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Objective: This study aims to compare the diagnostic value of 18F-

fluorodeoxyglucose (18-FDG) positron emission tomography (PET)/

computed tomography (CT) (18F-FDG PET/CT) scan and bone marrow biopsy

(BMB) for evaluating bone marrow infiltration (BMI) in newly diagnosed

pediatric neuroblastoma (NB) and ganglioneuroblastoma (GNB).

Methods: We retrospectively reviewed 51 patients with newly diagnosed NB

and GNB between June 1, 2019 and May 31, 2022. Each patient had undergone
18F-FDG PET/CT and BMB within 1 week and received no treatment. Clinical

data were collected and statistically analyzed, including age, sex, pathologic

type, and laboratory parameters. 18F-FDG PET/CT and BMB revealed the result

of bone lesions.

Results: A concordance analysis showed that, in this study population, 18F-FDG

PET/CT and BMB were in moderate agreement (Cohen’s Kappa = 0.444; p =

0.001), with an absolute agreement consistency of 72.5% (37 of 51). The analysis

of the receiver operating characteristic (ROC) curve determined that the areas

under the ROC curve (AUCs) of SUVBM and SUV/HE-SUVmax were 0.971 (95%

CI: 0.911–1.000; p < 0.001) and 0.917 (95% CI: 0.715–1.000; p < 0.001) to

predict bone–bone marrow involvement (BMI), respectively.

Conclusion: 18F-FDG PET/CT detects BMI with good diagnostic accuracy and

can reduce unnecessary invasive inspections in newly diagnosed pediatric NB

and GNB, especially patterns C and D. The analysis of the semi-quantitative

uptake of 18F-FDG, including SUVBM and SUVBM/HE-SUVmax, enables an

effective differentiation between patterns A and B.
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1 Introduction

Neuroblastoma is the most common pediatric solid tumor

occurring in the sympathetic nervous system and accounts for

approximately 15% of childhood cancer‐related mortality (1). A

total of 70% of patients with NB have metastatic disease at the

time of diagnosis, which commonly involves the cortical bone

and the bone marrow (BM). However, metastatic bone–BM is a

sign of advanced disease and implies a poor prognosis (2).

Neuroblastoma presents a great heterogeneity in clinical

behavior and survival rates; therefore, accurate staging is

crucial to choose the appropriate treatment.

Bone marrow biopsy (BMB) is currently a “gold standard”

modality in identifying bone marrow involvement (BMI) due to

its advantages in diagnosis, staging, and treatment monitoring in

childhood malignancies (3). BMB is obtained from the dorsal

portion of the iliac crest and is the most easily accessible

approach for BM evaluation. It is based on the assumption

that, in cases of BMI, tumor cells spread non-focally through the

bone–BM (4), which was demonstrated to be incorrect.

However, it is a painful and invasive procedure, especially for

children. More worrying still is the fact that a part of the patients

repeatedly required BM punctures during the treatment.

Additionally, the major drawback of BMB is that it may miss

focal NB tumor cell deposits and bone metastases in areas far

from the iliac bone because it yields information from a limited

area (3). Using BMB to determine metastatic bone–BM is

insufficient. Thus, another examination is needed to

supplement the deficiency that BMB presents.

Nowadays, iodine-123 metaiodobenzylguanidine (123I-

MIBG) scintigraphy is a mainstay method in pediatric NB (5).

Nevertheless, 123I-MIBG scintigraphy imaging has several

disadvantages such as no concentration of MIBG in 10% of

tumors, limited spatial resolution, and limited sensitivity in

small lesions. 18F-fluorodeoxyglucose (18F-FDG) positron

emission tomography (PET)/computed tomography (CT) (18F-

FDG PET/CT) is commonly used to complete the staging and

prognosis prediction of malignant tumors and can also be used

to evaluate marrow infiltration. Compared with 123I-MIBG

scintigraphy imaging, the superiorities of PET are high 18F-

FDG avidity of the BM and better identification of FDG

abnormalities in the BM and bone (6, 7). Moreover, an

important advantage of PET/CT over BMB is that PET/CT

can assess all BM sites at once and find unintended BMI in

areas where biopsies are not usually performed (8), thus

avoiding the sampling limitation of BMB. 18F-FDG PET/CT

has a good overall diagnostic accuracy with high sensitivity and

specificity in the detection of bone or BMI in pediatric

neuroblastoma (9, 10). The sample size of the study was small,

and further research is needed (10).

