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Hepatocellular carcinoma (HCC) remains an important disease for health care

systems in view of its high morbidity, mortality, and increasing incidence

worldwide. Radiofrequency ablation (RFA) is preferred to surgery as a local

treatment for HCC because it is safer, less traumatic, less painful, better

tolerated, causes fewer adverse reactions, and allows more rapid

postoperative recovery. The biggest shortcoming of RFA when used to treat

HCC is the high incidence of residual tumor, which is often attributed to the

vascular thermal deposition effect, the wide infiltration zone of peripheral

venules, and the distance between satellite foci and the main focus of the

cancer. Recurrence and progression of the residual tumor is the most

important determinant of the prognosis. Therefore, it is important to be

aware of the risk of recurrence and to improve the efficacy of RFA. This

review summarizes the relevant literature and the possible mechanisms

involved in progression of HCC after RFA. Current studies have

demonstrated that multimodal treatments which RFA combined with other

anti-cancer approaches can prevent progression of HCC after RFA.

KEYWORDS

hepatocellular carcinoma, radiofrequency ablation, residual tumor, tumor
progression, prevention
1 Introduction

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and

accounts for 90% of cases. It is associated with a poor prognosis because of a high

recurrence rate and a lack of effective therapeutic options (1). Patients with early-stage

HCC can be treated by liver transplantation, surgical resection, or radiofrequency
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ablation (RFA) as first-line therapies (2, 3). Although surgical

resection and liver transplantation have been regarded as the

optimum therapeutic strategies, their application is limited in

many cases because of lack of a donor, decompensated liver

function, and failure to meet specific (Milan) selection

criteria (4).

RFA is a minimally invasive and repeatable treatment that is

associated with limited procedure-related morbidity, which

results in better cost-effectiveness and quality of life. RFA is

also considered as an alternative for patients not eligible for

surgical resection or liver transplantation and those awaiting

liver transplantation. Many studies have demonstrated that the

efficacy of RFA and surgical resection in terms of survival

outcomes are similar for a single small HCC of ≤3 cm (5, 6).

However, RFA appears to be inferior to surgical resection in

terms of local control and disease-free survival (7). Rapid

intrahepatic neoplastic progression and metastasis of HCC

after RFA, indicating more aggressive biological behavior, has

also been found in some clinical centers (8). The mechanisms

underlying progression of HCC after RFA remain poorly

understood, and it is important to develop targeted therapy

that can improve the prognosis of this disease. This review

discusses the literature on the potential mechanisms of

progression of HCC after RFA in the hope of finding

preventative strategies.
2 Tumor progression in HCC
after RFA

Since the first experimental hepatic RFA procedure was

performed in 1990 (9), there has been extensive research on

RFA, and it is now regarded as a curative treatment for HCC.

However, many clinical centers have been reporting an increasing

number of cases of progression of HCC after RFA. Seki et al. (10)

described a patient who underwent transcatheter arterial

chemoembolization and RFA for a small HCC measuring

2.5 cm, and enhanced magnetic resonance following treatment

showed complete tumor necrosis and did not reveal any tumor

around the treated area. However, numerous tumors around the

treated area were observed on enhanced computed tomography

50 days after RFA. Koda et al. (11) reported a similar case

involving well-differentiated HCC that was treated by RFA and

reduced to 2.5 cm in diameter by 6 months after the procedure but

rapidly enlarged to 6 cm in the next 2 months and progressed to

lymph node metastasis. Autopsy findings showed both

sarcomatoid and trabecular HCC cells. This was the first

reported case of sarcomatous HCC after RFA. Portolani et al.

(12) subsequently reported on three patients with small HCC

treated with RFA, in whom imaging confirmed complete ablation.
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However, tumor regrowth was diagnosed at 3, 4, and 6 months

after RFA and was associated with extensive liver and parietal wall

involvement. Ruzzenente et al. (13) reported on 87 patients with

cirrhosis and 104 HCCs that were treated by RFA. In 4 patients,

although complete local necrosis was achieved, rapid intrahepatic

neoplastic progression was observed following RFA. After 30 days,

there was a rapid increase in alpha fetoprotein in three of these

four patients, two of whom died as a result of disease progression

after 2–3 months of follow up. Baldan et al. (14) reviewed 401

cases of HCC treated by RFA from 13 centers in Italy and

identified tumor seeding in four patients and rapid unexpected

disease progression on another 10 patients. Shiozawa et al. (15)

