning features, we defined a 3D-

cropbox containing CRL area. The 3D-cropbox’s width and

length match the maximum cross-section area of the CRL,

while its height matches the dimensions comprising the CRL

area. In the 3D-cropbox, the area outside the ROI will be filled

with black. After CRL regions have been segmented, the

informative slices (the consecutive axial slices containing the

full CRL area) will be cropped and resized to 14 mm * 128 mm *

128 mm (14-layer CT scans, default Voxel spacing is 1mm). The

preprocessed images will be selected as the input of the

convolutional neural network (CNN) model with pretrained

weights. Deep learning features in each individual originated

from the preprocessed CT images in the ROI area with 14

consecutive slices. Figure 2 displays the detailed workflow of the

3D-cropbox. By removing the last layer of the pretrained model,

disabling gradient updates, and adding a 3D maximum pooling
Frontiers in Oncology 03
layer, we extracted 2,048 deep learning features in each

individual. The detailed 3DResnet50 structure can be found in

the Supplementary Table 1.
Radiomics feature harmonization

CT acquisition and reconstruction parameters have a direct

impact on handcrafted radiomics features. However, it is

impractical to standardize platforms and parameters in

advance across different institutions (11). ComBat

harmonization, one of the strategies designed to deal with the

batch effect, has been widely used in genomics-related research.

In this study, ComBat harmonization methods are used to

address the difference in extracted radiomics features

originating from different image acquisition procedures.
Correlation coefficient test

The intraclass correlation coefficients and interclass

correlation coefficients are utilized to determine selected

features with high reproducibility and robustness in image

processing setting parameters. The interclass correlation

coefficient results are extracted from two independent readers

who randomly selected 25% participants in the enrolled

datasets. The intraclass correlation coefficient results are

calculated from one reader who randomly outlined the same

participants in the enrolled datasets at different times (1 month

interval) (12).
FIGURE 1

Flowchart illustrating how the cystic renal masses were enrolled and the distribution of pathology results in the final datasets. Detailed inclusion
and exclusion criteria are also displayed in the flowchart. CRLs were classified as benign or malignant CRL based on pathological findings. After
that, training datasets were applied to build machine learning models, and testing datasets were adopted to reclassify cystic renal masses based
on the Bosniak 2019 version and assess model performance.
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Quality control methods

The quality control approach for radiomics analysis and

deep learning feature extraction consists of five steps: (1) image

quality control, (2) region-of-interest (ROI) quality control, (3)

feature extraction quality control, (4) feature selection quality

control, and (5) machine learning algorithm quality control. We

follow the recommendations from the Image Biomarker

Standardization Initiative (IBSI) (13). Radiomics quality scores

(RQS) are adopted to assess the reliability in this research (14).

Detailed quality control methods and RQS calculation results are

introduced in the Supplementary File.
Statistical analysis

All ROIs are achieved through ITK-SNAP (version 3.6.0),

and radiomics features extraction are executed using

Pyradiomics package (version 3.0.1). The pretrained

3DResnet50 model weights come from 23 medical datasets

(including brain MR images and lung CT images), which has

been an open source published in Tencent’s Medicalnet project

(https://github.com/Tencent/MedicalNet). Deep learning

features are extracted after adding a 3D maximum pooling

layer in the 3DResnet50 model. After feature extraction, the

least absolute shrinkage and selection operator (LASSO)

approach is selected to choose the most recognized feature

subsets in the training datasets (15, 16). We use the fivefold

cross-validation method to select candidate variables. Pearson

correlation coefficients for normal distribution and Spearman’s
Frontiers in Oncology 04
rank correlation coefficients for non-normal distribution are

used to identify whether redundant features existed in the

primary selected radiomic features. Meanwhile, the intraclass

correlation coefficients and interclass correlation coefficients are

used to assess the final selected feature’s reproducibility. Fivefold

cross-validation Grid Search methods are adopted for parameter

tuning in the stacking model construction. Figure 3 depicts the

detailed workflow in model construction. Receiver operating

characteristic (ROC) curve analysis and accuracy score (ACC)