Many investigators are concerned that BM FDG uptake may

mask or mimic metastatic disease due to the initial use of
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chemotherapy or granulocyte colony-stimulating factor in NB

patients, thereby reducing the sensitivity of 18F-FDG PET/CT scan

(11, 12). To reduce this adverse effect, we compared 18F-FDG

PET/CT and BMB in the assessment of BMI in patients with NB

before receiving chemotherapy. Therefore, our retrospective

analysis aimed to explore the diagnostic performance of 18F-

FDG PET/CT in detecting BMI in newly diagnosed

neuroblastoma (NB) and ganglioneuroblastoma (GNB).
2 Methods

2.1 Patients

We retrospectively collected all the data of patients with

neuroblastoma (age <18 years) who had undergone 18F-FDG

PET/T before treatment from June 1, 2019, to May 31, 2022.

There were 51 patients included, including 41 patients with NB

and 10 with GNB. They were diagnosed for the first time and

underwent both 18F-FDG PET/CT and BMB within 1 week.

Patients who had undergone any treatment procedures before
18F-FDG PET/CT were excluded.

The data obtained from the clinical medical records included

age, sex, pathologic type, and laboratory parameters, such as

lactate dehydrogenase (LDH), neuron-specific enolase (NSE),

serum albumin (A), serum total protein (TP), hemoglobin (Hb),

and blood platelet (BP). All methods were performed according

to the relevant guidelines and regulations.

Pediatric neuroblastoma usually has three histological types:

NB, GNB, and ganglioneuroma (GN). We excluded GN because

it is a benign tumor (13) and does not present with

bone metastasis.
2.2 18F-FDG PET-CT imaging protocol

18F-FDG is produced on a MiniTrace Cyclotron and

automatic synthesis system of GE Healthcare, with a

radiochemical purity of more than 95%. The patients fasted

for at least 6 h before the examination and had blood glucose

lower than 10 mmol/L. The intravenous injection of FDG ranged

from 4.44 to 5.55 MBq/kg. Thirty-six patients were given oral

sedation for PET scans. PET/CT scans were performed 60

minutes after injecting radiolabeled 18F-FDG using a Siemens

PET/CT system (Horizon). The examinations included a head-

to-toe CT scan (80 kV; 50–100 mAs) and a three-dimensional

(3D) PET scan (2 min per bed; six to seven beds). The rotation

time was 0.6. The slice thickness was 3.75 mm. The increment

was 3.27. The pitch was 0.984. The images were displayed on the

Syngo.via workstation.
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2.3 18F-FDG PET/CT image analysis

2.3.1 Patterns of 18F-FDG uptake in
bone marrow

All scans were read independently by two experienced

nuclear medicine physicians who were blinded to clinical

information, laboratory assessments, and BMB results. A third

reader adjudicated the discrepancies.

The BM uptake was categorized (14, 15) (Figure 1). “A” was

defined as no increased 18F-FDG uptake, “B” was defined as

diffusely increased 18F-FDG uptake, “C” was defined as focal/

multifocal only, which was one or more circumscribed areas of

increased 18F-FDG uptake within the skeleton, “D” was defined

as combined focal/multifocal, and diffuse 18F-FDG uptake

appeared. Cases where BMI lesions appeared to be caused by a

contiguous spread from the adjacent soft tissues were considered

negative. The presence of osseous sclerosis at sites of uptake on

the CT component indicating bone metastases was also

recorded. However, the diffuse BM 18F-FDG uptake with

patterns A and B was less likely to be diagnosed as BMI

because this may also result from paraneoplastic bone marrow

activation (16).

2.3.2 Semi-quantitative 18F-FDG uptake
The maximum standardized uptake value (SUVmax) of the

most hypermetabolic bone–BMI was measured (BM-SUVmax)

in patterns C and D. Additionally, a circular region of interest

(ROI) was drawn inside the normal area in segments VII and

VIII of the liver. The average hepatic SUVmax was recorded

(HE-SUVmax). To decrease the potential age-related differences,

the ratio of BM-SUVmax to HE-SUVmax (BM-SUVmax:HE-

SUVmax) was calculated. Patients with hepatic metastases and

those with underlying destructive osseous lesions shown on the

CT were excluded.
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To assess the role of semi-quantitative 18F-FDG uptake in