investigated 1073 lesions in 538 patients who underwent

ultrasound-guided RFA between April 1999 and March 2008

and documented rapid aggressive disease progression in 0.65%

of cases. In a study of the perfusion features of local recurrence of

HCC after RFA, Wu et al. (16) demonstrated that enhancement

was more homogeneous, the border was more poorly defined,

washout was more marked, and that there were fewer feeding

vessels and areas of inner necrosis in the recurrent HCC than in

the initial HCC. Moreover, the tumor stem cell markers CD133

and EpCAM were also both highly expressed in specimens from

the patients with recurrent disease. As shown in Figure 1, we

reviewed the relevant mechanisms.
3 Cause of residual tumor tissue

RFA of a tumor requires local application of extremely high

temperature, which can cause irreversible cell injury and

ultimately tumor apoptosis and coagulative necrosis.

According to the size and shape of the needle tip, a spherical

ablated area is generated in about 10–30 minutes, generally from

2 cm to 5 cm in diameter. With RFA, the zone of active tissue

heating is limited to the few millimeters surrounding the active

electrode, with the remainder of the ablation zone heated via

thermal conduction. With an increase in the size of the target

area, the efficacy of the treatment is reduced (17). Moreover,

certain tissue properties, such as electrical conductivity, thermal

conductivity, dielectric permittivity, heat capacity, and blood

perfusion rate, have a substantial effect on the growth of ablation

zones. Interestingly, a temperature >100°C is less effective

because the desiccation that results at these temperatures,

which manifests as water vapor and burnt tissue, increases the

tissue impedance and therefore limits further electrical

conduction through the remaining tissue (18).

Furthermore, a cytotoxic temperature is difficult to maintain

if the ablated tumor is close to large blood vessels (19). This heat-

sink effect is a commonly described limitation of RFA and occurs

when heat that is absorbed by flowing blood or air is carried

away from the area of ablation; in these cases, the lower energy
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intensity within the passive zone is not able to achieve thermally

toxic temperatures in proximity to the cooling vasculature (20).

Therefore, tumor tissue that is adjacent to the vasculature is less

susceptible to thermal damage.
4 Mechanisms of tumor progression
in HCC after RFA

4.1 Changes in biological behavior of
HCC cells after RFA

RFA may directly change the proliferation, invasion, and

metastasis of HCC cells. Obara et al. (21) assessed the

proliferation rate, heat sensitivity, and invasive capacity of

several HCC cell lines in response to heat treatment and

demonstrated that even a single session of heat treatment

could induce further transformation of these cells. Ke et al.

(22) established a rabbit model of residual VX2 hepatoma after

RFA and identified inadequate RFA caused by temperature that

was too low at the target sites to be a potentially important cause

of rapid disease progression. Rapid progression of residual

hepatic VX2 carcinoma could be facilitated by overexpression

of several molecular factors, such as proliferating cell nuclear

antigen, matrix metalloproteinase 9, vascular endothelial growth

factor (VEGF), hepatocyte growth factor, and interleukin (IL)-6.

Zhang et al. (23) also demonstrated that RFA promoted

proliferation, migration, and invasion of HepG2 and

SMMC7721 cells. Epigenetic regulation also has an important

role in maintaining homeostasis when cells are exposed to acute

physicochemical stresses. Moreover, in a mechanistic study of

the role of m6A machinery in recurrence of HCC after RFA, Su

et al. (24) found that sublethal heat treatment increased m6A
Frontiers in Oncology 03
modification of the epidermal growth factor receptor (EGFR) in

the vicinity of the 5’ UTR region and promoted its binding with

YTHDF1, which enhanced the translation of EGFR mRNA and

promoted viability and metastasis of HCC cells after RFA.
4.2 Autophagy

Autophagy is evolutionarily conserved cellular process

wherein components of cells are degraded by sequentially

formed autophagic vesicles and is also a cellular process used

by cancer cells to replicate under various adverse conditions,

such as oxidative stress, endoplasmic reticulum stress,

mitochondrial stress, and starvation. The possible signaling

pathways of autophagy in HCC after RFA are listed in

Figure 2. Wang et al. (25) reported that autophagy

participated in the enhanced viability and invasion of HCC

cells after inadequate RFA. They also found that CD133 became

localized to autophagosomes and was suppressed by 3-MA or

chloroquine, which could suppress RFA-induced cell viability,

invasion, and autophagy. Zhao et al. (26) showed that

insufficient RFA induced an anoxic microenvironment,

autophagy, and autophagic flux in tumor cells, which have an

important role in tumor relapse and proliferation. Furthermore,

Xu et al. (27) demonstrated that insufficient RFA increased

autophagy in residual HCC cells via the hypoxia-inducible

factor 1 (HIF)-1a/BNIP3 pathway, which is involved in

increased proliferation, migration, and invasion of tumor cells.

