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Gliomas are the most common central nervous system malignancies,

compromising almost 80% of all brain tumors and is associated with

significant mortality. The classification of gliomas has shifted from basic

histological perspective to one that is based on molecular biomarkers.

Treatment of this type of tumors consists currently of surgery, chemotherapy

and radiation therapy. During the past years, there was a limited development

of effective glioma diagnostics and therapeutics due to multiple factors

including the presence of blood-brain barrier and the heterogeneity of this

type of tumors. Currently, it is necessary to highlight the advantage of

molecular diagnosis of gliomas to develop patient targeted therapies based

on multiple oncogenic pathway. In this review, we will evaluate the

development of cellular and molecular biomarkers for the diagnosis of

gliomas and the impact of these diagnostic tools for better tailored and

targeted therapies.

KEYWORDS

gliomas, biomarkers, circulating tumor cells, circulating tumor DNA, immune
microenvironment
Abbreviations: BBB, blood brain barrier; ccfDNA, circulating cell-free DNA; CNS 2016, World Health

Organization Classification of Tumors of the CNS 2016; CTCs, circulating tumor cells; ctDNA, circulating

tumor DNA; dLGG, diffuse low-grade gliomas; ECM, extracellular matrix; EMT, epithelial-mesenchymal

transition; EpCAM, epithelial cell adhesion molecule; FISH, fluorescence in situ hybridization; GBM,

glioblastoma; IDH1-mut, IDH-1-mutant; IDH1-wt, IDH-1-wild-type; IHC, immunohistochemistry; LGG,

low grade glioma; OS, overall survival; PD-L1, Programmed cell death 1 ligand 1; PD-L2, Programmed cell

death 1 ligand 2; PFS, progression-free survival; RT, radiotherapy; TAMs, tumor-associated macrophages;

TCGA, the cancer genome atlas; TMZ, temozolomide.
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1 Introduction

Gliomas are central nervous system (CNS) tumors arising

from glial or glial precursor cells, mostly localized to the

supratentorial region of the brain. Gliomas constitute 30% of

all newly diagnosed CNS tumors and up to 80% of malignant

CNS tumors and are the biggest contributors to mortality (1).

Current standards in the management of gliomas include

surgical resection followed by radiotherapy (RT) and

alkylating chemotherapy with temozolomide (TMZ).

Unfortunately, this aggressive regimen is rarely curative,

particularly for higher grade gliomas such as glioblastoma

(GBM), the most diagnosed malignant brain tumor. The 5-

year relative survival for patients diagnosed with GBM during

the 2009-2015 interval ranged from 3% in adults aged ≥ 65 years

to 27% among those aged 20-39 years (2).

Classically, glioma classification was based on histological

findings and auxiliary tests such as immunohistochemistry

(IHC). With the emergence of clinically relevant molecular

biomarkers over the past two decades, there has been a shift in

the paradigm of classification of gliomas towards an integrated

histopathological and molecular diagnosis (3). This change in

approach highlights how gliomas that are virtually identical

under the microscope may have different molecular signatures

that confer different clinical outcomes. Molecular biomarkers

were first introduced into the classification of gliomas in the

2016World Health Organization Classification of Tumors of the

CNS (WHO 2016). The value of molecular biomarkers is even

more evident in the 2021 WHO CNS5, the current international

standard for glioma diagnosis. The WHO CNS5 classifies

gliomas into six major families: adult-type diffuse gliomas,

pediatric-type diffuse low-grade gliomas, pediatric-type diffuse

high-grade gliomas, circumscribed astrocytic gliomas,

glioneuronal tumors, and neuronal tumors (4). An array of

molecular biomarkers are included in the new classification,

including: IDH mutation status, codeletion of chromosomal

arms 1p and 19q (1p/19q codeletion), O6-methylguanine-

DNA methyltransferase (MGMT) promoter methylation

status, epidermal growth factor receptor (EGFR) amplification,

telomerase reverse transcriptase (TERT) promoter mutations,

H3F3A alterations, nuclear alpha-thalassemia/mental

retardation X-linked syndrome (ATRX) gene mutations, loss

of cyclin-dependent kinase inhibitor 2A (CDKN2A), combined

gain of chromosome 7 and loss of chromosome 10 (7+/10-) and

others (4). These markers have been shown to have significant

prognostic and predictive clinical value on patient survival,

which was the basis of their incorporation into the

classification. Additional changes in the WHO CNS5 include

the use of Arabic numerals instead of Roman numerals for

grading and the incorporation of grading within rather than

across tumor types.
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Given the limited efficacy of current standards of therapy in

gliomas, multiple studies and clinical trials over the past decade

have shifted to targeted therapy as an alternative with p53,

retinoblastoma (RB), EGFR, FGFR and the proteasome being a

few examples (5). Most of these studies showed relatively limited

improvements in patient outcomes, partly due to the complexity

of the regulatory networks involved. Other studies focused on

immunotherapy targets and the tumor microenvironment given

their success in certain tumor types.

The recent developments in the field of glioma diagnosis and

therapy, coupled with the explosion of cancer genomics and the

implementation of new techniques such as liquid biopsy and

epigenetic profiling, have led to an evident increase in research

focusing on identifying key molecular biomarkers in gliomas. In

this review, we will highlight the most recent emerging cellular

and molecular biomarkers in gliomas that may provide

diagnostic, prognostic, and therapeutic implications and guide

future research in this field.
2 Discussion with biomarkers

2.1 Nuclear and cytoplasmic biomarkers

A growing number of studies are investigating new nuclear

and cytoplasmic biomarkers involved in gliomas. For instance,

Fatty Acid Binding Protein 7 (FABP7) is highly expressed and

localized to the nuclei of IDH1-wt compared to IDH-mut

gliomas. Moreover, FABP7-wt overexpression increased cell

proliferation rates as well as caveolin-1 expression and

caveolae formation through an identified epigenetic

mechanism (6). Another emerging biomarker is ribosomal-

protein S27 (RPS27), part of the human ribosome 40S subunit

that localizes to the cytoplasm and nucleus. RPS27 is

overexpressed in many tumors, but its role in CNS tumors

such as gliomas wasn’t elucidated until recently. Analysis of

healthy, inflamed, neurodegenerative, and cancer brain tissues

using IHC, and mRNA sequencing revealed that RPS27 was

expressed in all neurons examined and in astrocytic tumor cells

but not in normal astrocytes. Interestingly, CD68/RPS27 double

staining indicated that almost all macrophages in tumor tissue

were positive for RPS27 compared to a minority in inflammatory

tissue. Although RPS27 expression levels did not affect patient

survival, their association with tumor cells and tumor-associated

macrophages (TAMs) provides a rationale for future diagnostic

and therapeutic interventions (7). Another relevant nuclear

biomarker is rho-specific guanine-nucleotide exchange factor,

PLEKHG5, as its expression levels were associated with higher

glioma grades. For instance, GBM samples had a higher ratio

and stronger intensity of PLEKHG5 expression compared with

LGGs. Increased expression level of PLEKHG5 correlated with
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poorer prognosis and shorter survival time in all glioma patients,

