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Cancer-associated fibroblasts-
derived lncRNA signature as
a putative biomarker in
breast cancer

Zan Li, Junyi Yu, Chunliu Lv and Zhenhua Luo*

Department of Oncology Plastic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of
Xiangya Medical School, Central South University, Changsha, Hunan, China
Long noncoding RNAs (lncRNAs) have been reported to play a key role in

regulating tumor microenvironment and immunity. Cancer-associated

fibroblasts (CAFs) are abundant in many tumors. However, the functional and

clinical significance of lncRNAs specifically expressed in CAFs has not been fully

elucidated. In this study, we identified a list of 95 CAF-specific lncRNAs (FibLnc),

including HHLA3, TP53TG1, ST7-AS1, LINC00536, ZNF503-AS1, MIR22HG, and

MAPT-AS1, based on immune cell transcriptome expression profiling data.

Based on the Cancer Genome Atlas and Gene Expression Omnibus datasets,

we found that the FibLnc score predicted differences in overall patient survival

and performed well in multiple datasets. FibLnc score was associated with the

clinical stage of patients with breast cancer but did not significantly correlate

with the PAM50 classification. Functional analysis showed that FibLnc was

positively correlated with signaling pathways associated with malignant tumor

progression. In addition, FibLnc was positively correlated with tumor

mutational load and could predict immunotherapy response in patients with

breast cancer receiving anti-PD-1 or anti-CTLA4 therapy. Our proposed FibLnc

score was able to reflect the status of the immune environment and

immunotherapeutic response in breast cancer, which could help explore

potential therapeutic decisions and regulatory mechanisms of CAF-

specific lncRNAs.
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Introduction

Breast cancer is one of the most common cancers worldwide and is the second

leading cause of tumor-related deaths in women (1–3). The treatment options for breast

cancer usually include a combination of surgical excision, radiation therapy, and drug

therapy (hormonal therapy, chemotherapy, and/or targeted biologic therapy) to treat
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microscopic cancer that spreads from the breast tumor through

the bloodstream (4). Breast cancer patients have a good

prognosis in early diagnosis, but only around 25% will survive

their cancer for 5 years or more after they are diagnosed at stage

IV (5). Therefore, there is an urgent need to develop new

molecular targets and therapeutic strategies.

The tumor microenvironment (TME), which has been a

topic of interest, contains stromal cells, immune cells, and

noncellular components that may influence the diagnosis and

prognosis of patients with breast cancer (6, 7). Various tumors

actively engage with their microenvironment, which is a factor

that strongly influences tumor progression and metastasis. TME

has been shown to be an important cause of tumor resistance to

antichemotherapy drugs (8, 9). In addition, some immune cells,

such as macrophages, secrete TGF-b, which reduces the

abundance of succinate dehydrogenase, and promotes

increased glycolysis, thus enhancing tumor growth and

immunosuppression (10, 11).

Recently, numerous studies have shown that breast cancer-

associated fibroblasts play a role in the development and

progression of breast cancer, and cancer-associated fibroblasts

(CAFs) are the most abundant cellular component of the breast

cancer microenvironment, with high expression of many growth

factors, such as hepatocyte growth factor, transforming growth

factor beta, and fibroblast growth factor. Most of these genes

promote invasion and metastasis (12, 13). Breast cancer-

associated fibroblasts can also regulate triamcinolone

resistance through activation of the MAPK and PI3K/Akt

pathways and phosphorylation of ERa (14). These findings

suggest that studies on CAFs in the breast cancer

microenvironment may further elucidate the complex

relationship between cancer cells and their microenvironment

and identify new targets for the treatment of breast cancer. Long

noncoding RNAs (lncRNAs) have been reported to play a key

role in regulating TME and tumor immunity (15). However, the

functional and clinical significance of lncRNAs specifically

expressed in CAFs have not been fully elucidated. Therefore,

there is an urgent need to explore the potential therapeutic

decisions and regulatory mechanisms of CAF-specific lncRNAs.

