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COVID-19 infection caused by SARS-CoV-2 is considered catastrophic

because it affects multiple organs, particularly those of the respiratory tract.

Although the consequences of this infection are not fully clear, it causes

damage to the lungs, the cardiovascular and nervous systems, and other

organs, subsequently inducing organ failure. In particular, the effects of

SARS-CoV-2-induced inflammation on cancer cells and the tumor

microenvironment need to be investigated. COVID-19 may alter the tumor

microenvironment, promoting cancer cell proliferation and dormant cancer

cell (DCC) reawakening. DCCs reawakened upon infection with SARS-CoV-2

can populate the premetastatic niche in the lungs and other organs, leading to

tumor dissemination. DCC reawakening and consequent neutrophil and

monocyte/macrophage activation with an uncontrolled cascade of pro-

inflammatory cytokines are the most severe clinical effects of COVID-19.

Moreover, neutrophil extracellular traps have been demonstrated to activate

the dissemination of premetastatic cells into the lungs. Further studies are

warranted to better define the roles of COVID-19 in inflammation as well as in

tumor development and tumor cell metastasis; the results of these studies will

aid in the development of further targeted therapies, both for cancer

prevention and the treatment of patients with COVID-19.
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Introduction

The development and spread of COVID-19 in the last 2

years have compelled scientists to focus on devising strategies for

treating the infected patients as well as for managing the

resultant health care emergency (1, 2). This reduced the

scientists’ ability to focus on other important diseases, such as

cancer (3, 3). Hospitals and universities have had to remodel

themselves in the last few years, modifying their work and

shifting their focus to studying the SARS-CoV-2- and COVID-

related pathways and features (4, 5). Given that patients with

COVID-19 required urgent medication and hospitalization,

those with other morbidities were deprioritized, and their

surgeries were rescheduled. This has impacted the collection of

biological samples (fluids and tissues) for research, especially in

the field of thoracic oncology (6, 7). Moreover, some studies have

shown that the incidence of lung cancer was higher among

patients who contracted COVID-19 than among those who did

not and that the risk of developing severe illness and death was

greater among patients with lung cancer than among those with

other cancers (8, 9). This has steered the scientific community

toward studying the possible connections between SARS-CoV-2

and lung cancer (10). The increased incidence of lung cancer

among patients with COVID-19 is likely attributable to the

severe immunosuppression caused by the virus, changes related

to the inflammatory components and the cascade of

immunogenic events activated by the virus, and, finally but

not less importantly, the possibility that the virus is oncogenic

(11, 12). A particularly interesting concept is that that an

external factor, such as a viral infection that causes multiple

changes to the microenvironment (e.g., extracellular matrix

remodeling and cell-to-cell interactions especially with the

immune system), awakens dormant cancer cells from

quiescence (13, 14). This state of dormancy is characterized by

tumor cells that no longer undergo cell division but are inactive

in the G0–G1 state; however, an appropriate stimulus can trigger

proliferation (13, 14). This theory is related to drug resistance

and metastatic niche activation, which should be taken seriously

in the case of lung cancer, especially, due to its capacity to

disseminate to primary organs (13, 14).

Hence, understanding the biology of infection with SARS-

CoV-2 among patients with lung cancer and their response to

COVID-19 vaccines is of utmost importance (15–17). One of the

most intriguing aspects of COVID-19 is that the expelled

respiratory droplets containing the virus may settle on

different surfaces or be suspended in the air, thereby

facilitating further contamination (18). Moreover, the virus

can survive on several surfaces and in different organs and

tissues, contributing to the contagiousness of the disease (19).

Apart from the bronchopulmonary tree, SARS-CoV-2 RNA has

been detected in the head, digestive tract, nervous system, heart,

and blood vessels, among others (20). Therefore, considering the
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easy transmissibility and virulence of SARS-CoV-2, it is

imperative to observe strict hand-washing hygiene (21).

Furthermore, the virus can quickly modify its nature, and

scientists are thus using modern techniques, such as next-

generation sequencing, for routine viral DNA analysis (22–24).