suggesting that this nuclear biomarker can have significant

prognostic value (8). Likewise, the ETS transcription factor

ELK3 was also recently identified as a novel oncogene in

gliomas. ELK3 was overexpressed in gliomas compared with

normal brain tissue based on database analysis. Moreover,

increased ELK3 expression in clinical samples of glioma was

associated with reduced overall survival at the 1-, 3- and 5-year

intervals. Further studies revealed that ELK3 knockdown

decreased the proliferation and migration of a glioma cell line

in vitro, highlighting the role of this marker in the pathogenesis

of glioma (9).

Cytoskeletal elements may also serve as prognostic

biomarkers in gliomas. One example is Myosin binding

protein H (MYBPH), which was first identified as a

myofibrillar component of skeletal and cardiac muscles.

MYBPH was overexpressed in GBM tissues based on database

analysis, which was further confirmed by IHC in clinical

specimens from GBM patients. Moreover, the expression of

MYBPH was correlated to IDH mutation and 1p/19q

codeletion status. In the IDH-wt and 1p/19q non-codel

groups, the expression of MYBPH increased from LGG to

HGG in the datasets. The lowest level of MYBPH expression

was observed in the IDH-mut and 1p/19q codeletion groups

(LGG), while the highest level of expression was observed in the

IDH-wt group (GBM) (10). A recent study employed mass

spectrometry based proteomic analysis on tumors with known

IDH and 1p/19q codeletion status to identify potential

surrogates that may be detectable through IHC. Two

cytoskeletal proteins, HIP1R and vimentin, were identified as

re levant markers tha t cou ld d i s t ingu i sh between

oligodendroglioma and astrocytoma. High HIP1R and low

vimentin levels were observed in oligodendroglioma compared

to low HIP1R and high vimentin levels in astrocytoma. IHC for

HIP1R and vimentin could predict 1p/19 codeletion status

accurately in more than 90% of all cases. Adding IHC for

ATRX, the only established surrogate marker for a non-1p/

19q-codeleted status, increased the sensitivity to 95% (11). Given

that identifying 1p/19q status is needed to distinguish between

IDH mutant astrocytoma and oligodendroglioma, and the high

cost of genetic testing needed to identify it, the HIP1R/vimentin/

ATRX approach could serve as an easy and reliable surrogate in

clinical practice.

Recent work identified a possible novel tumor suppressor

gene involved in gliomas: B-cell leukemia protein 7 family

(BCL7). The level of BCL7A expression was significantly lower

in glioma tissues compared to healthy brain tissue, and its

expression was negatively correlated with glioma grade.

Moreover, BCL7A was an independent prognostic factor of

LGG and GBM and could predict longer survival in GBM

patients receiving TMZ and radiotherapy (12). Another

positive prognostic gene in gliomas recently identified is

phosphoserine aminotransferase 1 (PSAT1). Particularly,
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overexpression of PSAT1 predicts a favorable outcome in LGG

patients. Interestingly, the combination of overexpression of

PSAT1, IDH1 mutation and chromosome 1p/19q codeletion

could have the best overall survival in LGG (13).

Even the ubiquitin-proteasome system, which has been a

target of cancer therapy in the past years, has been linked to

gliomas. A newly identified gene, proteasome 26S subunit

ATPase 2 (PSMC2), has been linked to the pathogenesis of

multiple cancers, including gliomas. Through broad-spectrum

screening of several tumors, PSMC2 was upregulated in most of

them, but it was most significantly overexpressed in gliomas and

correlated with poor prognosis in glioma patients. Additionally,

knockdown of PSMC2 in a glioma cell line inhibited

proliferation and affected apoptosis, supporting it as a relevant

tumor biomarker (14).
2.2 Transmembrane Proteins

Transmembrane protein 158 (TMEM158) has been shown

to be significantly upregulated in primary glioblastoma (GBM)

compared to WHO grade II or III gliomas based on multiple

cancer database analyses. Furthermore, the expression of

TMEM158 was higher in IDH1-wt glioma samples compared

to IDH1-mut irrespective of grade, and increased expression was

correlated with poor OS in glioma patients. Further

investigations revealed that TMEM158 enhanced glioma cell

proliferation, migration, and invasion as well as the progression

of epithelial mesenchymal transition (EMT) by activating

STAT3 signaling in vitro as well as in a mouse model (15).

TMEM158 has been recently implicated in the carcinogenesis of

multiple cancers, including gliomas, and more studies are

needed to elucidate its exact mechanisms for possible future

therapeutic targeting. A similarly conducted study also found

that TMEM60 promotes glioma cell proliferation, migration,

and invasion and impairs cell apoptosis via activating the PI3K/

Akt signaling pathway (16). Moreover, translocation associated

membrane proteins (TRAMs), which are involved in the

posttranslational processing of secretory proteins and

translocation to the endoplasmic reticulum (ER) membrane

have been implicated in the oncogenesis of gliomas. A recent

study found that TRAM2 is over-expressed in glioma samples

and cell lines, and that higher expression was associated with

poor survival. The researchers further demonstrated that

silencing of TRAM2 blocked the malignant progression of

glioma by inhibiting the PI3K/Akt/mTOR signaling, rendering

it a pathway with therapeutic potential (17).