In this study, we generated a CAF-specific lncRNA (FibLnc)

score that could predict the differences in overall patient survival

and perform well in multiple datasets. The FibLnc score was

found to be associated with the clinical stage of patients with

breast cancer and signaling pathways related to malignant tumor

progression. In addition, FibLnc was positively correlated with

tumor mutational load and could predict immunotherapy

response in patients with breast cancer receiving anti-PD-1 or
Abbreviations: TME, tumor microenvironment; lncRNAs, long noncoding

RNAs; TCGA, The Cancer Genome Atlas; DEGs, Differentially expressed

genes; IC50, half-maximal inhibitory concentration; KEGG, Kyoto

Encyclopedia of Genes and Genomes; timeROC, time-dependent receiver

operating characteristic curve; IPS, immunophenoscore.
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anti-CTLA4 therapy. The robust and powerful FibLnc score was

able to reflect the immunotherapeutic response in breast cancer

and provide insightful suggestions for exploring potential

therapeutic decisions and regulatory mechanisms of CAF-

specific lncRNAs.
Results

CAFs are the major components in
breast cancer TME

The overall immune and stromal infiltration levels and

tumor purity were calculated for The Cancer Genome Atlas

(TCGA) breast cancer samples (Table S1). We analyzed the

differences in immune and stromal infiltration scores between

the tumor and normal patients. Expectedly, the stromal

infiltration score was significantly higher in normal samples

than in tumor samples, and a similar phenomenon was observed

in paired samples (Figures 1A, B). However, the level of immune

infiltration did not differ significantly between the tumor and

normal patients. When further comparing the correlation of

clinical factors with cellular infiltration scores in patients with

breast cancer, its association with stromal infiltration level was

more significant than with immune infiltration scores

(Figures 1C, D, and S1). The stromal infiltration level was

more significantly different in different PAM50 subtypes than

immune infiltration level, interestingly, we also found that

immune infiltration level was not significantly associated with

tumor stage and age of patients, but stromal infiltration level

were significantly different in different groups of samples. These

suggesting that stromal infiltration level may be more associated

with tumor progression. Furthermore, the immune and stromal

scores were significantly correlated with tumor purity

(Figures 1E, F). In addition, we found that the level of stromal

infiltration was significantly negatively associated with survival

(Figure 1G), while that of immune infiltration was associated

with a better prognosis in patients with breast cancer (Figure

S1F). As shown in Figure 1H, CAFs were the most relevant cells

in the microenvironment of patients with breast cancer with the

level of stromal infiltration, suggesting a potential crucial

function of CAFs in regulating breast cancer tumor

microenvironment. Previous studies have shown that CAFs

suppress the activity of immune cells, leaving tumor patients

in an immunosuppressed state (16, 17), which is consistent with

the opposite prognostic predictive value of immune and stromal

infiltration scores in patients with breast cancer.
Construction of FibLnc risk score model

LncRNAs play a regulatory role in the TME. Based on single-

cell line expression matrix data from several databases, 95
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lncRNAs were identified to be specifically highly expressed in

CAFs (Figure 2A and Table S2). As shown in Figure 2B, the

expression of these lncRNAs was significantly higher in CAFs

than in normal cells. Next, we screened survival-related

lncRNAs in breast cancer using univariate Cox regression

analysis (Table S3) and constructed LASSO-Cox risk

regression models based on these lncRNAs. After screening

(Figure S2), the final seven lncRNAs, namely HHLA3,

TP53TG1, ST7-AS1, LINC00536, ZNF503-AS1, MIR22HG, and

MAPT-AS1, were used to calculate the FibLnc score. These

lncRNAs were associated with the overall survival of patients

with breast cancer and were differentially expressed in the high-

and low-risk groups (Figures 2C, D). Principal component

analysis showed significant differences in gene expression

patterns between high- and low-risk groups (Figure 2E), and
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survival analysis further suggested that FibLnc scores were