This approach is used for liquid biopsy samples and in case of

autopsies with suspected infections, following the biosafety level

3 guidelines (22–25). The use of liquid biopsies allows new

insights, and regulations have been adopted to protect

pathologists and technicians in the last few years (25, 26).

However, because SARS-CoV-2 has a high degree of virulence,

the use of pneumatic air tube transport systems to deliver

pathology samples from the hospitals to the laboratories is not

allowed (25, 26). This problem has been discussed in numerous

countries, including the United States, Spain, Italy, Germany,

Portugal, Denmark, Scotland, the Netherlands, and Slovenia,

although some centers are still using pneumatics to transfer

pathology samples (26). The challenges associated with

establishing new procedures and rules for managing COVID-

19 have helped introduce new approaches on a global scale,

through online webinars and conferences, and adaptations that

encompass different approaches to be followed at hospitals and

in laboratories (27, 28).

Despite the numerous vaccines that have been administrated

in countries worldwide, new variants continue to spread

globally; moreover, although fewer devastating outcomes are

being reported, the infection rate is still increasing, and the

effects of this virus on the human body, particularly on the lungs,

have not been fully elucidated (29). The scientists are still trying

to understand the roles of immunity in the progression and

resolution of COVID-19 as well as tumor development (30, 31).

Several studies have been conducted recently to comprehend the

possible roles of the virus in cancer growth; however, at the

moment, the scientific community scientists have no definitive

findings to share (10–12).
SARS-CoV-2 damages the lungs

One of the most considered problems during the first wave

of COVID-19 was the overcrowding in intensive care units

(ICUs), which the governments decided to close for all non-

COVID-19 patients (32). The primary symptoms of COVID-19

include acute respiratory failure and acute respiratory distress

syndrome (ARDS), which are the main reasons for admission to

the ICUs (33). Patients with such severe symptoms required

protective low-tidal volume and mechanical ventilation, which is

considered the standard of care for moderate-to-severe ARDS

(33, 34). Moreover, anesthesiologists expressed the need to

establish additional respiratory support strategies to ensure the

optimal use of these machines at low volumes (35). The

government discussed this problem with other countries, and
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several invasive and noninvasive devices were shipped from

China, North America, and other countries (36).

In normal lung functioning, in which breathing is a cyclic

process driven by respiratory muscles, viscoelastic tissues get

deformed during normal inspiration and are relieved when the

pressure returns to the initial situation during expiration (37).

Under nonphysiological conditions, when the pulmonary tissue

deformation is greater than normal, the resultant stress,

represented by the transpulmonary pressure in association

with the global strain, may affect the lungs (37). In fact, under

pathological conditions, strain and stress may cause ventilator-

induced lung injury (38). In particular, high volumes of

nonphysiological conditions may be harmful to the lung,

increasing the risk of mortality among patients with ARDS

(38). Throughout the pandemic, anesthesiologists in ICUs and

pneumologists have uncovered knowledge that has led to the

identification of different approaches for caring for patients with

COVID-19 (39).

The most important feature to consider in an injured lung is

the inhomogeneity of ventilation, which increases tissue damage,

resulting in severe worsening of pulmonary gas exchange, thus

promoting respiratory insufficiency in patients with ARDS (40).

This vicious circle increases the stress on tissues, intensifying

lung damage. Moreover, the inhomogeneous distribution of the

opening pressure may overstretch the lungs and cause aerated

areas to connect with poorly aerated lung regions (38, 41). This

phenomenon associated with COVID-19 infection caused severe

problems in ventilation, resulting in several deaths during the

last waves of the pandemic (42).