Some transmembrane proteins may also play a protective

role in gliomas by virtue of their regulatory mechanisms on

oncogenic signaling cascades. Lipid phosphate phosphatase-

related protein type 5 (LPPR5) which modulates the Rho-

GTPase pathway involved in cancer growth, vascularization,

and the response to changes in the microenvironment, has
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been identified as a candidate protective integral membrane

protein. Researchers developed a murine orthotopic allograft

glioma model with an LPPR5 overexpression model (LPPR5OE)

and discovered that LPPR5OE tumors exhibited a more benign

phenotype evidenced by delayed growth, increased tumor cell

apoptosis, reduced vascular endothelial growth factor A

(VEGFA) secretion, and a dysfunctional vascular architecture.

Interestingly, the altered architecture showed enhanced

susceptibility to sunitinib therapy in the study (18). Despite

the novelty of this murine model, the results of this study

highlight LPPR5 as a key protein in glioma that warrants

further investigation. Nuclear and cytoplasmic biomarkers

along with transmembrane proteins which act as prognostic

indicators in gliomas are summarized in Figure 1.
2.3 Immune and immune-
microenvironment biomarkers

Gliomas, in theory, should be suitable candidates for

targeted immunotherapy, given that immune cells can freely

cross the blood brain barrier. However, several immunotherapy

trials over the past two decades have shown limited results (5).

One of the possible explanations for this phenomenon is the

scarcity of tumor infiltrating lymphocytes in gliomas and the

abundance of immunosuppressive myeloid cells, rendering them

“immune-cold” tumors (19). Aiming to better elucidate the

immune microenvironment to identify better immunotherapy

targets, a group of researchers performed an integrated analysis

of 201,986 human glioma, immune, and other stromal cells at

the single cell level. Five specific myeloid cell subtype gene

signatures (MC2–MC5, and MC7) were independent
Frontiers in Oncology 04
prognostic indicators of glioma patient survival, independent

of established covariates of glioma patient survival such as IDH

mutation and MGMTmethylation status. This is a new theme of

prognostic markers in gliomas and highlights the value of

studying the immune microenvironment. In the study, a

candidate gene, S100A4, expressed on immunosuppressive

macrophages and T-cells, was significantly associated with

poor prognosis in glioma and GBM patients. Moreover,

knockout S100a4−/− glioma-bearing mice lived significantly

longer than wild-type host mice, validating the potential of

S100A4 as an immunotherapy target in GBM (20).

PD-L1 has been long recognized as an immunotherapy

target, as it is known to suppress T-cell activity and facilitate

cancer progression. In fact, targeting the PD-1/PD-L1 pathway

to activate the immune response is an FDA-approved treatment

approach for several types of cancer. However, the applicability

of this immunotherapeutic modality in gliomas has been limited

(5). A recent study utilized transcriptomic analysis to model

gene regulation networks in individual gliomas to identify

patterns in PD-1 signaling regulation. The regulation of PD1

signaling was repressed in patients with primary GBM who had

a long-term survival, while patients with worse outcomes and

those with recurrence had a loss of this repression (21). This

provides a novel stratification modality to predict patient

prognosis and consolidates prior knowledge on the role of PD-

1 in cancers and gliomas. It has been suggested that the

interaction between PD-1 and PD-L2 could limit the

development of a T-cell response and explain the failure of

PD-1/PD-L1 immunotherapy trials in older non-glioma related

trials (22). This might as well be applicable to glioma

immunotherapy. PD-L2 is a cell surface protein well-known to

modulate cancer-associated immune responses and has been
FIGURE 1

Nuclear and transmembrane biomarkers as prognostic factors in gliomas. Biomarkers in red are poor prognostic factors. Biomarkers in green
are good prognostic factors.*used to distinguish between oligodendroglioma and astrocytoma.
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recently identified as an unfavorable prognostic marker in

gliomas. Using data from CGGA and TCGA, higher

expression of PD-L2 was observed in higher glioma grades

and IDH-wt gliomas and could predict an unfavorable

prognosis of patients independent of other factors such as age,

grade, IDH status and 1p/19q status. On the other hand, patients

with lower PD-L2 expression levels had better survival (23).

Furthermore, PD-L2 is associated with the immune response by

regulating T-cell function and cytokine secretion. These recent

findings further our knowledge of PD-L2 and may provide

important clues for future immunotherapy trials targeting

this axis.

Another novel glioma biomarker relevant to the immune

microenvironment is replication factor 2 (RFC2), a subunit of

the RFC complex that modulates DNA replication and repair. In

a German study evaluating RFC2 as a prognostic biomarker in

glioma, the RFC2 high expression group had higher proportions

of naïve B cells, CD8+ T cells, resting memory CD4+ T cells, M0

macrophages, and M1 macrophages and lower fractions of M2

macrophages, resting dendritic cells, and activated mast cells

than the RFC2 low expression group. Additionally, RFC2 had

co-expression relationships with recognized immune checkpoint

genes, including PD-1, PD-L1, PD-L2, B7-H2, and CTLA4 (24).

These findings support RFC2 as a possible immunotherapy

target. Likewise, the gene plasminogen activator urokinase

receptor (PLAUR) which has been linked to extracellular

matrix (ECM) degradation in a multitude of tumors, has been

identified as an immunological biomarker in glioma. A study

recently found that the infiltration level of CD8+ T-Cells

decreased while that of macrophages increased along with the

increase of PLAUR expression in glioma samples. The

macrophages were found to be of the alternative M2

phenotype, which is associated with an immunosuppressive

phenotype (25).

Tumor-associated macrophages (TAMs) which may

constitute up to 50% of the tumor microenvironment in

gliomas, have been shown to promote numerous tumor-

promoting activities such as angiogenesis, enhanced tumor cell

migration and invasiveness. One of the highly specific markers

in TAMs, CD163, was associated with high enrichment of

phenotypes of known malignant molecules, such as IDH-wt

status based on TCGA and CGGA database analyses (26).

Furthermore, there was high concordance between CD163 and

immune checkpoints, including PD-L1, PD-1, TIM-3, LAG-3,

B7-H3, and B7-H4, making it a promising biomarker and target

fo r immunotherapeu t i c s t r a teg i e s . S imi l a r ly , the

immunomodulatory CD161 was found to be enriched in HGG

and IDH-wt gliomas and was an independent prognostic factor

for the OS of glioma patients. Furthermore, CD161 was shown

to inhibit the cytotoxicity of T-cells in glioma patients (22).