associated with worse overall patient survival (Figure 2F). We

further validated this in several datasets (Figure S3) and found

that the FibLnc score significantly differentiated patient

overall survival.
Evaluation of FibLnc risk score model

We compared the association between FibLnc score and

different clinical factors and found that FibLnc score was

significantly associated with age, PAM50 subtypes, and

tumor node metastasis stages (Figures 3A, B; S4A). As shown

in the figure, Basal and HER2+ subtypes exhibited highest

FibLnc score, which is consistent with that patients classified
B C

D E F

G H

A

FIGURE 1

Stromal scores are associated with clinical features and outcomes. (A) Analysis of unpaired differences in the distribution of immune and stromal
scores in tumors and normal tissues adjacent to the tumor. (B) Analysis of pairwise differences in immune and stromal score distribution in
tumors and normal tissues adjacent to the tumor. (C) Analysis of the differences in the distribution of immune and stromal scores among
different PAM50 subtypes. (D) Analysis of the differences in the distribution of immune and stromal scores among different TNM stages.
(E, F) Association between immune/stromal scores and tumor purity inferred using the ESTIMATE algorithm. (G) Survival analysis of the low and
high stromal scores. (H) Correlation between TME cell abundance and immune score.
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B C

D E F
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FIGURE 2

CAF-specific lncRNAs identification and model construction. (A) Differentially expressed lncRNAs between CAF and other TME cells. (B) The
density plot of expression values of CAF-specific lncRNAs and other lncRNAs. (C) Forest plot of the seven lncRNAs used for model construction.
(D) Heatmap of the expression level of eight lncRNAs used for model construction. (E) PCA analysis of the high- and low-risk subgroups.
(F) Kaplan–Meier survival curves for patients in TCGA database assigned to high- and low-risk groups based on the risk score.
B C

D E F

A

FIGURE 3

Evaluation for the prognostic value of the FibLnc score. (A) Analysis of the differences in the distribution of FibLnc scores among different
PAM50 subtypes. (B) Analysis of the differences in the distribution of FibLnc scores among different TNM stages. (C) Forest plot of Cox analysis
in TCGA and Gene Expression Omnibus (GEO) datasets. (D) Forest plot of Cox analysis of the FibLnc score and clinical features. (E) ROC curve
of FibLnc scores used for survival status prediction. (F) Time-dependent area-under-the-curve value in TCGA, GSE1456, GSE7390, GSE16446,
GSE20685, GSE20711, and GSE42568.
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into these subtypes have worse prognosis. The similar

phenomenon could be seen in the association of tumor stage

and FibLnc score. In contrast, a weak correlation was observed

between the FibLnc score and the level of immune and stromal

infiltration (Figure S4B). The FibLnc score showed good

prognostic predictive power in several breast cancer gene

expression datasets (Figure 3C). We further compared the

prognostic assessment ability of the FibLnc score compared

to clinical characteristics, and the results showed that the

FibLnc score exhibited comparable or even slightly stronger

performance (Figure 3D). In addition, the AUC of the FibLnc

score in predicting patient survival status was 0.754 (Figure 3E)

and showed a considerable performance in predicting survival

beyond three years in different datasets (Figure 3F). We further
Frontiers in Oncology 05
constructed a nomogram to demonstrate the predictive

performance of FibLnc scores compared to clinical factors.

As shown in Figure S5, the FibLnc score showed stable and

excellent performance in predicting one-, three-, five-

year survival.
Functional analysis of FibLnc risk score

We then analyzed the differentially expressed genes in the

high- and low-risk subgroups (Figure 4A and Table S4). The

high-risk subgroup significantly overexpressed LINC01234,

which is known to be a key marker for tumor proliferation

and metastasis. The enrichment analysis of hallmark and KEGG
B

C D

E

A F

FIGURE 4

Functional analysis of the FibLnc score and breast cancer immune signature. (A) Differentially expressed genes between high- and low-risk
subgroups. (B) Hallmark enrichment analysis of the distribution of FibLnc scores. (C) KEGG enrichment analysis of the distribution of FibLnc scores.
(D) Analysis of the differences in the distribution of immune checkpoints between high- and low-risk subgroups. ns means P > 0.05, * means P ≤

