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Paediatric high-grade gliomas (pHGG) are aggressive central nervous system

tumours with a poor prognosis. BRAFV600E mutant pHGGs can be treated with

targeted BRAF inhibitors, which have shown both preclinical activity and potent

clinical efficacy. Unfortunately, the development of drug resistance results in

disease relapse or progression and is the primary cause of treatment failure.

While there is a lot of data to explain mechanisms of resistance in other

BRAFV600E tumours, comparatively little is known about the mechanisms of

BRAF inhibitor resistance in BRAFV600E pHGG. Recent literature has identified

aberrations in members of the RAS/RAF/ERK pathway, the PI3K/AKT/MTOR

pathway and the cell cycle as major contributors to the resistance profile. A

range of novel therapies have been suggested to overcome BRAF inhibitor drug

resistance in BRAFV600E pHGG. This review will discuss the current literature

available for BRAF inhibitor resistant BRAFV600E pHGGs and provide an overview

of the currently available and proposed therapies.
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Paediatric high-grade gliomas (pHGG) are a subset of central nervous system (CNS)

tumours with a poor prognosis and low survival (1–4). For many pHGG subtypes there

are few treatments available, with palliative treatments the only option for many.

BRAFV600E mutations are seen in both paediatric low-grade glioma (pLGG) and

pHGG, with an overall prevalence in pHGG of approximately 6% across the tumour

subtypes (5–9). In pLGG, prognosis is poorer for patients with BRAFV600E mutant

tumours, and these tumours have a higher likelihood of transforming to HGGs (10),
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1031378/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1031378/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1031378/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1031378/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1031378/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1031378&domain=pdf&date_stamp=2022-12-13
mailto:d.ziegler@unsw.edu.au
https://doi.org/10.3389/fonc.2022.1031378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1031378
https://www.frontiersin.org/journals/oncology


Lehmann et al. 10.3389/fonc.2022.1031378
Indeed, BRAFV600E is the most common recurrent mutation in

these secondary pHGG, occurring in 39% of cases (11).

Interestingly, in pHGG BRAFV600E mutations confer an

improved prognosis compared to wildtype tumours, with a 2

year survival of 67% (5). However, secondary mutations such as

CDKN2A/B deletion or TERT promoter mutations, frequently

co-occur with BRAFV600E, with evidence demonstrating that

these mutations lead to more aggressive tumours and a poorer

prognosis (8, 12, 13). While most BRAFV600E mutant pHGG

respond well to BRAF inhibition, the response is confounded by

the rapid onset of drug resistance. Until recently, limited

research has been performed on drug resistance in BRAFV600E

pHGG, with most studies focussing on pLGG and adult HGG

cell lines studies in place of pHGG (14, 15).

The therapeutic use of targeted BRAF inhibitors have shown

improved survival in adults with BRAFV600E mutated melanoma

in Phase 3 clinical trials and are now part of standard clinical

care, with first generation BRAF inhibitors vemurafenib and

dabrafenib approved by the FDA in 2011 and 2013 respectively

(16, 17). This has informed several paediatric tumour studies

(10, 18–20), with BRAF inhibitors since showing promise in

pHGG (21, 22). Vemurafenib is currently being investigated

through the Children’s Oncology Group MATCH trial for its

efficacy in treating paediatric tumours harbouring BRAFV600

mutations, including pHGG (NCT03155620, NCT03220035).

Unfortunately, the onset of resistance to first line BRAF

inhibitors is a common outcome, thought to be due to
Frontiers in Oncology 02
reactivation of the MEK pathway, as occurs in other tumours

(23). One strategy to mitigate against this phenomenon is to

combine BRAF inhibitors with MEK inhibitors, which is being

investigated in several ongoing clinical trials (NCT03919071,

NCT04201457, NCT02684058) in BRAFV600E pHGG (24).

Recent findings from one of these phase II clinical trials

(NCT02684058) reported that the combination of dabrafenib

and trametinib treatment led to a 56% response rate and 66%

clinical benefit rate in children with recurrent or refractory

pHGG (25). However, the majority of patients demonstrated

tumour progression within 12 months, indicating that the

development of resistance also occurs following treatment with

combination BRAF/MEK inhibitor therapy, as seen in other

tumour types (26, 27).
BRAFV600E pHGG resistance
mechanisms

The most commonly identified mechanisms of resistance in

BRAFV600E mutated tumours are due to reactivation of the RAS/

RAF/ERK pathway (Figure 1). Much of the research into

resistance mechanisms has been conducted in melanoma, due

to the high prevalence of the BRAFV600E mutation in this disease

(28). Common underlying mechanisms include upregulation of

receptor tyrosine kinases (RTKs): EGFR, PDGF-b, and IGF1R,
FIGURE 1

BRAFV600E pHGG resistance mechanisms. Tumour cells become resistant to BRAFi through increased activation of the RAS-RAF- MEK-ERK or
PI3K-AKT pathways. These events are driven by upregulation or activation of receptor tyrosine kinases (RTK) such as EGFR, PDGFRb and IGF1R
through either BRAF mutations or CBL, NF1, PTEN, MAP2K1, or PIK3C2G mutation or loss (green arrows), resulting in pathway phosphorylation
and activation of downstream p90rsk, Mcl-1 and cell cycle components, leading increased cell proliferation, survival and tumour growth (figure
created with BioRender.com).
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mutational activation of KRAS and NRAS, aberrant BRAF