These findings suggest that CD161 can serve as a marker for

reduced tumor cell immunity and a silenced tumor immune
Frontiers in Oncology 05
microenvironment in glioma, which could serve as a suitable

target for immunotherapy.
2.4 DNA methylation

DNAmethylation is an epigenetic modification that relies on

DNA methyltransferases (DMNTs), preferentially acting on the

C-5, N-4, N-6 and N-7 sites of DNA segments (27, 28). Genome-

wide DNA methylation profiling has proven to be a robust tool

in the analysis of epigenetic changes in many cancers, including

gliomas. A Swedish study recently investigated the value of

methylation profiling using 166 tumor specimens of diffuse

low-grade gliomas (dLGGs) in achieving WHO 2016

classification, predicting patient survival, and providing

possible refinement to the classification. In predicting IDH

mutational and 1p/19q codeletion status confirmed using

standard clinical and molecular techniques (such as IHC and

FISH), the sensitivity and specificity of methylation profiling

were both 100%. Furthermore, the authors compared the

methylation-based classification to the WHO 2016 integrated

molecular diagnosis and found that methylation profiling

provided similar characterization of dLGG in terms of

diagnosis and similar prognostication in terms of patient

survival (29). These findings, along with the feasibility of

obtaining numerous biomarker information in one analysis,

make DNA methylation a promising diagnostic and

prognostic tool that may be incorporated into clinical practice.

A recent trend found in the literature is the generation of

methylation-based signatures that could predict prognosis in

gliomas. For instance, a group of Chinese researchers utilized

TCGA methylation data to identify prognostic genes in LGGs.

Subsequently, they developed a three gene signature (EMP3,

GSX2 and EMILIN3) that can be used as a prognostic indicator

for LGG patients (30). The signature was in line with the

stratification of grade II and III patients and IDH-wt cohorts,

which may improve current histology-based tumor classification

systems and provide better stratification for future clinical trials.

In a similar fashion, a signature based on two-CpG DNA

methylation sites in LGGs was generated from cancer

databases that was independent of other clinical factors like

age, WHO grade, family history of cancer and IDH mutation

status. Further analysis indicated that the signature exhibited

higher predictive accuracy compared with known biomarkers,

which may help improve the risk stratification of patients in the

clinic (31).

DNAmethylation can also be used to predict the response to

different glioma therapies. In a study done by Zhou et. Al, the

expression of DNA methyltransferase1 (DNMT1) was found to

be low in GBM cell lines resistant to TMZ due to the decreased

expression of the miR-20a gene which positively correlated with

the degree of sensitivity to TMZ (32). Furthermore, the
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European Organization for Research and Treatment of Cancer

(EORTC) 22033 phase III trial randomized patients to two

treatment groups, focal RT, or dose dense TMZ, to compare

these treatment modalities and identify putative prognostic and

predictive molecular markers (33). There was no significant

difference in progression-free survival (PFS) for patients in the

two groups; however, in the TMZ-treatment arm, patients with

IDH-mt co-deleted tumors did better than the IDH-mt non-co-

deleted subgroup. A group of researchers recently analyzed the

DNA methylome of DNA Damage Response (DDR) genes as

predictors of treatment response in this trial (34). Promoter

methylation profiles of four DDR genes were found to be

predictive of longer PFS in one of the treatment arms: MGMT,

MLH3, RAD21, and SMC4. These findings support established

studies on MGMT promoter methylation as predictors of benefit

from treatment with alkylating agents in GBM (35), and open

further avenues for new therapeutic targets in LGGs.
2.5 Histone modification

The alteration of histone proteins exhibits an important

aspect in the gene regulation process in patients with GBM.

Common modifications include acetylation, methylation,

phosphorylation and ubiquitylation (36). In general, histone

acetylation increases gene expression, while methylation either

downregulates or upregulates expression depending on the

protein core of the histone involved (d). An abnormal histone

modification process can have a tremendous effect on the

upregulation of genes that promote GBM proliferation and

propagation and can also contribute to acquiring resistance

against certain therapeutic regimens (37–39).

For instance, enhancer of zeste homolog 2 (EZH2), a histone

methyltransferase involved in the upregulation of c-MYC (40),

was shown to be highly involved the tumorigenesis of GBM and

decreased the survival rates (41), therefore representing an

important prognostic factor related to the grade of the glioma

(42). In this sense, the inhibition of EZH2 negatively impacts the

ability of GBM cells to regenerate in vitro, downregulates

tumorigenesis in vivo and increases the sensitivity to radiation

therapy (43).

Furthermore, protein arginine methyltransferases (PRMTs)

are important enzymes in the histone modification process that

disrupt the interaction between proteins and their related

downstream cellular signaling. They were proved to increase

the tumorigenesis of GBM if aberrantly expressed (44, 45). For

example, PRMT1 and PRMT2 are overexpressed in GBM and

their depletion was shown to decrease tumor cell proliferation in

mouse xenografts (46, 47).

In addition, the lysine demethylases (KDM), also involved in

the histone modification process, play an important role in GBM

resistance to therapy whereby they alter the regulation of cell
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death, senescence, and tumorigenesis (48, 49). For instance,

KDM5A is known to be overexpressed in GBM cell lines

resistant to TMZ, and the knockout of this gene efficiently

downregulates tumor proliferation in vivo and in vitro in these

resistant cells in addition to increasing their sensitivity to TMZ

(50, 51).

Lastly, the acetylation of histone proteins, tightly regulated

by histone acetyltransferases (HAT) and histone deacetylases

(HDAC), is crucial in order to maintain adequate gene

expression (52). Generally, the overexpression of these genes

leads to the development of GBM. For example, the expression

of HDAC9 was shown to be highly upregulated in GBM, thereby

causing an increased tumor proliferation by activating the

transcription coactivator with PDZ-binding motif (TAZ), an

important downstream component in the Hippo pathway (53).