are used to evaluate each model’s performance. DeLong tests are

used to evaluate whether the statistical significance of area under

the ROC curve (AUC) value exists in four models compared

with the Bosniak 2019 version. Calibration curve is adopted to

evaluate consistency performances of four models in the testing

dataset. Decision curve analysis (DCA) is adopted to assess the

clinical practicality. Two-sided p-value less than 0.05 is

considered statistically significant. All four machine learning

models are implemented using the scikit-learn package, and all

statistical analysis and plot drawings are implemented using

python (3.9 version) and R software (4.0.5 version).
Results

Participants

This retrospective study was approved by both hospital

ethics committees, and private information of all patients had

been de-identified. Among those participants included in

development cohort (The First Affiliated Hospital of
FIGURE 2

Detailed workflow of the 3D-cropbox. To assure that deep learning features retrieved from the 3D-cropbox are entirely tumor characteristics,
the area outside the ROI will be filled with black.
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Chongqing Medical University), 98 individuals were diagnosed

as benign CRL and 68 individuals were diagnosed as malignant

CRL. In the pathological results of testing cohort (The Second

Affiliated Hospital of Chongqing Medical University), 11

individuals have malignant CRL diagnosed and 36 individuals

have benign CRL diagnosed. Detailed characteristic distributions

are displayed in Table 1.
Machine learning algorithm performance
in CRL classification

Figures 4 and 5 show the detailed performance of base

models and stacking ensemble model, respectively. The AUC

values in the base models (Random Forest, Support Vector

Machine, Xgboost) and the final model all demonstrate good

discriminative ability (Figure 4). The p-value in the DeLong test

shows that the results of the stacking ensemble radiomics model

are statistically significant when compared to the Bosniak

classification (p < 0.05). Detailed performance of four machine

learning models compared with the Bosniak 2019 version

classification in the training and testing cohorts is displayed in
Frontiers in Oncology 05
Table 2. In Figure 5, all four machine learning models illustrate

good calibration performance.
Clinical impact of the machine
learning model compared with the
Bosniak 2019 classification

DCA for four machine learning models in the testing dataset

reveal that all four machine learning models deliver a higher net

benefit than “none” and “all” treatment methods under most

threshold probabilities (Figure 6). Meanwhile, according to the

histopathologic results in the testing dataset, all four machine

learning models provide a higher net benefit than the

management guideline based on the Bosniak classification in

terms of correctly stratifying cyst lesions into malignant renal

neoplasms and benign renal masses, implying that using machine

learning algorithm will provide better clinical decision support.

Four instances of the final model’s performance in the testing

cohort are presented in Figure 7. Detailed confusion matrixes for

four machine learning models and the Bosniak classification are

displayed in Supplementary Material.
FIGURE 3

Flowchart presents the detailed procedure in fusion feature-based model construction and assessment methodology.
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Discussion

Although the updated Bosniak classification system has a

close correlation with cystic renal tumors, it has limits when

analyzing the pathological results of Bosniak IIF, III, and IV
Frontiers in Oncology 06
classified CRLs, leading to inappropriate surgical operations

and excessive follow-up costs. Identifying low-risk Bosniak

classified CRLs can help prevent overtreatment and an

increase in healthcare costs (17, 18). Previous findings

suggested that the progression of Bosniak IIF cystic renal
FIGURE 4

ROC curve is adopted to evaluate the diagnostic efficacy in four models. All four models have similar and excellent performance and detailed
AUC values are respectively displayed in the graph, indicating the robust performance of quantitative features after LASSO selection.
TABLE 1 Detailed distribution of the Bosniak 2019 classification and pathology results in the training cohort and testing cohort.