A new four-dimensional tomographic approach can analyze

the biomechanical setting of the lungs, defining the volume

distribution, especially in the nonventilated lung regions (43,

44). A recent study conducted using healthy rats with

spontaneous breathing reported heterogeneity in the volume,

with consequent quantification of the deformation of lung areas

and progression in time (35). The different ventilation in the

various lung regions may be attributable to strain and stress,

although other factors, such as alveolar–capillary barrier

integrity, were considered (37). Upon follow-up with micro-

computed tomography images, comparing animals with

spontaneous breathing through controlled and uncontrolled

mechanical ventilation, moderate-to-severe lung injury was

observed in the nonaerated lung compartments (37);

furthermore, the study findings demonstrated significant

progression of the regional volumetric strain and heterogeneity

after spontaneous breathing, with subsequent damage to the

lung alveoli (37). Other studies were conducted to analyze lung

heterogeneity in association with the severity of ARDS and

subsequent mortality, particularly in relation to alveolar wall

disruption, hemorrhage, hyperemia, and inflammation (45–48).

Recently, researchers attempted to define a gene expression

pathway related to lung homogeneity, although the gene

expression is generally related to specific lung regions, in
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contrast with the damage, which is ubiquitous (49). This can

perhaps be explained by the fact that biomarkers are mainly

water soluble and diffusible in blood and in bronchial secretions

(50–52).

Gattinoni et al. defined two phenotypes characterizing

patients with COVID-19 infection in the lung: “non-ARDS” or

“type 1” and “ARDS” or “type 2” (53, 54). However, although

mechanical support is very important for patients with COVID-

19 infection, it is not feasible to advocate a single guideline for

this condition (55). Rather, the approach needs to be tailored to

every individual patient to prevent serious complications

(55, 56).

The pathophysiology of this virus is often characterized by

respiratory failure; it is variable with moderate-to-severe

hypoxemia (57). Accordingly, as initial respiratory support, the

primary treatment choices include oxygen therapy, high-flow

nasal cannula, and noninvasive ventilation. If these methods fail,

mechanical ventilation becomes mandatory for improving lung

ventilation, which is compromised upon infection with SARS-

CoV-2 (58). One of the main strategies that has been adopted in

the ICU to promote oxygenation is that the patients are

maintained in the prone position, which also improves the

functional residual capacity and ventilation/perfusion. This

approach is also used in awake patients, although the

associated principles have not been fully defined (58, 59).
Biological effects of SARS-CoV-2 on
lung cancer

In the last 2 years, the biological differentiation of SARS-

CoV-2 has resulted in several DNA mutations, leading to

different levels of viral virulence, with variable clinical

consequences for patients (60–62). Studies have reported

increasing evidence of genetic susceptibility to SARS and to

several genomic differences in COVID-19 patients, which

facilitate the entrance of the virus in patients with cancer (63).

Moreover, the immunity of patients with cancer is low, and they

are at a higher risk of exposure to infections, including COVID-

19 (64). The lungs are the primary target of novel coronaviruses,

and the scientific community is trying to define the roles of

genetic mutations and immunity in patients contracting

COVID-19 and related cancers (65–67). However, because the

associated processes are extremely complicated, it is currently

not possible to determine whether this virus plays a role in

cancer development, although COVID-19 combined with a

weakened immunity creates favorable conditions for cancer

development (68, 69).

It has been recently reported that angiotensin-converting

enzyme-2 (ACE2), and plasminogen-activator inhibitor type 1

(PAI-1), which have been proposed as receptors on mammalian

host cells and seem to promote inflammation, angiogenesis, and

coagulation, are the main molecular targets of the spike (S)
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protein of SARS-CoV-2 (70–72) (Figure 1). The serine protease

transmembrane serine protease 2 (TMPRSS2), which seems to

activate the S protein to enter into the cells, was also recently

introduced as a molecular target (72–74). Moreover, the

interaction between the virus and ACE2 receptor seems to be

driven by the FURIN/PCSK3 cleavage of the S protein,

facilitating viral invasion (75–77) (Figure 1). Basigin/CD147, a

receptor glycoprotein of the immunoglobulin superfamily that

acts as a mediator of the viral infection, was also reported

recently (Figure 1) (78).