In this sense, an inhibition of HDAC9 was shown to decrease the

expression of TAZ and produce an anti-GBM effect (54).
2.6 Chromatin remodeling

Remodeling of chromatin represents the alteration of

chromatin into higher order complexes which can impact drug

resistance depending on the resulting structures and the

accessibility that permits transcription (55). A study by Xiao

et al. (x) showed that an up-regulation of chromatin remodeling

factor lymphoid-specific helicase (LSH) contributed to the

development and progression of gliomas. In addition, it was

shown that an increased expression of the transcription factor

E2F1 and glycogen synthase kinase-3B correlated with the level

of LSH in astrocytomas and GBM, also leading to an increased

progression of the disease (56). Furthermore, evidence showed

that treatment induced resistance in GBM were mediated by a

set of transcriptional events regulated by chromatin remodeling

processes. In other words, targeting this machinery through

inhibitors like PARP inhibitors in treatment-resistant GBM cells

could potentially increase sensitivity response to therapy (57).
2.7 Circulating tumor cells

Circulating tumor cells (CTCs) are tumor derived cells that

are shed into the bloodstream during tumor formation, growth,

or invasion (58). CTCs have been long recognized for their

clinical applications in cancer screening, genotyping, monitoring

tumor progress, and delivery of individualized treatments. The

case is no different with gliomas, as several studies over the past

decade have demonstrated glioma derived CTCs in the

peripheral blood of patients (59). In a 2014 study by Muller

et al., CTCs were detected in the blood of 20.6% of patients with

GBM by immunochemical analyses using glial fibrillary acid

protein (GFAP) (60). Moreover, the presence of CTCs in
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peripheral blood was assessed before and after surgical resection.

CTCs were detected in 13.4% of patients in both presurgical and

postsurgical samples, 7.5% only in postsurgical samples and 6%

only in presurgical samples. Another study by Macarthur et al.

identified the presence of blood CTCs in 72% of patients with

GBM, with a decrease to 8% post radiation therapy, confirming

the ability of these cells to cross the BBB (61). More recent

research conducted on 13 GBM patients undergoing treatment

with a microtubule inhibitor revealed that CTCs can cross the

BBB in clusters (62). CTCs may also be useful in tracking

responses to therapy in glioma patients. In a retrospective

study on 22 patients who underwent tumor resection followed

by RT and then developed new enhancing mass lesions on MRI,

the CTC count was significantly higher in the tumor recurrence

group compared to the tumor necrosis group. ROC analysis

showed that a cell count threshold of 2 had 91.2% specificity and

100% sensitivity with AUC = 0.933 to predict tumor recurrence,

which were superior to standards of diagnosis such as DSC-MRP

and MET-PET (63).

Current detection methods of CTCs rely on specific surface

antigens, namely the transmembrane glycoprotein epithelial cell

adhesion molecule (EpCAM) that is highly expressed in

carcinomas. However, gliomas do not express EpCAM, and

hence less specific microfluidic techniques are being utilized

for detection (59). This is in part why the application of CTCs in

gliomas has been limited. Nevertheless, there have been some

promising findings in the development of specific glioma-

derived CTC detection techniques in recent years. A novel

strategy for glioma CTC capture and detection was recently

developed, targeting the cancer-specific glycosaminoglycan

structure oncofetal chondroitin sulfate (ofCS) (64). It utilizes

recombinant malaria VAR2CSA protein (rVAR2) which can

specifically bind to glioma cell lines in a background of normal

white blood cells and could be used for magnetic capture and

isolation of these cells from whole blood with variable efficiency,

reaching up to 75%. Moreover, a trial on blood samples derived

from ten glioma patients established proof-of-concept for the

identification of glioma CTCs. Chinese researchers recently

developed a highly sensitive technique for CTC capture in

liquid biopsies using antibody-modified immunomagnetic

microspheres (IMs) (65). The clinical applicability of this

method was confirmed using a mouse xenograft model and

clinical specimens from glioma patients. Another interesting

isolation modality is isolating CTCs from glioma patients using

human telomerase reverse transcriptase (hTERT) (66). The

authors report that the detection rate of this method is the

highest reported to date (83.02%) and allowed detection of

different pathological subtypes other than GBM. CTCs could

be isolated by flow cytometry, which has the added advantage of

single-cell molecular analysis, which can provide valuable

prognostic and therapeutic information.
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2.8 Circulating tumor DNA

Circulating tumor DNA (ctDNA) refers to circulating cell-

free DNA (ccfDNA) derived from tumor cells thought to arise

from apoptosis or necrosis of tumor cells or other excretory

mechanisms (59). The BBB, however, is a limitation for the

detection of ctDNA, as it leads to lower serum levels compared

to other tumors (67). To overcome the low detection thresholds,

many studies have opted to use CSF as a source to study ctDNA,

as it has shown better sensitivity despite being more invasive

(68). After obtaining the samples, two approaches are commonly

implemented in the detection of ctDNA: targeted mutational

sequencing and whole genome sequencing.

In a study of 419 patients with primary brain tumors,

including gliomas, ctDNA was detectable in up to half of the

cases (69). This was confirmed with another study using the

same technique with a detection rate of around 51% in primary

GBM (70). Higher sensitivities in the detection of ctDNA in

glioma patients may be achieved using targeted sequencing on

CSF samples. For example, analysis of the mutational status of

commonly mutated genes in gliomas, including IDH1, IDH2,

TP53, TERT, ATRX, H3F3A, and HIST1H3B gene mutations,

provides higher sensitivity in detection and can guide diagnosis

(71). Furthermore, ctDNA can provide prognostic value in

glioma patients. This was highlighted in a study on 85 glioma

patients, whereby ctDNA was detected in the CSF of 42 of them.

Higher levels of ctDNA were observed in cases of progressive

disease, CSF space spread, and larger tumor burden (72). ctDNA

can also be used to monitor disease progression in glioma

patients. A recent study found that patients with brain tumors,

including GBM and metastatic cancer, have a 30-fold increase in

ccfDNA compared with healthy individuals (73). Upon

intranasal therapy with Peirillyl Alcohol (POH), the mean

cfDNA serum levels of patients who survived more than 6

months was significantly lower compared with those that

survived less than 6 months (2.7 folds). Interestingly, one of

the patients under study with stable disease after 3 years of

continuous POH therapy developed an increase in ccfDNA 3

months after treatment discontinuation, which was verified by

imaging as tumor progression. This constellation of findings

indicates that ccfDNA may serve as a noninvasive prognostic

and molecular marker in brain tumors and as a possible

screening tool for the early detection of tumor progression.