0.05, ** means P ≤ 0.01, *** means P ≤ 0.001, **** means P ≤ 0.0001. (E) Analysis of the differences in the distribution of immune cells between
high- and low-risk subgroups. ns means P > 0.05, * means P ≤ 0.05, ** means P ≤ 0.01, *** means P ≤ 0.001, **** means P ≤ 0.0001.
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pathways suggested that many oncogenic pathways, such as

mTOR signaling, MYC targets, E2F targets, and DNA

replication signaling pathways, were significantly activated in

high-risk groups (Figures 4B, C, Table S5, and Table S6). In

addition, we also found that some immune checkpoints, such as

CTLA4, ADRA2A, and GEM, were significantly upregulated in

the low-risk group (Figure 4D). These results suggest that our

FibLnc scores may be associated with the immune

microenvironment. Based on the relative abundance of

immune and stromal cells calculated using xCell, we found

that the proportion of tumor-associated stromal cells was

significantly higher in the low-risk group (Figure 4E). We

further analyzed the relationship of FibLnc scores with

immune-related regulators and found that it was significantly

negatively correlated with the expression of some

immunosuppressive factors, such as CTLA4 and PD1, and
Frontiers in Oncology 06
positively correlated with the expression of most MHC family

members and immune-stimulating factors (Figure 4F).
FibLnc risk score is associated with
mutation status and drug response

We further analyzed the relationship between FibLnc score,

mutation status, and drug response. As shown in Figure 5A,

FibLnc scores and mutation counts were significantly positively

correlated. Many oncogenes, such as TP53 and PIK3CA

(Figure 5B and Figure S6), were mutated more frequently in

the high-risk group and may be associated with a worse

prognosis in the group. We also found more truncation-

related mutations in TP53 in the high-risk group than in the

low-risk group (Figure 5C). In addition, the patterns of co-
B

C D

E

F

A

FIGURE 5

The FibLnc score predicts therapeutic benefits. (A) Correlation analysis of all mutation counts and FibLnc scores. (B) Mutation landscape
difference between high- and low-risk subgroups. (C) Lollipop chart displaying mutation sites of TP53 proteins. (D) The ratio of normalized IC50
value of the 198 drugs between the high- and low-risk subgroups. (E) Correlation analysis of tumor-infiltrating immune cell dysfunction scores
and FibLnc scores. (F) Distribution of IPS score of patients under anti-CTLA-4 or anti-PD-1 treatment between high- and low-risk subgroups.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1028664
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.1028664
occurrence and mutually exclusive mutations in the high- and

low-risk subgroups were also very different; for example, TP53

and PIK3CA were more mutually exclusive in the low-risk

group, but this phenomenon was not observed in the high-risk

group (Figure S7). We further predicted the response of the

high- and low-risk groups to the drugs (Table S7) and found that

the high-risk subgroup responded significantly to irinotecan,

PRIMA-1MET, topotecan, etc., while the low-risk group

responded to MK-8776, lapatinib, ibrutinib, etc (Figure 5D).

We also found a significant positive correlation between FibLnc

score and immune cell dysregulation score (Figure 5E) and a

significantly stronger immune response to CTLA4 and PD1

inhibitors in the low-risk group than in the high-risk group

(Figures 5F and S8).
Discussion

The TME consists of a series of stromal cells, immune cells,

and noncellular components that may influence the diagnosis

and prognosis of patients with breast cancer (6, 7). In this study,

we evaluated the level of stromal and immune infiltration in

TCGA breast cancer samples according to the ESTIMATE

algorithm and found that the level of stromal infiltration was

substantially lower in tumors than in normal samples, whereas

that of immune infiltration was not significantly different, and

the stromal score was significantly associated with patient

survival. Based on this, we found that the abundance of CAFs

was most associated with the level of stromal infiltration in

patients with breast cancer. It has been shown that CAFs are a

subpopulation of fibroblasts that promote tumor progression

and metastasis by secreting various chemokines, cytokines, and

degrading extracellular matrix proteins (18). CAFs can suppress

Th1 immune responses by inhibiting Th1 cytokines while

enhancing the immunosuppression of Th2 cytokines to

promote tumor growth (19). Breast cancer-associated

fibroblasts significantly enhance the invasive and migratory

ability of the T47D breast cancer cell line (20, 21).