Chen et al. (28) found that the heat shock protein90 (HSP90)/

Akt/mTOR pathway is involved in the signaling between

autophagy and HSPs after incomplete thermal ablation. And

subsequent studies found that the HSP90 inhibitor 17-AAG, in

combination with the autophagy inhibitor 3-mA, promoted
FIGURE 1

Mechanisms of tumor progression in HCC after RFA. EMT (epithelial-mesenchymal transition), TAMs (tumor-associated macrophages), CAFs
(carcinoma-associated fibroblasts).
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hepatocellular carcinoma apoptosis following incomplete

thermal ablation more significantly than monotherapy,

suggesting an association between heat-induced heat shock

processes and autophagy (29). Jiang et al. (30) showed that

sublethal heat stress induced protective autophagy against heat-

induced apoptosis in HCC via the ATP-AMPK-mTOR axis, and

the inhibition of autophagy by CQ or siRNA targeting the

autophagy-related genes Beclin-1 and Atg5 enhanced heat-

induced apoptosis. Zhang et al. (31) found that activated

hepatic stellate cells promote progression of residual HCC cells

after sublethal heat treatment from autophagic survival to

proliferation via HGF/c-Met signaling. In an animal model,

inhibiting autophagy in combination with c-Met inhibitor

significantly thwarted tumor progression of residual HCC after

incomplete thermal ablation via the suppressed autophagy, the

decreased proliferation and the increased apoptosis.
4.3 Epithelial-mesenchymal transition

Trans-differentiation of epithelial cells into motile

mesenchymal cel ls , a process known as epithelial-

mesenchymal transition (EMT), is activated in an aberrant

manner under pathological conditions, including organ

fibrosis and cancer (32). To acquire an invasive phenotype for

metastatic progression in cancer, carcinoma cells exploit EMT to
Frontiers in Oncology 04
facilitate their dissociation from the primary tumor and

dissemination into the circulation. EMT also endows tumor

cells with enhanced stemness and increased resistance to

immune clearance and various iatrogenic insults (33). The

mechanisms of EMT in tumor progression after RFA of HCC

are listed in Figure 2.

An increasing body of data suggests that EMT also

participates in progression of HCC after RFA. Some studies

have shown that P-ERK1/2 plays an important role in heat-

induced EMT (34). Four studies (35–38) performed heat

treatment on MHCC97H, HepG2, HuH7, and HEP3B cell

lines and found that ERK was significantly phosphorylated.

EMT was attenuated after inhibition of P-ERK1/2, which was

similar to other ways of activating EMT. They found that P13K,

P46-Shc, and Periostin were activated as upstream proteins of

ERK after heat treatment, causing tumor invasion and

metastasis. Flotillin-1 and flotillin-2 were found to be

upregulated in HCCLM3 cells following heat treatment and in

residual HCCLM3 xenograft cells after RFA, which altered the

status of EMT and metastatic potential via activation of the Akt/

Wnt/b-catenin signaling pathway (39). Zhang et al. (40) also

found that incomplete RFA enhanced the invasive and

metastatic potential of residual cancer, accompanying with

EMT-like phenotype changes by activating b-catenin signaling

in HCCLM3 cells. Subsequent study found that a combination of

interferon alpha and an herbal compound known as “songyou
FIGURE 2

The mechanisms of EMT and autophagy in tumor progression after insufficient RFA(IRFA) of HCC.
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yin” significantly weakened the enhanced metastatic potential of

residual HCC after RFA via attenuation of EMT and that this

effect was mediated by inhibition of activation of b-catenin (41).

Su et al. (42) found that incomplete RFA induced the formation

of Stress-induced phosphoprotein 1 (STIP1) - HSP90 complex,

which mediated heat-induced EMT and metastasis in HCC cells.

Tan et al. (43) showed that sublethal heat treatment increased

the expression of cancer stem cell markers and markers of

metastasis and promoted the ability of HCC cells to migrate

after RFA. They also found that blockade of VEGFR1 could

reduce heat-induced enhancement of migration and stemness.