BM in differentiating BMI from normal or reactive BM, the

SUVmax of BM (SUVBM) was measured in patients with normal

or homogeneously increased FDG uptake in BM (patterns A and

B). A spherical volume of interest corresponding to the variable

vertebral sizes of subjects was placed over the central part of the

L5 vertebral body, and SUVBM was measured. If L5 vertebrae

were abnormal, in cases of tumor direct involvement or fracture,

an alternative measurement of the L4 vertebral body was

obtained, and so on. To account for the potential age-related

differences, SUVBM was further normalized by hepatic uptake

(SUVBM/HE-SUVmax) (14, 15).
2.4 Marrow disease identification using
iliac crest trephine biopsy

A pediatric oncologist at our hospital took BMB from only

the standard regions of the posterior superior iliac and no other

sites. The biopsy results were reported based on histopathology,

and immunophenotyping was evaluated by the oncology and

pathology departments.
2.5 Identification of bone
marrow involvement

Patients with BM uptake (patterns C and D) were considered

BMI-positive on the 18F-FDG PET/CT scan (16). A final diagnosis

of BMI was determined if BMB was positive if the focal/multifocal

intense FDG uptake in BM on PET was confirmed by directed

biopsy or supplementary targeted magnetic resonance imaging

(MRI) or the resolution of the BM lesions in parallel with other

lesions on the follow-up 18F-FDG PET/CT scan. The typical focal/

multifocal pattern is easier to diagnose in children, as degenerative

diseases are less likely to occur in children but are rather common

in adult patients (16). For future analysis, patients were divided

into four groups: PET-positive BMB-positive, PET-positive BMB-

negative, BMB-positive PET-negative, and PET-negative BMB-

negative. Ultimately, according to the results, the patients were

divided into the bone–BMI group and the non-bone–BMI group.
2.6 Statistical analysis

Statistical analyses were performed using SPSS software

(version 28.0 for Windows; SPSS Inc.). Continuous data were

described as the mean ± standard deviation (mean ± SD) or

median and interquartile, depending on whether they followed a

normal distribution. The categorical variables were described as

numbers. The degree of agreement between BMB and 18F-FDG

PET/CT was assessed using Cohen’s Kappa. A k-value of 0.0–0.39

represented a slight agreement, 0.4–0.74 was moderate, and 0.75–
B C DA

FIGURE 1

Different patterns of 18F-FDG PET-CT bone-bone marrow
uptake of 18F-FDG.
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1.0 was almost perfect. Differences between groups were compared

using the Mann–Whitney U-tests for the continuous variables and

chi-square tests and Fisher’s exact test for the categorical variables.

Receiver operating characteristic (ROC) curves were used to

determine the cutoff values of BM-SUVmax to predict BMI in

patients with normal or homogenously increased BM 18F-FDG

uptake. All tests were two-sided, and a probability of less than 0.05

was considered statistically significant.
3 Results

3.1 Patients’ characteristics

We retrospectively studied 51 patients with NB and GNB

(age <18 years). This study included 22 girls and 29 boys, with an

average age of 37.18 months. The general characteristics of the

patients are summarized in Table 1. Among the 41 patients with

NB, 27 (65.9%) had a final diagnosis that showed BMI. Among

the 10 patients with GNB, eight (80%) had a final diagnosis that

showed BMI. The status of bone–BMI in patients with NB and

GNB (c2 = 0.747; p = 0.387) is shown in Table 2.
3.2 The results of the bone
assessment using 18F-FDG PET/CT and
bone marrow biopsy

A final diagnosis of BMI was confirmed using directed

biopsy or other multimodality imaging results, especially those

of BM uptake patterns A and B.
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The mean k coefficient was 0.444 for BMB and 18F-FDG

PET/CT agreement for BM uptake, indicating a moderate level

of agreement (p = 0.001) with an absolute agreement consistency

of 72.5% (37 of 51). Table 3 summarizes the bone–BM

assessment results of 18F-FDG PET/CT and BMB. The

distribution of the uptake 18F-FDG pattern in the bone–BM in

different pathological subtypes and the results of BMB are shown

in Table 4.
3.3 Semi-quantitative analysis of bone
marrow 18F-FDG uptake pattern

BM semi-quantitative 18F-FDG uptake was evaluated in 30

patients with patterns A and B. Eventually, 24 patients had

pattern A, and six had pattern B. Their SUVBM/HE-SUVmax

showed no statistically significant difference (Z = -0.62; p > 0.05),

and SUVBM showed a statistically significant difference (Z = -3.5;