splicing, RAF isoform switching, BRAFV600E dimerisation and

BRAFV600E amplification (29–34). Additionally, upregulated

Wnt signalling, Mcl-1 overexpression (35, 36), as well as Sterol

Regulatory Element-Binding Protein (SREBP1) activation and

subsequent lipogenesis have been implicated in BRAF inhibitor

resistance (37, 38).

In contrast to melanoma, there has been less investigation

into the mechanisms of resistance in BRAFV600E pHGG.

Consistent with the findings in melanoma, however,

reactivation of the RAS/RAF/ERK has been implicated in

resistance to BRAF inhibitors in BRAFV600E pHGG. Further,

a secondary point mutation has been identified as a driver of

resistance in a case study of BRAFV600E paediatric glioma (39).

Through whole-exome sequencing Wang et al., identified a

secondary BRAFL514V mutation, which was present following

tumour progression, but not in the pre-dabrafenib treatment

tumour. This mutation directly induced ERK signalling,

promoted RAF dimer formation, and was sufficient to confer

resistance to dabrafenib (39). Similarly, next generation

sequencing has been used on both pre- and post-BRAF

inhibitor treated BRAFV600E HGG and LGG from paediatric

and young adult patients to identify novel mutations that act

as putative drivers of resistance (13). These identified

mutations in genes that modulate RTK activity, such as CBL,

alterations in RAS/RAF signalling through NF1 missense

mutations, secondary point mutations of BRAF, activating

mutations of MAP2K1 and mutations in PTEN. Alterations

in the PI3K/AKT/mTOR pathway have also been identified as

a mechanism of resistance in pHGG, with mutations in

PIK3C2G and upregulation of p-AKT identified (13, 40).

Furthermore, mutations in BAP and ANKHD1 in post-BRAF

inhibitor treated tissues have also implicated cell cycle drivers

as contributors towards BRAF inhibitor resistance (13).

Further validation of NF1, CBL and PTEN loss, performed

in several pLGG and adult HGG BRAFV600E cell lines (but not

pHGG), confirmed their roles as drivers of BRAF inhibitor

resistance. CRAF-dominated signalling and alterations in

KRAS and EGFR signalling were also identified as drivers of

resistance. Subsequent mechanistic analyses for vemurafenib

resistance were undertaken using drug resistant lines

developed from BRAFV600E-mutant glioma cell lines AM38

(BRAFV600E adult HGG) and MAF-794 (BRAFV600E pLGG).

Single-nucleotide variants conferring functional alterations in

ERRFI1S251* and TET2V1199E were observed in each of the

respective resistant cell lines, suggestive of possible

mechanisms of BRAF inhibitor resistance in vitro (13).

Baseline upregulation of several RTKs, RAS, p-CRAF and p-

p90rsk were also seen in three BRAFV600E HGG tumours

(including one paediatric and one adolescent sample)

collected following relapse after BRAF inhibitor treatment

(40). Interestingly, in contrast to Schreck et al. (13), no

known mutations of RAS, MAPK or PI3K/AKT were
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dr iver mutat ions were able to be ident ified (40) .

Additionally, DNA methylation status was also largely

unaffected in these patients following BRAF inhibition

treatment, overall indicating that nongenomic and non-

epigenomic events may also be involved in driving resistance

mechanisms (40).
Treatments to overcome resistance

As discussed above, a common strategy used to overcome

resistance to BRAF inhibitors is to use combination

treatments (41). With MEK reactivation being the most

common mechanism of drug resistance in BRAFV600E

tumours, MEK inhibitors are a frequently used combination

therapy, with several MEK inhibitors approved for clinical use.

Dual BRAF and MEK inhibition has demonstrated promising

results in several other BRAFV600E tumour types (42–44). The

efficacy of these treatment regimens are now being tested

within the setting of pHGG. Pre-clinical studies in a

BRAFV600E expressing Ink4a-Arf knock-out mouse HGG

model showed that dabrafenib monotherapy had no

significant impact on survival. Further, ex vivo dabrafenib

treatment of HGG cells derived from these mice resulted in

activation of EGFR and AKT, that was concurrent with p-ERK

increases (45). However, it should be noted that this was a

model of intrinsic, rather than acquired resistance. Regardless,

subsequent combination treatment with dabrafenib and the

MEK inhibitor, trametinib, significantly improved survival

and reduced Ki67 staining compared to the control group

(45), mirroring the aforementioned preliminary phase II

clinical trial findings (24, 25).