Another utility of ctDNA in the realm of glioma is in selecting

candidates for targeted therapy. A recent publication analyzing

ccfDNA by whole genome sequencing from 25 GBM patients

and 25 healthy controls found several gene-gene fusions which

may be targets of specific therapies (74). For instance, KDR–

PDGFRA and NCDN–PDGFRA were identified in 44% of all

samples, BCR–ABL1 in 8%, COL1A1–PDGFB in 8%, NIN–

PDGFRB in 8%, and FGFR1–BCR 4%. These findings raise
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significant clinical and therapeutic implications given that

tyrosine kinase inhibitors are known to target such gene

fusion products.

With improvements in the current methods available for

detection of ctDNA, the use of this modality in the field of

gliomas looks promising (75).
2.9 Noncoding RNAs

Non−coding RNAs (ncRNAs) are a class of functional non-

protein coding RNAs including microRNAs (miRNAs/miRs),

l ong non− cod ing RNAs ( lncRNAs) and c i r cu l a r

RNAs (circRNAs).

2.9.1 miRNAs
The role of miRNAs in gliomas has been subject to extensive

study in recent years. This is highlighted in a 2018 meta-analysis

which found that the overall sensitivity of miRNAs in the

diagnosis of glioma was 85%, specificity was 90%, and AUC

was 93% (76). Additionally, some miRNAs may serve as

prognostic and therapeutic indicators in glioma.

A representative of the potential utility of miRNAs in

gliomas is miR-21. The expression of specific exosomal

miRNA such as miR-21 has been shown to be significantly

higher in HGGs than in LGGs and controls (77). The diagnostic

efficacy of miR-21 as a clinical biomarker in glioma was further

consolidated by a meta-analysis showing a pooled sensitivity of

0.82 and specificity of 0.94 (78). In terms of treatment, miR-21
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was shown to correlate with the response to chemotherapy. In

fact, the downregulation of miR-21 induced a better

proapoptotic effect of TMZ in GBM cells (79).

When their targets are implicated in gliomagenesis, miRNAs

can be utilized as therapeutic modalities. For example, the

oncogene FLOT2, which is a known target of miR-449, was

recently shown to be greatly upregulated in glioma tissues and

cell lines, and its expression level was associated with tumor

stage and size. In a study, miR-449 could bind directly to the

3’UTR of FLOT2 and regulate FLOT2 expression in glioma cells.

Moreover, the expression levels of miR-449 in glioma tissue and

cell lines was significantly reduced (80). This constellation of

findings may nominate miR-449 as a therapeutic tool to halt

glioma cell proliferation. Another example is miR-376a whose

expression could suppress the angiogenic ability of glioma cell

lines in vitro, whereas using a miR-376a inhibitor exerted the

opposite functions. Additionally, xenografts with ectopic miR-

376a expression showed smaller volumes and weights and a

slower growth, further highlighting the utility of this miRNA

(81). Table 1 highlights the recent relevant studies on miRNAs as

diagnostic, prognostic, or therapeutic biomarkers in gliomas.

2.9.2 Long non-coding RNAs
The number of studies evaluating the role of lnRNAs as

oncogenic and prognostic biomarkers is rapidly growing (83,

84). However, given the complex nature of lnRNAs, it would be

best to approach them from a combined analysis approach. A

2018 meta-analysis showed a significant association between

elevated lncRNA expression levels and OS in glioma patients
TABLE 1 Families and types of gliomas with relevant genetic parameters (82).

Tumor Family Tumor type Altered molecular profiles

Adult-type diffuse gliomas Astrocytoma, IDH-mutant IDH1, IDH2, ATRX, TP53, CDKN2A/B

Oligodendroglioma, IDH-mutant, and 1p/19q-codeleted IDH1, IDH2, 1p/19q, TERT promoter, CIC, FUBP1,
NOTCH1

Glioblastoma, IDH-wildtype IDH-wildtype, TERT promoter, chromosomes 7/10, EGFR

Pediatric type diffuse low-grade
gliomas

Diffuse astrocytoma, MYB- or MYBL1-altered MYB, MYBL1

Angiocentric glioma MYB

Polymorphous low-grade neuroepithelial tumor of the young BRAF, FGFR family

Diffuse low-grade glioma, MAPK pathway-altered FGFR1, BRAF

Pediatric type diffuse low-grade
gliomas

Diffuse midline glioma, H3 K27-altered H3 K27, TP53, ACVR1, PDGFRA, EGFR, EZHIP

Diffuse hemispheric glioma, H3 G34-mutant H3 G34, TP53, ATRX

Diffuse pediatric-type high-grade glioma, H3-wildtype, and IDH-
wildtype

IDH-wildtype, H3-wildtype, PDGFRA, MYCN, EGFR
(methylome)

Infant-type hemispheric glioma NTRK family, ALK, ROS, MET

Circumscribed astrocytic gliomas Pilocytic astrocytoma KIAA1549-BRAF, BRAF, NF1

High-grade astrocytoma with piloid features BRAF, NF1, ATRX, CDKN2A/B (methylome)

Pleomorphic xanthoastrocytoma BRAF, CDKN2A/B

Subependymal giant cell astrocytoma TSC1, TSC2

Chordoid glioma PRKCA

Astroblastoma, MN1-altered MN1
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(85). Moreover, lncRNA expression was significantly associated

with tumor diameter, grade, and Karnofsky Performance Status

Scale. Another 2018 systematic review and meta-analysis

investigating 40 studies examining the role of lnRNAs in the

clinicopathological features, diagnosis and prognosis of gliomas

revealed that urothelial carcinoma associated 1 (UCA1)

expression was positively associated with tumor size and

WHO tumor grade, and that metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1) expression could

predict poor OS in patients with glioma (86).