p < 0.01). The ROC curve analyses determined that the AUCs of

SUVBM and SUV/HE-SUVmax were 0.971 (95% CI: 0.911–

1.000; p < 0.001) and 0.917 (95% CI: 0.715–1.000; p < 0.001),

respectively, for predicting bone–BMI (Figure 2). According to

the Youden index, a cutoff value of 1.89 for SUVBM was

determined as the point with a maximum sum of sensitivity

(100%) and specificity (95.65%). A cutoff value of 1.66 for

SUVBM/HE-SUVmax was determined as the point with a

maximum sum of sensitivity (80%) and specificity (100%). In

patterns C and D, the AUCs of BM-SUVmax and BM-SUVmax/

HE-SUVmax were 0.398 (95% CI: 0.156–0.640; p = 0.456) and

0.582 (95% CI: 0.319–0.844; p = 0.551), respectively, for

predicting bone–BMI.
TABLE 1 General characteristics of 51 patients.

Characteristics Number of patients %

Age (months) Median (range) 36 (2–144)

Gender Male 29 43.1

Female 22 56.9

Histology Neuroblastoma 41 80.4

Ganglioneuroblastoma 10 19.6

Location Neck 1 2.0

Chest 5 9.8

Abdomen 44 86.3

Pelvis 1 2.0

Negative 15 62.5

BMB Positive 31 60.8

Negative 20 39.2

PET (BMI)a Positive 27 52.9

Negative 24 47.1

Total bone/bone–bone marrow involvement (BMI)b Positive 36 70.6

Negative 15 29.4
frontiersin
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3.4 Clinical feature variables and status
of bone marrow involvement

The different clinical features were compared among

patients with different BM 18F-FDG uptake patterns. Patients

with patterns of A and B showed statistically significant

differences in terms of NSE and Hb. In the semi-quantitative

analysis of 18F-FDG PET/CT, SUVBM and SUV/HE-SUVmax

also showed statistically significant differences. The different

clinical features in patients with patterns C and D showed no

statistically significant differences. The various clinical features

and the semi-quantitative analysis of 18F-FDG PET/CT in

patients with different BM 18F-FDG uptake patterns are shown

in Table 5.
4 Discussion

Many pediatric malignancies usually have bone–BMI, such

as lymphoma and neuroblastoma (17, 18). In neuroblastoma,

accurate staging is essential for prognosis and choosing

appropriate treatment options (19). 18F-FDG PET/CT has

become an available routine clinical practice, greatly modifying

the diagnosis and staging approach of neuroblastoma.
Frontiers in Oncology 05
Neuroblastoma is often characterized by a high 18F-FDG

uptake (19), including bone–BMI. Compared with traditional

CT or MRI examination, 18F-FDG PET/CT could provide

important information about neuroblastoma and show more

extensive disease in one examination.

Research revealed that 18F-FDG PET/CT was more sensitive

than BMB for detecting BMI in pediatric lymphoma staging and

can even replace BMB (15, 17, 20). However, the current protocol

calls for screening for BMI using BMB as the standard method for

evaluating pediatric neuroblastoma. BMB is an invasive and

expensive procedure, which samples only a limited part of the

BM (17). Evaluating BMI using 18F-FDG PET/CT would unduly

reduce the risk of staging (8). In their meta-analysis of seven

studies, Sun et al. reported that 18F-FDG PET/CT has excellent

overall diagnostic accuracy and high sensitivity and specificity in

detecting bone–BMI in pediatric neuroblastoma (10). However,

no study compared the diagnostic value of 18F-FDG PET/CT and

BMB in detecting metastatic bone–BM in newly diagnosed

pediatric neuroblastoma.

In our study, we used both 18F-FDG PET/CT and BMB, and

22 patients (43.1%; 22 of 51) were consistently considered BMI-

positive, and 15 patients (29.4%; 15 of 51) were BMI-negative.