Besides studying these important protein receptors, which

are considered to drive the entry of the virus into cells,

researchers have also started to analyze the molecular profiles

of the genes associated with the mutational patterns of the

relevant targets (79, 80). These considerations were derived

from the recent discovery of a possible correlation between the

membrane proteins and lung adenocarcinoma (LUAD) and lung

squamous carcinoma (LUSC) (81, 82). Specifically, these

mutations have not only been detected but are also related to

patient survival. In particular, a high percentage of genes

targeting mutations have been found in the ACE2, TMPRSS2,

CD147/BSG, and FURIN/PCSK3 genes (83).

For example, the TMPRSS2 gene expression was

significantly reduced in patients with LUAD as compared with
Frontiers in Oncology 04
healthy patients, although the ACE2 expression was higher in

the former group (84–86). Moreover, the TMPRSS2 gene

expression was significantly reduced in patients with LUSC as

compared with healthy patients, although the ACE2 expression

was high in the patients with both LUAD and LUSC (87). No

significant differences were noted in the expression of the CD147

and FURIN genes (88). Thus, defining the genomic susceptibility

of patients with lung cancer to COVID‐19 remains challenging,

and more experiments are warranted to assess the mechanisms

of viral invasion, which may be the key to devising future

treatments against the infections caused by SARS‐CoV‐2

(83, 89).

A significant amount of scientific literature has highlighted

the possible involvement of ACE2 and TMPRSS2 gene

mutations in cancer development (90). Specifically, in 2020,

Stewart et al. (91), using different models of normal and

malignant cells from the aerodigestive and respiratory tracts,

respectively, found that ACE2 expression is highly correlated

with the transcriptional, microRNA (miRNA), and metabolic

signifiers of epithelial differentiation (91, 92). Moreover, the

regulators of epithelial-to-mesenchymal transition (EMT) may

play a role in the modulation of ACE2 expression. This

biunivocal correlation may exert effects on infection caused by

SARS-CoV-2 owing to the fact that it the virus reportedly
FIGURE 1

Graphical illustration of the expression of the key proteins in lung cancer and COVID-19. ACE2 and PAI-1 are expressed at high levels in lung
cancer and cause inflammation and neo-angiogenesis in COVID-19. TMPRSS2 helps SARS-COV-2 to enter the host cells, whereas CD147 and
FURIN are associated with genomic susceptibility to COVID‐19 in patients with lung cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1029830
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Aramini et al. 10.3389/fonc.2022.1029830
increases EMT gene expression and metabolic alterations (93,

94). The association between COVID-19 and some gene variants

directly affects the virus as well as lung involvement; moreover,

the correlation between these proteins and the COVID-19-

related EMT gene expression needs to be urgently explored by

the scientific community to uncover the possible solutions and

develop future targeted treatments (95).
Immunomodulation of COVID-19
and lung cancer

One of the most important aspects related to COVID-19 is

the cytokine storm, during which various inflammatory

cytokines are developed, and the consequent cytokine release

syndrome (CRS), which represents an acute attack of excessive

cytokines from the immune system triggered by inflammatory

responses and the immunity (96, 97). The CRS is characterized

by high fever, erythema, edema, extreme fatigue, and nausea,

which may also be associated with sepsis and multiple organ

failure (98). The first approach by the cytokines and chemokines

represents an important step against the viral infection; in

particular, macrophages function as sentinels in the lungs, and

SARS-CoV2 can infect these to induce this cascade as an early

pathogenic mechanism (99, 100). The virus infects the dendritic

cells, thereby inducing a cascade of cytokines and chemokines,

including CCL3, CCL5, CCL2, and CXCL10 (23), which are the

key components in the chemotactic approach induced by

neutrophils, monocytes, and T cells, thereby calibrating a

dysregulated response against infections caused by SARS-CoV-

2 (101).

In particular, the immunodeficiency or the altered immune

cell response induced by infection with this virus may lead to

vivid outcomes among patients with cancer, owing to the

complex relationship between the virus and cancer (102).