Kong et al. (44) found that ATPase inhibitory factor 1 (IF1)

promoted EMT and angiogenesis in HCC after inadequate RFA,

that this ability was markedly inhibited after IF1 knockdown,

and that the sensitivity of HCC cells to sorafenib was attenuated

after RFA via the nuclear factor kappa-B signaling pathway.

Zeng et al. (45) reported that downregulation of lncRNA

FUNDC2P4 promoted EMT, leading to proliferation, invasion,

and migration of tumor cells by reducing expression of E-

cadherin in residual HCC after RFA, which suggests that

FUNDC2P4 may have value for prevention and treatment of

recurrent HCC. Zhou et al. (46) demonstrated that insufficient

ablation at a low temperature induced EMT and promoted

tumor aggressiveness that was mediated by the IL-6/STAT3/

Snail pathway. Targeting EMT could suppress tumor

progression in HCC after RFA. Li et al. (47) showed that the

upregulation of Nedd4 in HCC insufficient ablation tissues was

induced by METTL14-mediated N6-methyladenosine

modification after sublethal heat treatment. Besides, Nedd4

enhanced TGF-b/smad/EMT signal transduction by directly

binding to TGFBR1 and forming K27-linked ubiquitin at

Lysine 391 mediated HCC progression. Knockdown of Nedd4

inhibited HCC metastasis and growth in vitro and in vivo.
5 Tumor microenvironment

The tumor microenvironment in HCC is a complex and

spatially structured mixture of hepatic non-parenchymal

resident cells, tumor cells, immune cells, and tumor-associated

fibroblasts. All these cell populations interact in a dynamic

manner through cell-cell contact and release or recognition of

cytokines and other soluble factors. This complex interplay

between cells has a substantial influence on tumor immune

evasion (48).
5.1 Abnormal vasculature

Rapid development of new vascular networks is required in

tumors in order to support a high cell proliferation rate. These
Frontiers in Oncology 05
networks are different from those of normal blood vessels and

are characterized by distorted and chaotic branches,

heterogeneity of the vascular lumen, incomplete pericyte

coverage, an abnormal basement membrane, increased

vascular permeability, hypoxia, and increased tissue hydraulic

pressure (49), which are crucial for metastasis and escape of

cancer cells (50). Many studies have shown that RFA promotes

angiogenesis in residual liver cancer tissue and worsens its

abnormal vasculature.

5.1.1 Tumor-associated endothelial cells
Tumor-associated endothelial cells (TAECs) form the inner

layer of tumor blood vessels and are an important part of the

tumor microenvironment. Unlike normal endothelial cells,

TAECs show morphological and phenotypic abnormalities at

the cellular and molecular levels. Furthermore, angiogenic ability

and drug resistance have been shown to be significantly higher in

TAECs than in normal endothelial cells (51). TAECs are

constituents of blood vessels that provide oxygen and nutrients

for tumor cells and act as gatekeepers that allow these cells to

escape and enter the circulation (52). An imbalance of tumor

endothelial cells leads to loss of normal vascular barrier function

and provides a channel for metastasis of tumor cells (53). Kong

et al. identified significant enhancement of the migration and

tube formation ability of TAECs after RFA, which may play a

key role in the rapid growth of residual HCC. TAECs could also

increase the invasive ability of HCC cells by secreting a variety of

cytokines, including IL-8, IL-6, monocyte chemoattractant

protein-1, and Gro-a. Furthermore, expression of E-selectin,

intercellular adhesion molecule 1 (ICAM-1), and vascular cell

adhesion molecule 1 was found to be upregulated in TAECs after

insufficient RFA, suggesting that upregulation of adhesion

molecules may be one of the mechanisms of the enhanced

adhesion between TAECs and HCC cells. Angiogenic

capability and drug resistance was also found to be higher in

TAECs than in normal endothelial cells (54).
5.1.2 Angiogenesis
Angiogenesis is the term used to describe the formation of

new blood vessels in already existing vasculature. This process is

the result of the synergistic action of tumor cells and the tumor

stroma and is a prerequisite for metastasis (55). Folkman first

proposed that tumor growth and metastasis depend on

angiogenesis in 1971 (56). The mechanisms that drive

angiogenesis are complex and have an important role in

progression of HCC after insufficient RFA. VEGF plays an

important part in angiogenesis; its most important member is

VEGFA, which can directly stimulate the movement,

proliferation, and division of vascular endothelial cells and

increase the permeability of the microvasculature. Ke et al.
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(22) found that inadequate RFA caused by a low target