However, 14 patients showed inconsistent results. After

undergoing BMB and 18F-FDG PET/CT, nine were BMB-

positive and 18F-FDG PET/CT-negative (seven NB and two

GNB patients). In contrast, the remaining five patients with

inconsistent results were BMB-negative and 18F-FDG PET/CT-

positive (all NB patients). The concordance analysis showed a

moderate agreement between 18F-FDG PET/CT and BMB in this

study population (Cohen’s k = 0.444; p = 0.001), with an absolute

agreement consistency of 72.5% (37 of 51). We found that 18F-

FDG PET/CT and BMB are complementary in the evaluation of

BMI in patients with neuroblastoma.
18F-FDG PET-CT represents 100% positivity in bone–BMI,

which allows avoiding BMB in patients with pattern D. In some

patients with patterns B and C, 18F-FDG PET/CT showed an

abnormal focal bone–BMI at the acetabular bone or disease at

other sites (e.g., femur, humerus). This phenomenon may be due

to the BMB examining the iliac bone lesion, which provides

information from a limited area. Thus, BMB is not perfect as a

method for evaluating BMI in patients with patterns B and C.
TABLE 4 Distribution of the absorbed 18F-FDG pattern in the bone–bone marrow in the different pathological subtypes and bone marrow biopsy
(BMB) results.

Pattern Pathology Total BMB result Total
NB GNB BMB-positive BMB-negative

A 20 (39.2%) 4 (7.8%) 24 (47.1%) 9 (17.6%)a 15 (29.4%)a 24 (47.0%)

B 5 (9.8%) 1 (2.0%) 6 (11.8%) 5 (9.8%) 1 (2.0%) 6 (11.8%)

C 7 (13.7%) 0 (0%) 7 (13.7%) 3 (5.9%) 4 (7.8%) 7 (13.7%)

D 9 (17.6%) 5 (9.8%) 14 (27.5%) 14 (27.5%) 0 (0%) 14 (27.5%)

Total 41 (80.4%) 10 (19.6%) 51 (100%) 31 (60.8%) 20 (39.2%) 51 (100%)
fron
aPET-positive.
TABLE 2 Status of bone–BMI in patients with neuroblastoma (NB)
and ganglioneuroblastoma (GNB).

NB GNB Total

Bone/BMI-positive 27 (52.9%) 8 (15.7%) 35 (68.6%)

Bone/BMI-negative 14 (27.5%) 2 (3.9%) 16 (31.4%)

Total 41 (80.4%) 10 (19.6%) 51 (100%)
TABLE 3 Bone–BM assessment results of 18F-FDG PET/CT and bone
marrow biopsy (BMB).

PET-positive PET-negative Total

BMB-positive 22 (43.1%) 9 (17.6%) 31 (60.8%)

BMB-negative 5 (9.8%) 15 (29.4%) 20 (39.2%)

Total 27 (52.9%) 24 (47.1%) 51 (100%)
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However, in patients with pattern C, 18F-FDG PET/CT can well

identify bone involvement. There may be new value in

improving bone–BMI uptake patterns for further research.

Meanwhile, a correct diagnosis of diffuse BM 18F-FDG uptake

was a challenge in pediatric lymphoma (14, 15). Under normal

conditions, the BM shows a homogenous low uptake of 18F-FDG,

less intense than the liver. A diffuse BM 18F-FDG uptake can occur

because of different reasons: malignancies or hematopoietic

diseases, an inflammatory response, paraneoplastic BM
Frontiers in Oncology 06
activation as a result of recent chemotherapy, or administration

of hematopoietic growth factors (21). In our study, 24 patients

with pattern A showed no 18F-FDG uptake, and six patients with

pattern B showed diffuse 18F-FDG uptake. Nine of 24 (20.8%)

patients with pattern A and five of six (83.3%) patients with

pattern B were BMB-positive.

In our study, to further distinguish between patterns A and B

and assess the value of semi-quantitative 18F-FDG uptake, the L5

vertebrae SUV BM was measured in patients with normal or

homogeneously increased 18F-FDG uptake in BM. In patients

with pattern A, only 11 had an L5 vertebrae SUVBM lower than

that of the liver (45.8%), but 13 patients showed a SUVBM lower

than 1.5 times that of the liver (54.2%). In patients with pattern

B, all had an L5 vertebrae SUVBM greater than that of the liver

(100%). In contrast to model A, five model B patients had greater

than 1.5 times as many livers (83.3%). From the ROC curve

analyses, we found that the AUCs of SUVBM and SUVBM/HE-

SUVmax were 0.971 (95% CI: 0.911–1.000; p < 0.001) and 0.917

(95% CI: 0.715–1.000; p < 0.001), respectively, for predicting

BMI. These 18F-FDG PET/CT metabolic parameters can

effectively differentiate between patterns A and B. Our data

showed that the L5 vertebrae SUVBM range was 0.47–2.1 in

patients aged 2–67 months, consistent with the normal range of

1.3–2.1 in patients aged 2–15 months (22). Thus, the analysis of

the semi-quantitative uptake of 18F-FDG, including SUVBM and

SUV/HE-SUVmax, allows an effective differentiation between

patterns A and B.