Furthermore, patients with response have a higher risk of

exposure and susceptibility to infections as compared with

the normal population, making them more vulnerable to

infection with SARS-CoV-2 (103). The main consequences of

this factor include the overlapping of infections, an altered

immune response, and faster progression of the virus and

cancer; in addition to these aspects, a higher risk has been

reported among patients with obesity, cardiovascular disease,

hypertension, diabetes, and other comorbidities, which induce

further complications during COVID-19 (104). Moreover, the

scientific community has recently identified that the lung

cancer population is at higher risk of contracting COVID-19

and that the aberrant expression of ACE2 in lung carcinoma

renders the patients more susceptible to COVID-19 (105, 106).

By definition, ACE2 is a regulator of the renin–angiotensin
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system and is located in a small subset of alveolar type II cells;

its basic function is to convert angiotensin II into angiotensin

(107, 108). Likewise, it has been reported that SARS-CoV-2 can

attach to the ACE2 receptor through its S protein and thereby

enter the cells (109, 110). Although ACE2 is also expressed in

other organs such as the heart, kidneys, and intestine, the lungs

are its target organ (111). Invasion by SARS-CoV-2 induces a

lung immunoreaction against the virus, with the activation and

amplification of host immunity, consequently inducing a

cascade of cytokines, including interferon-g, tumor necrosis

factor, interleukin (IL)-1, IL-6, and IL-18, all of which play

important roles in the toll-like receptor signaling pathway

(Figure 2) (112, 113). This high level of cytokines induces

ARDS and organ failure with consequent death of the patient;

particularly, the presence of the virus increases lung cancer cell

apoptosis, thereby downregulating the expression of ACE2 and

causing altered vascular permeability, neutrophil infiltration,

and lung edema (114). Interestingly, the maintenance of the

ACE2 serum levels improves the survival of patients with lung

cancer, increasing the immune system’s capacity to induct an

inflammatory storm that can eliminate SARS-CoV-2 from the

lungs (115). Finally, ACE2 may be considered a biomarker and

future therapeutic target against COVID-19 infection,

although several studies need to be conducted to confirm this

aspect (116).

Apart from the importance of ACE2 in the pathogenesis of the

novel coronavirus, a higher percentage of patients with lung cancer

were found to have contracted COVID-19 (117). A recent study

analyzed 2000 patients with COVID-19 and found that 1% of those

had a history of lung cancer, indicating that patients with cancer

may be susceptible to COVID-19 (118). A panel of genes, including

SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, ABO, RPL24,

FOXP4, TMEM65, OAS1, KANSL1, TAC4, DPP9, RAVER1,

PLEKHA4, and IFNAR2, were assessed for their mRNA

expression to study a possible connection with COVID-19 and

lung cancer (119) . At the end of th i s ana l y s i s ,

immunohistochemistry combined with a comparison with the

Human Protein Atlas helped validate only six genes (SLC6A20,

FYCO1, FOXP4, TMEM65, XCR1, and OAS1) with significantly

different protein expression levels (118). This finding suggests a

potential genetic predisposition between COVID-19 and lung

cancer, indicating that patients with lung cancer have a higher

risk of contracting COVID-19 (120). Accordingly, a complex

bioinformatics analysis assessing COVID-19 and different lung

cancers was performed, also correlating with the severity of

cancer, to apply knowledge and invest efforts to fight this

pandemic infection, especially scouting out genetic association

with it.

Because of this, an interesting aspect that needs to be

considered is the use of anticancer drugs in patients with
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concomitant COVID-19 infection, contributing to the overall

complexity of this scenario in the potential cross-interference

between COVID-19 and lung cancer treatments (121). The

scientific community is trying to define the main correlations

among all of these aspects, although no definitive data are

available currently (121, 122).

In this context, medical approaches, such as chemotherapy,

immunotherapy, and radiotherapy, may play a dual role in affecting

the targeted organs as well as the immunity of patients with cancer

(123). In particular, immune checkpoint inhibitors (ICIs), which are

considered promising against thoracic malignancies, may play

important roles in inducing an immunomodulatory effect (124).