Other studies focused on combinations of lnRNAs that may

serve as prognostic signatures. Using survival analysis and the

Cox regression model, a group of researchers identified a set of

six lncRNAs (AC005013.5, UBE2R2-AS1, ENTPD1-AS1, RP11-

89C21.2, AC073115.6, and XLOC_004803) that could stratify

GBM patients into high- and low-risk groups with significantly

different survival (median 0.9 vs. 1.6 years) (87). In a similar

fashion, the UVA8 model was built using the TCGA database

based on 8 lnRNAs. UVA8 model successfully stratified patients

into high and low risk groups and could predict glioma patient

survival independent of age, grade and IDH mutation status

(88). Another study identified 10 autophagy-associated lncRNAs

(PCBP1-AS1, TP53TG1, DHRS4-AS1, ZNF674-AS1, GABPB1-

AS1, DDX11-AS1, SBF2-AS1, MIR4453HG, MAPKAPK5-AS1

and COX10- AS1) which were subsequently used to construct a

prognostic signature dividing patients into low-risk and high-

risk groups with significantly different survival (89). Even so,

lncRNA gene methylation patterns could be used to construct

signatures predictive of survival in gliomas (90).

Emerging studies have found several potential therapeutic

target lnRNAs. For instance, inhibition of the lnRNA

antidifferentiation noncoding RNA (ANCR) could repress

invasion, migration, and proliferation, as well as promote

apoptosis of glioma cells (91). Another lnRNA, ARST, whose

expression is significantly decreased in GBM patients, could

serve as a potential therapeutic target. A study found that

overexpression of ARST in glioma cells significantly

suppressed cell growth, proliferation, migration, and invasion

and reduced their tumorigenic capacity in vivo through

interfering with actin cytoskeleton integrity (92).

lnRNAs have been shown to interact with miRNAs to

promote glioma progression. LncRNA NEAT1 can promote

glioma cancer progression via regulation of both the miR-98-

5p/BZW1 and miR-128-3p/ITGA5 axes (93, 94). A growing

number of studies has revealed intricate interactions via complex

lnRNA-miRNA networks. LncRNA PART1 can suppress glioma

proliferation and migration via miR-374b/SALL1 axis (95),

LINC00689 can inhibit glioma tumorigenesis via the miR-

526b-3p/IGF2BP1 axis (96), GAS5 can alter the EMT process,

proliferation, migration, and invasion of glioma cells through

miR-106b targeting PTEN (97). Other lnRNA-miRNA

interactions have been implicated in resistance to glioma

therapy resistance. For instance, over-expression of lncRNA
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TMEM161B-AS1 promotes resistance to TMZ by sponging

hsa-miR-27a-3p (98). Another study found that the interaction

between the lncRNA-RMRP/ZNRF3 axis and Wnt/b-catenin
signaling regulates TMZ resistance in glioma (99). A recent

study even suggested lnRNA MIR155HG may serve as an

immunotherapeutic target in glioma (100). Table 2 focuses on

lnRNAs as diagnostic and/or prognostic biomarkers in gliomas.
2.9.3 Circular RNA
A growing number of studies have implicated circRNAs in a

number of biological processes in gliomas, including cell

proliferation, metastasis, angiogenesis and oncogenesis (131).

For instance, circXRCC5 was upregulated in glioma tissues and

cell lines, and correlated with the poor prognosis of glioma

patients (132). Furthermore, knockdown of circXRCC5 blocked

cell proliferation, migration, and invasion, but facilitated

apoptosis. Other circRNAs may also prevent the proliferation

of glioma cells and have a protective value. An example is

circDCL1, whereby upregulation of this circRNA through

METTL3-mediated m6A modification repressed the malignant

proliferation of glioma cells (133). Recent studies also suggest

that cicRNAs can affect multiple pathways of gliomagenesis,

including the tumor microenvironment. circNEIL3 is one such

circRNA that was shown to promote glioma carcinogenic

progression in vitro and in vivo (134). Mechanistically,

circNEIL3 stabilizes the oncogenic IGF2BP3 protein by

preventing its ubiquitination. Furthermore, circNEIL3 is

transferred through exosomes to TAMs, enabling them to

acquire immunosuppressive properties.
2.10 Recent updates on
glioma biomarkers from the
WHO CNS5 classification

The recent WHO 5CNS classification is mostly guided by

Molecular Biomarkers. Table 1 summarizes some of the altered

molecular profiles in gliomas. For instance, CDKN2A/B is one of

the criteria to diagnose high-grade astrocytoma with piloid

features alongside a piloid cytology, frequent MAPK pathway

gene alterations, loss of ATRX nuclear expression, and a distinct

DNA methylation pattern (135). Furthermore, to classify a

tumor as oligodendroglioma both the IDH-mutation and 1p/

19q codeletion should be identified (82, 135).

For some of the tumors, molecular patterns are required for

the diagnosis. The presence of one or more of the following three

genetic parameters EGFR gene amplification, TERT promoter

mutation and 7+/10–, is required to upgrade astrocytoma, IDH-

wildtype to glioblastoma, IDH-wildtype (135, 136). Also, the

WHO CNS5 classifies tumors with alterations in H3F3A to the

pediatric-type diffuse high grade gliomas family as they have

significantly worse outcomes, and tumors with homozygous
frontiersin.org

https://doi.org/10.3389/fonc.2022.1030366
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Buo Zerdan et al. 10.3389/fonc.2022.1030366
TABLE 2 Table summarizing the details of recent relevant studies on lnRNAs as diagnostic and/or prognostic biomarkers in gliomas.