In recent years, it has been shown that the expression of

some lncRNAs is cell-specific and their expression patterns are

closely related to the tumor immune microenvironment. There

are several studies of cancer-associated fibroblasts-derived

lncRNAs affecting tumor cell signaling pathway changes

previously. Zhang et al. (22) reported DNM3OS, a CAF-

promoted lncRNA, influenced radio-resistance in esophageal

squamous cell carcinoma through controlling the DNA damage

response. Our study was a comprehensive analysis of CAF-

related lncRNAs, whereas their study concentrated on the

biological function of a particular CAF-related lncRNA. Using

machine learning techniques, Liu et al. (23) created an immune-

derived lncRNA profile for enhancing colorectal cancer

outcomes. Instead of concentrating solely on CAF-related

lncRNAs, this study also included immune-derived lncRNAs.
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LncRNA signatures have been widely described in colorectal

cancer and are strongly associated to a number of biological

activities, including cell death (24), epigenetic alteration (25),

and tumor immunity (23). To better understand the

mechanisms of CAF- derived lncRNAs in breast cancer, we

identified CAF-specific lncRNAs called FibLnc and constructed

a survival risk assessment model for patients with breast cancer.

The FibLnc score has considerable potential for predicting

patient survival status. Cross-validation showed that the

FibLnc score performed well in various breast cancer gene

expression datasets and showed high robustness in predicting

survival probability. We performed a comprehensive review of

the mechanisms and prognostic values of the seven lncRNAs

used for modelling, all of them are associated with cancer

progression, especially for MAPT-AS1, which is the most

relevant gene with FibLnc score, is proved to be correlated

with the cell growth, invasiveness and paclitaxel resistance in

breast cancer cells through antisense pairing with MAPT.

MAPT-AS1 may serve as a potential therapeutic target in ER-

negative breast cancers (26).

Differential expression analysis showed that LINC01234 was

the most differentially expressed gene. Several studies have

shown that LINC01234 is closely associated with tumor cell

proliferation and metastasis (27–29). LINC01234 has emerged as

an important regulator that is upregulated in colon cancer and is

associated with poor prognosis (30), and its knockdown

significantly inhibitted tumorigenesis in hepatocellular

carcinoma (31). In addition, mutational analysis showed that

the high-risk group contained more mutations in cancer-related

genes, such as TP53 and PIK3CA, which have been previously

reported to be closely associated with cancer development (32,

33). This may explain why patients in the high-risk group had a

worse prognosis.

In the drug sensitivity analysis, we found that the FibLnc

score can help predict potential target agents. Some drugs, such

as irinotecan, PRIMA-1MET, topotecan, MK-8776, lapatinib,

and ibrutinib, showed different responses between the

subgroups. In assessing patient response to anti-PD-1 or anti-

CTLA4 immunotherapy, patients in the low-risk subgroup had

relatively higher immunophenoscore (IPS), significantly lower

immune cell dysfunction scores, and high expression of immune

checkpoints, such as CTLA4 and PD-1, suggesting that they may

respond better to immunotherapy.

However, limitations still exist. the signature was built and

validated using retrospective samples, validation using

prospect ive real-world samples was also required.

Furthermore, our conclusions are mainly obtained by

bioinformatics analysis and lack critical experimental

validation. Although we performed cross-validation on

multiple datasets to evaluate the robustness of the model,

immunohistochemical validation of the expression of these

modeled genes was necessary. Finally, we expounded the

function and clinical significance of CAF-associated lncRNAs
frontiersin.org
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in breast cancer, but the molecular mechanism is still lacking.

We need to carry out exhaustive verification of our analysis

results in the future to clarify the biological mechanisms of CAF-

associated lncRNAs in breast cancer.
Conclusions

In conclusion, we generated a FibLnc score that could

predict the differences in overall patient survival and was

found to perform well in multiple datasets. The robust and

powerful FibLnc score was able to reflect the immunotherapeutic

response in breast cancer and provide insightful suggestions for

exploring potential therapeutic decisions and regulatory

mechanisms of CAF-specific lncRNAs.
Methods

Gene expression dataset preparation

The level 3 gene expression matrix (log2 normalized) of breast

cancer samples and corresponding clinical information from The

Cancer Genome Atlas (TCGA) were downloaded from Xena

Browser (https://xenabrowser.net/datapages/). The microarray

matrices GSE1456, GSE7390, GSE16446, GSE20685, GSE20711,

and GSE42568 and their corresponding clinical information were

downloaded from the Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/). Gene expression matrices were