The upregulation of T cells and the concomitant expression of PD-

1, which can identify exhausted T cell subpopulations, both of

which contribute to acute viral infection, have been reported in the

early stage of COVID-19 infection. Accordingly, CTLA-4 or the

PD-1/PD-ligand (L)-1 axis may enhance the expression of CD4 and

CD8, reinforcing the exhausted T cells and better supporting the

potential effect of T-lymphocytes against COVID-19 infection

(121). However, this may result in boomerang effects given that

immune system enhancement can result in a tremendously

inflammatory stage–the cytokine storm–to fight against infection

caused by SARS-CoV-2. Indeed, the most interesting aspect of ICIs

is their ability to improve the “early phase of COVID-19,” thus

avoiding possible dangerous immune responses to the viral

infection (125).

Encouraging results have also been reported in patients with

HIV, HBV, and/or HCV infections treated with ICIs during the

COVID-19 pandemic; no adverse effects were noted in these

patients in terms of viral infection and non-viral reactivation
Frontiers in Oncology 06
(126). The TERAVOLT study, an interesting investigation that is

still in the preliminary stages, has reported no effects on the

survival of patients with cancer treated with chemo-targeted

therapies and ICIs and infected with COVID-19 (127). Besides

the possible uses of the available medical treatments against

cancer, in patients who are ineligible for targeted therapy,

targeted ICIs alone or in combination with platinum are

considered the gold standard, especially in terms of infection

with SARS-CoV-2 (128). Moreover, the use of chemotherapy

within one month preceding the diagnosis of COVID-19 is

reportedly associated with the occurrence of severe infection

and consequent complications (129).
Conclusions

Considering all the consequences of infection with SARS-CoV-

2 on patients with cancer, it is very important to inform and train

the COVID-19 frontline workers, including pulmonologists,

infectious disease specialists, anesthesiologists, and radiologists, to

select the best approaches and treatments, tailored to specific

clinical cases. This approach may prove to be extremely beneficial

for avoiding further complications related to drug treatment, which

may induce immunomodulatory effects favoring cancer and viral

infection. However, the data regarding the potential interference

between patients with cancer and COVID-19 are not definitive.

Consequently, the real dilemma for oncologists is to find a balance

between protecting patients using the most effective therapies and

reducing the risks of COVID-19 exposure and/or infection. In this

direction, the international oncological societies worldwide have set
FIGURE 2

Invasion with SARS-CoV-2. The ACE2 receptor is the channel through which the virus attaches to the cells via its S protein and enters the cell.
A massive immune response through the amplification of NK and T cells is thereby triggered, leading to the production of a wide range of
cytokines, such as interferon-g, tumor necrosis factor, interleukin (IL)-1, IL-6, and IL-18, which are responsible for the cytokine storm.
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several recommendations to guide clinicians to find a balance in

terms of the safety and efficacy of cancer treatment and rescue

therapy against viral infections (130). The most interesting

approach related to these guidelines is based on the possibility of

follow-up or evaluating patients using the telemedicine services to

contain the number of patients in hospitals and, consequently, the

risk of infection (131, 132). In these 2 years of the pandemic, we

have witnessed new approaches and considerations for patients

with severe infections as well as those with cancer, who need to be

cured in real time despite the serious pandemic situation. This

challenging scenario has opened up new avenues for the scientific

community to bring innovation and progress further in the field

of medicine.
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lyons PA, Meyer KB, nikolić MZ, Duncan CJA, smith KGC, teichmann SA,
clatworthy MR, marioni JC, göttgens b, haniffa m. single-cell multi-omics
analysis of the immune response in COVID-19. Nat Med (2021) 27(5):904–16.
doi: 10.1038/s41591-021-01329-2

97. Li H, Huang F, Liao H, Li Z, Feng K, Huang T, et al. Identification of
COVID-19-Specific immune markers using a machine learning method. Front Mol
Biosci (2022) 9:952626. doi: 10.3389/fmolb.2022.952626

98. Tvedt THA, Vo AK, Bruserud Ø, Reikvam H. Cytokine release syndrome in
the immunotherapy of hematological malignancies: The biology behind and
possible clinical consequences. J Clin Med (2021) 10(21):5190. doi: 10.3390/
jcm10215190

99. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-
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