temperature resulted in a significant increase in expression of

VEGF in residual tumor tissue and promoted metastasis of liver

cancer. Liu et al. (57) also showed that RFA promoted growth of

residual HCC by increasing expression of VEGF via activation of

CaMKII-induced ERK. Ahmed et al. (58) found that RFA of

normal liver tissue stimulated tumor growth in distant

subcutaneous tissue, which was mediated via the hepatocyte

growth factor/c-Met pathway and activation of VEGF and that

this process could be suppressed by inhibition of VEGF.

Tumors with a high cell proliferation rate and undergoing

active growth have a significantly reduced oxygen supply,

especially cells in the core of the tumor, and activation of HIF-

1 promotes the release of more pro-angiogenic factors, especially

VEGFA, from tumor cells and stromal cells (59). Kong et al. (60)

found that RFA could promote angiogenesis in residual HCC via

HIF-1a/VEGFA and that the HIF-1a inhibitor YC-1 reversed

this process. Xu et al. (61) demonstrated that hypoxia and

hypoxia-driven angiogenesis have an important role in the

recurrence of HCC after RFA and that sorafenib is an effective

inhibitor of the HIF-1a/VEGFA pathway.

5.1.3 Vascular permeability
Increased vascular permeability results mainly from the loss

of connexin between endothelial cells and causes destruction of

the integrity of the vascular barrier, which in turn affects the

ability of tumor cells to cross the vascular barrier. Endothelial

cells are connected by connective proteins, including adhesion

connexins, such as VE-cadherin and catenins, and by tight

junctions, such as ZO-1 and claudin-5. Studies have confirmed

that loss of endothelial intercellular connexin can promote

permeability of the tumor vasculature and metastasis (62).

Kong et al. (63) found that ICAM-1 induces aggregation and

activation of platelets, increases endothelial permeability via

Ezrin/VE-cadherin, and promotes tumor migration across

endothelial cells in HCC after insufficient RFA.

5.1.4 Vasculogenic mimicry
Vasculogenic mimicry (VM) is different from the classical

tumor angiogenesis pathway, independent of endothelial cells,

and involves hollow lumens composed of basement membrane

and peripheral cancer cells (64). VM has been discovered to be a

method of angiogenesis in many malignant tumors and provides

a novel strategy for the clinical treatment of angiogenesis in

tumors, which is related to the invasion, metastasis, and poor

prognosis of HCC. Cancer stem cells and EMT participate in

VM (65). Jia et al. (66) found that platelet lysates in patients with

HCC after RFA can promote EMT and activation of Akt, ERK1/

2 and Smad3 signals, further promoting tumor VM and
Frontiers in Oncology 06
metastasis of HCC after RFA. Kong et al. (44) also

demonstrated that EMT participated in VM and promoted

progression of HCC after insufficient RFA.
5.2 Extracellular matrix

The extracellular matrix (ECM) is a non-cellular three-

dimensional macromolecular network composed of collagens,

proteoglycans/glycosaminoglycans, elastin, fibronectin,

laminins, and several other glycoproteins. The ECM not only

provides a physical scaffold in which cells are embedded but also

regulates many cellular processes, including growth, migration,

differentiation, survival, homeostasis, and morphogenesis. Cells

embedded in the ECM interact with this macromolecular

network via their surface receptors, which include integrins,

discoidin domain receptors, cell surface proteoglycans, and the

hyaluronan receptor CD44 (67). During tumorigenesis, marked

alterations take place in the ECM, leading to formation of a

fibrotic stroma with increased stiffness, excessive deposition of

ECM components, and release of proteolytic enzymes that result

in abnormal ECM remodeling upon activation. These changes in

the ECM further promote tumor progression and metastasis.

The ECM has been identified to have an important role in the

progression of residual cancer of HCC after RFA (68).

Zhang et al. (38) revealed that an increase in the ECM

protein collagen I promotes progression of heat-exposed

residual HCC cells, indicating the importance of collagen I in

modulating residual HCC after incomplete heat treatment, and

proposed that sorafenib could reverse collagen I-induced

protumor effects. Zhang et al. (69) also showed that the

increased matrix stiffness that occurs after RFA promoted

proliferation, motility, and progression of heat-exposed

residual HCC cells.
5.3 Tumor-associated macrophages

Macrophages play an important role in tumorigenesis.