collected from several cohorts, including the Human Primary Cell

Atlas (34), Encyclopedia of DNA Elements (35), Blueprint (36),

Database of Immune Cell Expression (37), and GSE107011. All

matrices were then combined and normalized using the ComBat

function of the R package ‘sva’ v3.42.0 (38) for further analysis.
Immune cell abundance and
score estimation

xCell (39) was used to evaluate the relative abundance of

immune and stromal cells in breast cancer samples based on the

log2-transformed gene expression matrix downloaded from

TCGA. The overall immune and stromal infiltration levels and

tumor purity were calculated using the R package ‘estimate’

v1.0.13 (40).. First, we prepared the gene expression matrix of

TCGA, then converted it into GCT format, and filter the genes of

the matrix with the gene signature related to immune and

stromal infiltration, and finally converted the gene expression

matrix to immune and stromal infiltration matrix based on the

ESTIMATE algorithm. The detailed process can be found in R

package ‘estimate’ v1.0.13 and our source code (https://github.

com/kodayu/FibLnc.git). The default parameters were used.
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Identification of differentially
expressed genes

Based on the downloaded count matrix of immune cell gene

expression, we performed differential expression analysis using

the R package ‘DESeq2’ (v1.30.1) to compare lncRNAs

aberrantly expressed between fibroblasts and immune or

stromal cells. lncRNAs with FoldChange > 1.5 and false

discovery rate (FDR) < 0.05 in the analysis were considered

FibLnc. Based on this procedure, 95 lncRNAs were screened for

subsequent analyses.
FibLnc risk model construction

After identifying the differentially expressed genes, we

further performed univariate Cox regression analysis on all

lncRNAs based on clinical information from TCGA patients

with breast cancer. For each lncRNA, we selected the median

value of their expression as the cutoff, aliquoted the samples into

two groups of high and low expression, and performed survival

analysis. Finally, we screened all log-rank p < 0.05 lncRNAs as

survival-related lncRNAs with CAF-specific expression in the

breast cancer microenvironment and used them to construct

prognostic models. The models were built based on the LASSO-

Cox regression analysis function of the R package ‘glmnet’ v4.1-

2, and seven lncRNAs were used to construct the final model

after 1,000-time permutation and cross-validation. We defined

the model risk score as the FibLnc score, and the FibLnc score

was obtained by a linear combination of the expression of the

seven genes and the corresponding regression coefficients, which

could be represented as: FibLnc score = - 0.003 × HHLA3 - 0.002

× TP53TG1 – 0.519 × ST7-AS1 + 0.065 × LINC00536 + 0.304 ×

ZNF503-AS1 + 0.044 × MIR22HG – 0.392 × MAPT-AS1. We

next divided TCGA breast cancer samples into high- and low-

risk subgroups based on the optimal threshold for obtaining the

maximum survival difference.
Mutation analysis

Somatic mutation information for TCGA breast cancer

samples was downloaded from Xena Browser (https://

xenabrowser.net/datapages/). Due to the numerous mutation

types, we did not make a distinction when analyzing the

mutational landscape and differences. Based on previous

studies, in counting the differences in TP53 in the two

subgroups of high and low risk, mutations that do not affect

protein expression were considered wild-type, whereas those

that affect the entire protein sequence, such as coding frameshifts

and nonsense mutations, were considered truncating mutations

(41). The R package ‘maftools’ v2.6.05 was used to analyze the
frontiersin.org
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mutation differences between the high- and low-risk subgroups.