Year and
Reference

lnRNA Study Type Patients and Samples Correlation

2022 [101] LINC00565
LINC00641

Diagnostic
Prognostic

GBM patients (35)
Healthy individuals (15)

Sens: 97%, Spec: 100%, and AUC: 0.994
Sens: 100%, Spec: 93.3%, and AUC: 0.995
Negative OS

2022 [102] MALAT1
SNGH16

Prognostic Medulloblastoma (41)
Epilepsy specimens (5)

Negative
Negative

2022 [103] LINC01087 Prognostic Glioma tissue (80)
Adjacent tissue (80)

Negative

2022 [104] DLGAP1-AS1 Prognostic TCGA and CGGA Negative

2022 [105] LINC00265
CIRBP-AS1
GDNF-AS1
ZBTB20-AS4

Prognostic TCGA (504)
CGGA (513)

Negative

2021 [106] ANRIL
SOX9

Diagnostic
Prognostic

Glioma (142)
Healthy volunteers (120)

Sens: 81.62% and Spec: 90.83%
Negative OS

2021 [107] SBF2-AS1 Prognostic LGG (524 from TCGA, 431 from CGGA) Negative

2021 [108] BLACAT1 Prognostic Glioma tissue (137)
Adjacent tissue (137)

Negative

2021 [109] LINC00355 Prognostic Glioma tissue (121)
Adjacent tissue (121)

Negative

2021 [110] CYTOR
MIR155HG
LINC00641
AC120036.4
PWAR6

Prognostic CGGA (89 LGG and 92 GBM)
TCGA (405 LGG and 136 GBM)
Patient samples (38 LGG and 53 GBM)

1-year AUC: 0.72
3-year AUC: 0.92
5-year AUC: 0.90

2020 [111] FTX Prognostic Glioma tissue (187)
Adjacent tissue (187)

Negative

2020 [112] ZNF667-AS1 Diagnostic
Prognostic

Glioma tissue (155)
Adjacent tissue (155)

Sens: 68.22%, Spec: 84.57%, AUC: 0.8541
Negative OS

2020 [113] ELF3-AS1 Diagnostic
Prognostic

Glioma tissue (182)
Adjacent tissue (182)

AUC: 0.8073
Negative OS

2019 [114] LINC00319 Prognostic Glioma tissue (72)
Adjacent tissue (72)

Negative

2019 [115] PEG10 Prognostic Glioma patients (147) Negative

2019 [116] LINC01503 Prognostic Glioma patients (133) Negative

2019 [117] PXN-AS1-L Prognostic Glioma tissue (177)
Adjacent tissue (177)

Negative

2018 [118] PlncRNA-1 Prognostic Glioma tissue (104)
Adjacent tissue (104)

Negative

2018 [119] AFAP1-AS1 Prognostic Glioma tissue (52)
Non-tumor controls (5)

Negative

2018 [120] LINC00961 Prognostic Glioma tissue (151)
Adjacent tissue (151)

Positive

2018 [121] MRCCAT1 Prognostic Glioma tissue (103)
Normal brain tissue (21)

Negative

2018 [122] MEG3 Prognostic Glioma tissue (79)
Adjacent tissue (79)

Positive

2017 [123] UCA1 Prognostic Glioma tissue (64)
Normal brain tissue (10)

Negative

2017 [124] SNHG1 Prognostic Glioma (78)
Normal brain tissue (12)

Negative

2017 [125] PVT1 Prognostic Glioma (80)
Normal brain tissue (10)

Negative

2016 [126] AGAP2-AS1 TPT1-AS1 LINC01198
MIR155HG

Prognostic Anaplastic glioma from GSE16011 (80) Negative
Positive

(Continued)
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CDKN2A/B deletion as having the highest malignancy grade in

the group of diffuse, IDH-mutant astrocytomas (135, 137).

Moreover, new types of gliomas were introduced

depending on different mutations found. For example,

diffuse astrocytoma, MYB- or MYBL1-altered belong to the

family of pediatric-type diffuse low-grade gliomas and are

classified as CNS WHO grade 1. Another example is the

diffuse low grade glioma, MAPK pathway-altered having

mutations in FGFRs and/or BRAF and morphologically

resembling a diffuse glioma (135).
3 Prognostic and predictive values
of different biomarkers

Many studies showed that H3F3A alterations, TERT

promoter mutations, CDKN2A deletion, 7q+/10-, EGFR

amplifications are significantly associated with worse overall

survival and progression free survival (135, 138–141). Whereas

IDH mutations especially when associated with 1p/19q

deletions, MYB and MYBL1 mutations, MAPK pathway

activation, MGMT promoter methylation and upregulated

MN1 have positive overall prognostic values (135, 142–144).

In terms of predictive values, the loss of chromosome 1p/

19q, in low grade gliomas responding to Temozolomide, predicts

both a persistent chemosensitivity and a favorable prognosis

(145). Moreover, in preclinical studies, IDH mutant glioma cell

lines showed better response to Poly ADP Ribose Polymerase

(PARP) inhibition than cell lines with IDH wildtype (146). In

addition, promising efficacy was showed with a new covalent

binding EGFR-TKI (tyrosine kinase inhibitors), CM93, targeting

EGFR alterations in preclinical trials (147), while other TKIs, in

phase II trials, failed to show improvement in patients with non-

progressive or recurrent glioblastoma (135, 148). These
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promising therapies should be studied in clinical settings for a

possible better disease control.
4 Current Challenges
and Future Directions

The field of glioma research has exploded in recent years.

Part of this increased interest stems from the urgency to improve

the outcomes of glioma patients, as their outlook is still gloomy

despite multiple advances in the current treatment regimens.

Furthermore, the incorporation of molecular diagnostics in

gliomas has provided new paradigms in classification and

treatment, as evidenced by the changes in WHO classifications

over the years. With the availability of extensive cancer databases

and the incorporation of next generation sequencing and

genome-wide methylation profiling, the field of glioma

research is rapidly expanding and offering promising findings

that will contribute to a better understanding of these tumors. As

extensively highlighted in this review, a growing number of

cellular and molecular biomarkers have emerged with significant

clinical relevance. The tumor microenvironment also offers great

potential in providing novel immunotherapy targets. And with

the enhancements in the techniques of liquid biopsy, numerous

avenues of intervention are emerging. Future research should

focus on moving these biomarkers from in vitro and animal

studies to clinical studies to better evaluate their efficacy

in gliomas.
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Year and
Reference

lnRNA Study Type Patients and Samples Correlation

Negative
Negative

2016 [127] AB073614 Prognostic Glioma (65)
Normal brain tissue (13)

Negative

2016 [128] ZEB1-AS1 Prognosis Glioma (82)
Normal brain tissue from cerebral
trauma/epilepsy (13)

Negative

2015 [129] MALAT1 Prognosis Glioma tissue (118)
Adjacent tissue (15)

Negative

2015 [130] BC002811
XLOC_010967
NR_002809

Prognosis Astrocytoma (90) Positive
Positive
Negative
TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Gene Atlas; OS, overall survival; Sens, sensitivity; Spec, specificity; LGG, low-grade glioma.
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