Regulation of the biological behavior of tumor cells by

manipulation of the function of macrophages is a current

focus in tumor research (70). Macrophages have strong

plasticity, and their activated states and types have different

effects on the biological behavior of tumors. Th1-activated

macrophages (classical activation/M1-like) have anti-tumor

activity and Th2-activated macrophages (bypass pathway/M2-

like) are related to tumor growth and metastasis (71).

Tumor-associated macrophages (TAMs) are a major

component of the tumor microenvironment and play pivotal
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roles in progression of HCC. Many studies have indicated that

tumor-associated macrophages promote initiation, angiogenesis,

and metastasis of tumors and suppression of adaptive immunity

by production of a large number of cytokines, chemokines,

growth factors and matrix metalloprotease in the tumor

microenvironment (72). Collettini et al. (73) identified a large

number of macrophages around the RFA area, which suggested

that tumor-associated macrophages participate in progression of

HCC after RFA. Rozenblum et al. (74) found that RFA induced

large concentrations of macrophages around the necrotic area

and that blockade of either IL-6 or c-met significantly reduced

the proliferation of hepatocytes, with blockade of IL-6 reducing

accumulation of both macrophages and myofibroblasts in the

vicinity of the area of coagulation necrosis. Kumar et al. observed

an increase in markers of tissue inflammation in the

periablational rim and serum after hepatic RFA, including

increased production of cytokines and recruitment of

inflammatory cells (including macrophages, myofibroblasts, T-

cells, and natural killer cells). Increased activation of COX-2

after hepatic RFA contributes to infiltration of periablational

macrophages and inflammation-mediated distant tumor growth,

which can be successfully suppressed with a COX-2

inhibitor (75).
5.4 Carcinoma-associated fibroblasts

Carcinoma-associated fibroblasts (CAFs) constitute a

substantial proportion of the non-neoplastic mesenchymal cell

compartment in various human tumors. These fibroblasts are

phenotypically converted from their progenitors via interactions

with nearby cancer cells during the course of tumor progression.

The resulting CAFs, in turn, support the growth and progression

of carcinoma cells. These fibroblasts have a major influence on

the hallmarks of carcinoma and promote malignancy by

secretion of tumor-promoting growth factors, cytokines, and

exosomes, and by remodeling of the ECM (76).

Kumar et al. (75) observed an increase in alpha-smooth

muscle actin (aSMA)-positive activated myofibroblasts after

RFA. However, periablational recruitment of activated

myofibroblasts was lower after daily exposure to celecoxib

following RFA than after RFA alone. Rozenblum et al. (74)

found that RFA induced a large accumulation of activated

myofibroblasts around the necrotic zone. In addition to the

accumulation of myofibroblasts, RFA induced proliferation of

hepatocytes in both the ablated lobe and an untreated lobe, and

blockade of either IL-6 or c-met significantly reduced global

proliferation of hepatocytes. These changes, which were

mediated via IL-6- and/or c-met, could have accounted for a

proportion of the local and distant tumor recurrences observed

after treatment. Ahmed et al. (77) demonstrated that the increase

in heat shock protein induced by RFA could promote tumor
Frontiers in Oncology 07
growth and progression. Ma et al. (78) also showed that the gain-

of-function p53 protein could bind selectively to the chaperone

protein heat shock protein 90 and be packaged into small

extracellular vesicles, which could be transferred to fibroblasts.
5.5 Hepatic stellate cells

CAFs in the liver are mainly derived from hepatic stellate

cells (HSCs) (79). HSCs are liver sinusoidal resident vitamin A-

storing cells and are considered to be the most relevant

profibrogenic cell type operating in chronic liver diseases.

During the process of liver injury, these cells undergo

phenotypic transformation from ‘quiescent’ cells into

‘activated’ cells, which are characterized by proliferation,

contractility, increased synthesis and secretion of ECM, altered

matrix protease activity, and pro-mitogenic cytokines (80, 81).

CAFs are composed of both fibroblasts and a-SMA-positive

myofibroblasts, which are the hallmark of activated fibroblasts.

Expression of a-SMA has long been regarded as the most

reliable marker for detection of activated fibroblast

populations in CAFs (82).