Bosniak 2019 version Bosniak I Bosniak II Bosniak IIF Bosniak III Bosniak IV

Pathology analysis 59 17 23 20 47
Benign results n = 98

Simple renal cysts (89) 59 15 10 5 0

Cystic nephroma (4) 0 0 1 1 2

Renal angiomyolipoma (5) 0 0 2 1 2

Training Malignance results n = 68

cohort Unclassified renal cell carcinoma (5) 0 0 0 0 5

Clear cell renal cell carcinoma (38) 0 0 3 8 27

Papillary renal cell carcinoma (10) 0 1 1 1 7

Chromophobe renal cell carcinoma (3) 0 0 0 1 2

Multilocular cystic renal neoplasm of low malignant potential (8) 0 0 4 2 2

Tubulocystic renal cell carcinoma (4) 0 1 2 1 0

Pathology analysis 13 12 9 3 10

Benign results n = 36

Simple renal cysts (34) 13 12 7 2 0

Testing Cystic nephroma (1) 0 0 0 0 1

cohort Mixed epithelial and stromal tumor (1) 0 0 1 0 0

Malignance results n = 11

Clear cell renal cell carcinoma (9) 0 0 0 1 8

Multilocular cystic renal neoplasm of low malignant potential (2) 0 0 1 0 1
f
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masses was 4 years (19). The high-risk Bosniak CRL had a

quick progression that required radical nephrectomy rather

than inappropriate surgical procedures like renal cyst

decortication (20, 21). In this retrospective study, using

stacking ensemble machine learning methods, we achieved

excellent diagnostic performance in discriminating benign
Frontiers in Oncology 07
CRLs from malignant CRLs, which outperformed the

Bosniak classification system. In the final model, we included

19 reproducible and discriminating radiomics features and 5

deep learning features, which displayed robust and consistent

performance between cross-validation datasets and

testing datasets.
TABLE 2 The performance of predictive models and the Bosniak 2019 version classification in the testing cohort and training cohort.

Model AUC
(95% CI)

ACC
(95% CI)

Sensitivity Specificity P-value in the DeLong
test

Stacking 0.948 (0.912–0.984) 0.916 (0.915–0.917) 0.912 (0.884–0.979) 0.918 (0.864–0.973) p < 0.001

Train cohort Xgboost 0.918 (0.867–0.986) 0.916 (0.915–0.917) 0.882 (0.806–0.959) 0.939 (0.891–0.986) p = 0.051

(5-fold cross-
validation)

Random forest 0.955 (0.925–0.985) 0.904 (0.903–0.905) 0.926 (0.864–0.989) 0.888 (0.825–0.950) p < 0.001

Support Vector
Machine

0.941 (0.902–0.980) 0.886 (0.884–0.887) 0.956 (0.907–1.000) 0.837 (0.764–0.910) p = 0.002

Bosniak 2019
classification

0.863 (0.816–0.910) 0.843 (0.842–0.845) 0.971 (0.930–1.000) 0.755 (0.670–0.840) ref

Stacking 0.944 (0.878–1.000) 0.936 (0.934–0.939) 1.000 (1.000–1.000) 0.917 (0.826–1.000) p = 0.014

Xgboost 0.910 (0.826–0.995) 0.851 (0.846–0.856) 1.000 (1.000–1.000) 0.806 (0.676–0.935) p = 0.168

Test cohort Random forest 0.949 (0.886–1.000) 0.915 (0.912–0.918) 1.000 (1.000–1.000) 0.889 (0.786–0.992) p = 0.010

Support Vector
Machine

0.909 (0.824–0.994) 0.851 (0.846–0.856) 1.000 (1.000–1.000) 0.806 (0.676–0.935) p = 0.128

Bosniak 2019
classification

0.847 (0.771–0.924) 0.766 (0.758–0.773) 1.000 (1.000–1.000) 0.694 (0.544–0.845) ref
AUC, area under the receiver operating characteristic curve; ACC, accuracy score; ref, reference in AUC DeLong test, 95%CI; 95% confidence interval.
FIGURE 5

Calibration curve in the testing dataset. The ideal prediction curve is represented by the black dashed line. The model is more accurate as the
actual prediction curve gets closer to the dashed line. The bar chart below depicts the average distribution of four models’ predicted
probabilities.
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The following elements contribute to the stacking ensemble

model’s reliability (1): The research procedure adheres to IBSI

guidelines. (2) By using histopathologic examinations as

diagnostic criterion, the diagnostic accuracy in this study is

confirmed. (3) A stacking ensemble machine learning algorithm

prevents overfitting in the training dataset. (4) In the testing step,

the stacking model shows good diagnostic performance. (5) The

RQS analysis results of this study was 16, which indicated that

the quality of this radiomics study was reliable and reproducible.