Despite these promising early results, it is well established

in other tumour types that resistance to this combination

therapy frequently develops (26, 27). In support of this, other

combination therapies targeting multiple, rather than single

pathways, have been trialled with some success in BRAFV600E

pHGG preclinical models. For example, HSP90 is a chaperone

protein, known to associate with RTKs and several proteins

shared between the MAPK and AKT/mTOR pathways (46–

49). In support of a potential role of this chaperone in

resistance mechanisms, HSP90 inhibitors have been found

to have a synergistic response in combination with either

dabrafenib or trametinib in both primary HGGs, as well as

in HGGs collected following relapse after BRAF inhibitor

treatment. While these treatments did not completely negate

the tumorgenicity of the resistant HGG phenotype, the

combination therapies did significantly improve the

response when compared to single agent treatments.

Importantly, the addition of an HSP90 inhibitor, in

combination with dabrafenib or trametinib was also effective

in two BRAFV600E HGG BRAF/MEK inhibitor resistant PDX
frontiersin.org

https://doi.org/10.3389/fonc.2022.1031378
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lehmann et al. 10.3389/fonc.2022.1031378
models, with tumour regression most evident in the paediatric

model (40).

A range of novel inhibitors have been developed that may

overcome drug resistance in BRAFV600E pHGG. Targeted first

generation BRAF inhibitors act upon BRAF monomers,

preventing their dimerisation. As a resistance mechanism,

reactivation of the RAS/RAF/ERK pathway frequently occurs

through secondary mutat ions which promote RAF

dimerisation, independent of RAS activation (29, 50).

Therefore, dimer disrupters and pan-RAF inhibitors, which

act upon RAF dimers as opposed to BRAF monomers, are

being explored as novel therapies. Dimer disrupters prevent

dimer formation, resulting in inhibition of downstream ERK

signalling (51). Dimer disrupters have shown efficacy against

BRAFV600E dimer forming melanoma and colorectal cancer

cells and PDX models (51) and are currently in clinical trial for

both paediatric and adult activating BRAF V600E and non-

V600E mutant tumours , inc luding bra in tumours

(NCT02428712). Pan-Raf inhibitors act by binding equally to

both of the RAF monomers that form the RAF dimer, and

therefore can inhibit RAF signalling in BRAFV600E tumours

which exhibit RAF dimerisation (52). Pan-Raf inhibitors have

been shown to display efficacy within the CNS and

demonstrate blood brain barrier permeability properties (53,

54).The pan-RAF inhibitors, LY3009120 and belvarafenib,

were efficacious in an intrinsically RAF inhibitor resistant

glioma line. These cells were isolated from a tumour

removed from a patient at the Children’s Hospital Colorado

and found to be resistant to BRAF inhibitors (13, 55).

Interestingly, despite these cells demonstrating resistance to

the BRAF inhibitor vemurafenib, combining the pan-RAF

inhibitor LY3009120 with vemurafenib resulted in enhanced

cytotoxicity, over LY3009120 treatment alone (13). These

studies highlight the potential of combining pan-RAF and

MEK inhibitor therapy in order to overcome drug resistance

in pHGG and are supported by such treatment regimens

displaying efficacy in drug resistant melanoma and colorectal

cancer (56, 57).

Indeed, the identification of new pathways to target in

combination with BRAF inhibition may be more effective than

targeting a single pathway. Next generation sequencing is likely

to contribute significantly towards identifying these targets. For

example, inhibition of cellular autophagy pathways has already

been identified as an area of interest for drug resistant

BRAFV600E pHGG. Autophagy inhibition has been shown to

reverse drug resistance in BRAFV600E glioma, with combined

chloroquine and vemurafenib treatment reducing cell growth in

vemurafenib resistant adult and paediatric glioma cell lines and

cultures (58). A phase I/II trial (NCT04201457) is currently

underway to ascertain the effectiveness of this approach, using

hydroxychloroquine in combination with the BRAF inhibitor
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BRAFV600E pHGG.
The future for BRAFV600E pHGG
research

Promising results are beginning to emerge on overcoming

drug resistance in BRAFV600E pHGG. However, future

preclinical studies will need to have a greater focus on

pHGG models to help elucidate the biology of this disease.

To date there have been no reports using tissues and/or cells

of pHGG origin to study the mechanisms of resistance, with

both adult HGG or pLGG samples or cells lines being

substituted. Due to distinct differences, both genomic and

phenotypic, between HGG and LGG, as well as between

paediatric and adult tumours, the development of specific

pHGG models will help direct clinical trials and future

treatment strategies.
Conclusions

BRAFV600E pHGG is a rare CNS tumour with a poor

prognosis, which responds well to targeted therapy; however,

treatment is limited by the rapid onset of resistance. Whilst

significant progress has been made in determining the

underlying mechanisms of resistance in other BRAFV600E

cancers, drug resistance in BRAFV600E pHGG is less well

understood. Recent studies have helped to begin to elucidate

these mechanisms. Already, the identification of novel therapies

such as dimer disrupters and pan-RAF inhibitors are an exciting

development for the field. It is hoped that further identification

of resistance mechanisms in BRAFV600E pHGG will facilitate

further improvements in patient outcomes.
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