Statistical significance was set at P < 0.05.
Drug response analysis

We downloaded the gene expression matrix of 805 cell lines

and their half-maximal inhibitory concentration (IC50) values

under 198 drug treatments from the Genomics of Drug

Sensitivity in Cancer database (42). Using the R package

‘oncoPredict’ v0.2, we used the downloaded data as a training

set to build a ridge regression model, which was then applied to a

new gene expression dataset to predict the clinical chemotherapy

response. We predicted the IC50 values of the TCGA breast

cancer samples for 198 drugs and normally transformed these

values. We then used multiplicative changes in median values for

the high- and low-risk subgroups to represent differences in

drug response.
Bioinformatics analysis

DEGs in the high-and low-risk subgroups were calculated

using the R package ‘DESeq2’ v1.30.1. We selected the genes

with |log2FoldChange| > 1 and FDR < 0.05, as DEGs. Based on

the calculated fold change of each gene, we performed gene set

enrichment analysis using the GSEA function of the R package

‘clusterProfiler’ v3.18.1 (43). The genes used for the enrichment

analysis included both the tumor hallmark signaling pathway

and the Kyoto Encyclopedia of Genes and Genomes (KEGG)

signaling pathway. Survival analysis and curve plotting were

performed using the R package ‘survminer’ v0.4.9. The time-

dependent receiver operating characteristic (ROC) curve of

TCGA patients with breast cancer with one-, three-, five-year

survival was determined using the R package ‘timeROC’. The

nomogram and calibration curves measuring the performance of

FibLnc scores were visualized using the R package ‘RMS’ v6.2-0.

The immune cell dysfunction score of TCGA samples was

retrieved from the Tumor Immune Dysfunction and Exclusion

database (http://tide.dfci.harvard.edu/download/). The IPS of

TCGA breast cancer samples was downloaded from The

Cancer Immunome Atlas (https://tcia.at/home). Generally, a

higher tumor-infiltrating cell exclusive score and a lower IPS

predict a worse response to immunotherapy.
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FIGURE S1

Analysis of the differences in the distribution of immune and stromal
scores in different (A) ages, (B) T, (C) N, (D) M and (E) TNM stages. (F)
Survival analysis of the low and high immune scores.

FIGURE S2

(A) The partial likelihood deviance was calculated using multivariate Cox
regression. (B) The regression coefficients were calculated using

multivariate Cox regression.

FIGURE S3

Kaplan–Meier survival curves for patients in the GEO dataset assigned to
high- and low-risk groups based on the risk score. (A) GSE1456 datasets.

(B) GSE7390 datasets. (C) GSE16446 datasets. (D) GSE20685 datasets. (E)
GSE20711 datasets. (F) GSE42568 datasets.

FIGURE S4

(A) Analysis of the differences in the distribution of MILnc scores in

different ages, T, N and M stages. (B) Correlation between FibLnc score
and immune/stromal score and tumor purity.

FIGURE S5

Nomogram analysis. (A) Nomogram composed of age, TNM stage,
PAM50 subtypes and FibLnc score for the prediction of 1-, 3-, and 5-
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years OS probability. Calibration plot for the evaluation of the nomogram
in predicting 1-year (B), 3-years (C), and 5-years (D) OS probability.

FIGURE S6

Mutation landscape difference between high- and low-risk subgroups.

FIGURE S7

Mutation co-occurrence and mutually exclusive patterns difference

between high and low-risk subgroups.

FIGURE S8

(A) Correlation analysis of synonymous mutation counts and nonsynonymous
mutation counts and FibLnc scores. (B) Correlation analysis of PD-1 and CTLA4

expressionvalueandFibLnc scores. (C)Distributionof IPS scoreofpatientsunder
anti-CTLA-4 or anti-PD-1 treatment between high- and low-risk subgroups.

TABLE S1

Stromal and immune infiltration levels of TCGA BRCA samples calculated

by ESTIMATE algorithm.
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TABLE S2

Differentially expressed lncRNAs between fibroblasts and other cells.

TABLE S3

Univariate Cox regression analysis of survival time of the 75 CAF-

specific lncRNAs.

TABLE S4

Differentially expressed genes between the low- and high-risk groups.

TABLE S5

Hallmark pathway enrichment of differentially expressed genes.

TABLE S6

KEGG pathway enrichment of differentially expressed genes.

TABLE S7

Inferred IC50 values of 198 drugs in patients with TCGA-BRCA gene
expression profile.
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