The points were accumulated by adhering to the following

criteria: image protocol quality compliance (+1), feature

reduction or adjustment for multiple testing compliance (+3),

discrimination method with resampling method compliance

(+2), calibration statistics method compliance (+1), validation

from another institute compliance (+3), comparison to “gold

standard” compliance (+2), potential clinical utility (+2), open-

sourced code (+1), and open-sourced radiomics features

compliance (+1). The updated 2019 version of the Bosniak

classification intends to address inter-reader variability and

improve diagnostic performance in predicting malignancy

CRL. However, the proposed classification ability has yet to be

confirmed (22). In this study, two different well-trained readers

still disagreed on some CRL issues. In contrast, the stacking

decision algorithm demonstrated strong and consistent

performance without requiring subjective judgment across the

testing datasets.
Frontiers in Oncology 08
Many earlier studies have shown that machine learning

approaches can be used to stratify CRL (23, 24). However,

only a few studies rely on pathology as the diagnostic criteria

(25). Miskin et al. used a CT texture-based machine learning

method to distinguish CRLs as benign cysts and potentially

malignant cysts based on cystic renal mass reclassification using

the Bosniak 2019 version (26). However, the Bosniak

classification does not have a precise pathological standard,

and benign lesions may still be present in these potentially

malignant groups, which limited the clinical value. Recently,

Reinhold et al. used a CT-based radiomics model with a clinical

decision algorithm to distinguish malignant CRLs from CRLs

(27). However, they defined benign CRLs as non-imaging

changes over 4 years’ follow-up rather than pathological

diagnostic criteria that could lead to actual biases, and the

ability to distinguish benign from malignant CRLs remains

debatable since benign CRLs were not defined by a

pathological standard. In this study, all included CRLs have

postoperative pathological results, which ensured that the model

performance was reliable. Stacking algorithms demonstrated

high specificity and sensibility, which may potentially impact

clinical practice when radiologists or urologists try to evaluate

and determine the right surgical procedure for CRLs.

Although the final machine learning model effectively predicted

the outcome of CRL pathology, several limitations should also be

mentioned. First, limited by the clinical sample size of CRLs, the
FIGURE 6

Decision curve analysis for four models compared with the Bosniak 2019 version in testing datasets. The net benefit is represented on the y-axis
and the corresponding threshold probability is represented on the x-axis. The stacking model is represented by the red line. The Bosniak 2019
version is represented by the yellow line. All machine learning models present better performance and offered more net benefit than the
Bosniak model.
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diagnostic performance of our machine learning model in large

samples still needs to be validated while testing datasets were used in

this work. Second, we adopted nephrographic phase CT images to

build the machine learning algorithm rather than using triple-phase

CT images. In the Bosniak 2019 version, MRI standard features

were formally added, whereas there is very little research focusing

on renal cysts’ textural features in MR images (28, 29). Previous

studies have shown that using renal mass protocol MRI (with

subtraction images) can help identify whether there are underlying

enhancing features related to malignancy (2, 30). Nephrographic

phase CT images and corticomedullary phase CT images for the

radiomics model all demonstrated good discriminatory capability

when compared with the Bosniak 2019 version categories (31).

Future studies could attempt to integrate the triple-phase CT images

and MR images by sequence-to-sequence models like the recurrent

neural network (RNN) and vision transformer (VIT) (32, 33).

Meanwhile, cystic nephroma is typically prevalent in female

patients aged 50 to 60 years, which indicates that clinical variables

such as age and gender may be potential predictors, and a mixture

model that combines radiomics features with clinical features may

further improve diagnostic performance (34).
Frontiers in Oncology 09
Conclusion

In summary, a stacking fusion feature-based machine

learning meta model demonstrates good discrimination

capability in stratifying malignant cystic renal neoplasms in

CRLs across the testing datasets, which will be beneficial in

diagnosing malignant CRLs at a curable stage, reducing

overdiagnosis and overtreatment in CRLs.
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FIGURE 7

Nephrographic phase images for four cystic renal lesions in the testing datasets. Cystic renal lesion in (A) is benign 2019 Bosniak II lesion and
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