Zhang et al. (31) found that activated HSCs promoted

progression of residual HCC cells after sublethal heat

treatment from autophagic survival to proliferation via

hepatocyte growth factor/c-Met signaling. A combined

treatment regimen that included inhibition of autophagy and

c-Met signaling could suppress progression of residual HCC

after incomplete thermal ablation. Furthermore, Zhang et al.

(83) demonstrated that activated HSCs can promote the

stemness traits of residual HCC cells after incomplete thermal

ablation and that metformin may be able to reverse this process.

Zhang et al. (84) also showed that activated HSCs promoted

progression of heat−treated residual HCC by release of POSTN,

which could be inhibited by calcipotriol. Calcipotriol plus

cisplatin could be used to thwart the accelerated progression of

residual HCC after suboptimal heat treatment.
5.6 Platelets

Current research suggests that platelets have an important role

in tumorigenesis, contributing to inflammation, angiogenesis and

metastatic dissemination of tumor cells (85). In HCC, platelet

activation is also an important risk factor for a poor postoperative

prognosis (86). There is also research indicating that antiplatelet

therapy reduces the risk of recurrence after surgical resection and

improves overall survival in patients with HCC associated with viral

hepatitis B (87).

Platelets can interact with adhesion molecules on the surface

of endothelial cells and regulate the barrier function of these cells

by releasing vesicles (88), which is an important step in the

process of distant metastasis, and can increase vascular
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permeability. Kong et al. (63) found that ICAM-1 activates

platelets in residual tumor tissue after RFA and promotes

vascular permeability in TAECs via VE-cadherin and that

anti-platelet and anti-ICAM-1 therapy could prevent

progression of HCC after RFA. Furthermore, Jia et al. (66)

compared the effect of platelet lysates in HCC cell lines before

and after RFA and found that lysates obtained from patients

after RFA of HCC could promote proliferation, migration,

invasion, and VM of HCC cells. They also demonstrated that

platelet lysates from patients who had undergone RFA

accelerated metastasis of HCC cells to the lung.

In conclusion, as shown in Figure 3, the tumor

microenvironment plays an important role in the tumor

progression after IRFA of HCC. This provides a theoretical basis

for the exploration of combined targeted therapy after RFA of HCC.
6 Strategies to prevent progression
of HCC after RFA

Recent efforts have focused on multimodal management of

HCC in which RFA is combined with other anti-cancer

approaches to prevent progression of HCC after RFA.
6.1 Pathological complete ablation

In terms of pathology, HCC usually consists of the main

tumor lesion, peritumoral microvascular invasion (MVI), and

satellite lesions. In the late stage, portal vein tumor thrombus

and extrahepatic metastasis can be found. Imaging can reveal
Frontiers in Oncology 08
the main tumor lesion and larger satellite lesions but not MVI

and smaller satellite lesions. The extent of HCC that cannot be

seen by imaging is usually much larger than that of the main

lesion. Pathological complete ablation with no residual viable

tumor cells requires complete ablation of all tumor tissue,

including the main tumor lesion, peritumoral MVI, and

satellite lesions, and is the most effective way of preventing

disease progression (89).

In most cases, RFA completely ablates only the main HCC

lesion, even if there is an ablationmargin, what is obtained is usually

the imaging complete ablation. The residualMVI and satellite lesion

around the tumor will lead to tumor progression. The most effective

way to achieve pathological complete ablation is to increase the

ablation margin. Jiang et al. (90) demonstrated that the minimum

ablation margin was significantly smaller for a tumor with local

progression than for one without local progression. Li et al. (91) and

Laimer et al. (92) also found that enlarging the ablation margin

could significantly reduce the risk of tumor recurrence and improve

the long-term survival rate. In a previous study, we demonstrated

that repeated RFA with an ablation margin and transarterial

chemoembolization improved the outcome in patients with large

solitary HCCs measuring ≥10 cm (93). Moreover, our yet to be

published current research demonstrates that long-term overall

survival is not significantly different between anatomic resection

and RFAwith an ablationmargin ≥1.0 cm in patients with a solitary

HCCmeasuring ≤3 cm. Therefore, when performing RFA as a local

ablation therapy to reduce the risk of local disease progression and

improve the overall survival rate, we need to ablate not only the

target tumor but also the apparently non-tumorous surrounding

liver tissues, which could be harboringmicrometastases and contain

areas of microvascular invasion.
FIGURE 3

The mechanisms of tumor microenvironment in tumor progression after RFA of HCC.
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6.2 RFA plus targeted therapy
or immunotherapy