In patterns of C and D, 18F-FDG PET/CT was more accurate

for the diagnosis of bone–BMI. In pattern D, the diagnostic

agreement rate for 18F-FDG PET/CT and BMB was 100%. In

pattern C, the diagnostic inconsistency rate was 71.4%, and BMB

had a high false negative. The ROC curve analyses showed that

the AUCs of BM-SUVmax and BM-SUVmax/HE-SUVmax
FIGURE 2

Receiver operating characteristic curve of SUVBM and SUVBM/
HE-SUVmax performance in the detection of BMI in NB and
GNB patients in patterns A–B.
TABLE 5 Various clinical features and semi-quantitative 18F-FDG PET/CT in patients with different patterns of bone–bone marrow.

Characteristics 18F-FDG uptake patterns of BM
A B P C D P

Age(months) 22 (2–67) 45 (31–84) <0.05a 51 (18–108) 37 (11–144) >0.05

Gender (M:F) 13:11 3:3 >0.05 5:2 8:6 >0.05

LDH, IU/L 488 (354, 1,638) 613.5 (543.5, 1,826.5) >0.05 1,251 (507, 3,273) 689.5 (567.25, 1,381.75) >0.05

NSE, ng/L 133 (53.6, 498) 237.19 ± 450.93 <0.05a 419.96 ± 236.37 394 (231, 600) >0.05

A, g/L 45.67 ± 5.20 42.72 ± 10.21 >0.05 40.04 ± 1.74 37.20 ± 3.74 >0.05

TP, g/L 69.06 ± 7.07 71.80 ± 9.93 >0.05 39.7 (38.4, 41.6) 66.08 ± 4.60 >0.05

Hb, g/L 103.39 ± 18.11 81.67 ± 8.76 <0.05a 96.29 ± 20.28 83.07 ± 9.16 >0.05

BP,109/L 366.52 ± 188.72 297.00 ± 163.35 >0.05 313.57 ± 152.09 258.50 ± 118.98 >0.05

HE-SUVmax 1.33 (1.03, 1.60) 1.41 ± 0.36 >0.05 1.39 ± 0.56 1.82 ± 0.83 >0.05

SUVBM 1.27 ± 0.41 1.24 (1.0, 1.56) <0.05a

SUVBM/HE-SUVmax 0.99 ± 0.30 2.06 ± 0.79 <0.05a

BM-SUVmax 4.01 ± 0.76 4.85 ± 1.82 >0.05

BM-SUVmax/HE-SUVmax 3.21 ± 1.07 3.0 ± 1.33 >0.05
frontiers
aThe meaning of the bold values wanted to emphasize p < 0.05, the difference is statistically significant in P <0.05.
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were 0.398 (95% CI: 0.156–0.640; p = 0.456) and 0.582 (95% CI:

0.319–0.844; p = 0.551), respectively, for predicting BMI. The

ROC curve analyses cannot distinguish between patterns C and

D. 18F-FDG PET/CT-guided BMB should be performed to

reduce the harm of unnecessary BM aspiration biopsies in

patients with pattern C (23).

Clinical features including age, NSE, and Hb showed

statistically significant differences between patterns A and B.

Many patients with pattern A have normal Hb, while patients

with pattern B have low hemoglobin. Moreover, no statistically

significant clinical indicators were found for patients with

patterns C and D. Thus, clinical features offer greater

advantages in diagnosing patterns A and B.

The main limitation of this study is its retrospective nature

because we were unable to biopsy the bone lesions or perform

other imaging examinations of bone lesions with 18F-FDG uptake.

There is also the possibility of false negatives in some post-

chemotherapy follow-up patients, particularly for pattern A.
5 Conclusion

This study suggests that 18F-FDG PET/CT can detect BMI

with good diagnostic accuracy and reduce unnecessary invasive

inspections in newly diagnosed pediatric NB and GNB,

especially for patients with patterns C and D. For patients with

pattern D, 18F-FDG PET/CT can replace BMB.
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