In the past few years, a number of promising targeted

therapies have emerged for HCC. Sorafenib is the classic

molecular targeted agent and is approved by the US Food and

Drug Administration (FDA) for the treatment of advanced

HCC. When used to treat HCC, sorafenib is reported to

activate several signaling pathways, in particular those for Raf/

MEK/ERK, the VEGF receptor, and platelet-derived growth

factor receptor. Sorafenib can also be used to prevent

progression of HCC after RFA (94). Dong et al. (37)

demonstrated that sorafenib suppressed EMT of HCC cells

after inadequate RFA and could prevent progression of HCC

after RFA. Kong et al. (44) showed that sorafenib could inhibit

and prevent migration of a colony of HCC cells after RFA, that

overexpression of IF1 could attenuate the effect of sorafenib in

these cells, and that inhibition of IF1 could improve the

therapeutic effect of sorafenib. Xu et al. (61) also found that

sorafenib blocked the HIF-1a/VEGFA pathway, inhibiting

tumor invasiveness and inducing apoptosis in hepatoma cells

after RFA. Furthermore, Mertens et al. (95) demonstrated that

sorafenib promoted necrosis after RFA, decreasing tissue repair

and preventing disease progression. This reduction in tissue

repair is caused by inhibition of neovascularization and reduced

cell proliferation. Bevacizumab is the first anti-angiogenesis

agent approved by the FDA. It is a humanized monoclonal

antibody against VEGFA. One study in a rat model

demonstrated that bevacizumab is useful for preventing rapid

progression of residual HCC following RFA (60).

More recently, immunotherapy has emerged as the standard

first-line treatment for patients with advanced HCC. Combination

of RFA with cellular immunotherapy has attracted interest because

of its synergistic anticancer effects and is expected to eradicate

residual disease after RFA and prevent disease recurrence (96). Ma

et al. (97) found that autologous RetroNectin-activated killer cells

and suggested that adaptive immunotherapy might help to prevent

recurrence of HCC after RFA. Kitahara et al. (98) also demonstrated

that intratumoral injection of OK432-stimulated dendritic cells

could prevent progression of residual HCC after RFA.

Although some studies have demonstrated that targeted

therapy or immunotherapy after RFA provides better

outcomes than RFA alone, more multicenter randomized

clinical trials in large samples are needed to confirm the

benefits of RFA plus targeted therapy or immunotherapy.

Moreover, how to develop individualized treatment strategies

to obtain the best treatment effect needs to be taken into

consideration in clinical research.

6.3 RFA combined with other agents

Metformin is recommended as first-line therapy for all

patients with a new diagnosis of type 2 diabetes mellitus. There
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metformin on the incidence of cancer and its mortality.

Metformin also appears to hold promise as a treatment for

HCC. In one study, metformin was found to inhibit cell

proliferation, invasion, and angiogenesis and to induce

apoptosis in HCC (99). Zhang et al. (23) also found that

metformin inhibited the growth of HCC cells after insufficient

RFA and suggested that it could be used to prevent progression of

HCC after RFA.

Arsenic trioxide (ATO) has been approved by the FDA as

first-line treatment for acute promyelocytic leukemia (100).

Recent in vitro studies have demonstrated that ATO can

suppress HCC cells via various mechanisms, including

suppression of proliferation, slowing invasion and migration,

as well as reversing multidrug resistance (101–103). These effects

suggest that ATO may be able to eradicate residual tumor cells.

Dong et al. (104) demonstrated that ATO blocked the paracrine

signaling of Ang-1 and Ang-2 by inhibiting p-Akt/Hif-1a and

further suppressed angiogenesis of HCC after insufficient RFA.

Chen et al. (105)also found that extensive angiogenesis after RFA

could augment the enhanced permeability and retention effect

and increase the enrichment of ATO-loaded ZIF-8

nanopart ic les , which markedly inhib i ted res idua l

tumor progression.
7 Conclusion

Various factors contribute to progression of residual HCC after

RFA. Current research on the mechanisms of disease progression

after RFA for HCC is mainly focused on changes in the biological

behavior of tumor cells and remodeling of the tumor

microenvironment. A number of studies performed in the clinical

practice setting have confirmed that multimodal therapies that

include RFA can indeed improve the outlook for patients with

HCC. Further efforts are needed to optimize the protocol for each of

the combination therapies and to establish the best combination

strategy to prevent progression of HCC after RFA.
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