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Introduction: Improving outcomes for oral squamous cell carcinoma (OSCC)

patients has been hindered by a lack of effective predictive animal models.

Spontaneously occurring canine OSCC could help fill this gap. The objective of

this studywas to characterize the immune landscape of canineOSCC to advance

understanding of how dogs could serve as a surrogate for human OSCC.

Methods/Results: Canine OSCC contains a heterogenous tumor immune

microenvironment. CD3+ T cells were the predominant tumor infiltrating

immune cell population; however, there was a wide range CD3+ T cell density

across samples. The most common CD3+ T cell micro-anatomical distribution

was defined as “pre-existing immunity”, but the remaining 20% of tumors were

characterized as “immunologically ignorant” or “excluded infiltrates” patterns.

When compared to normal oral mucosa, the tumor gene expression pattern

suggests that canine OSCC microenvironment is highly inflamed and

characterized by the presence of an anti-tumor immune response dominated

by cytotoxic\effector T cells and NK cells (CD8a, GZMA, OX40, and HLA-A);

however, overexpression of genes associated with effector T cell exhaustion and

microenvironmental immunosuppression was also identified (PD-1, LAG3,

CXCL2). Correlations between CD3+ T cell density and immune gene

expression revealed key genes associated with cytotoxic anti-tumor T cell

responses (GZMA, GZMB, PRF1), co-stimulation of T cells (CD27, CD28, ICOS),

and other immune processes, including Type I IFN response (TNF, TNFSF10), and

T cell exhaustion (CTLA4, PD-1). CD3+ T cell density in canine OSCC was

significantly correlated with a cytolytic activity score (mean PRF1 and GZMA

expression), suggestive of active effector CD8 T cell function. CD204+

macrophages were the second most abundant tumor infiltrating immune cell,

and when comparing to normal oral mucosa, two differently expressed genes

linked to tumor associated macrophages and myeloid derived suppressor cells

(MDSC) were identified: CXCL2, CD70. Overexpression of CXCL2 was also

identified in canine OSCC “T cell-high” tumors compared to “T cell-low” tumors.
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Discussion: This study identified actionable immunotherapy targets which

could inform future comparative oncology trials in canine OSCC: CTLA-4,

PD-1, CXCL2. These data provide a good first step towards utilizing

spontaneous canine OSCC as a comparative model for human OSCC

radiation and immuno-oncology research.
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1 Introduction

Head and neck cancer comprises various malignancies that

develop in or around the oral cavity, throat, larynx, or sinonasal

cavity, and collectively, represents the sixth most prevalent

cancer worldwide (1). Most head and neck cancers are

squamous cell carcinomas (HNSCC) and most are of the oral

cavity (OSCC). The 5-year overall survival rate for HNSCC is

40-50%, with a worse prognosis for patients with advanced

disease (2, 3), which represents more than half of initially

diagnosed HNSCC patients (4). The conventional standard-of-

care for patients with advanced HNSCC is either chemoradiation

or aggressive surgical excision of the tumor followed by 6 to 7

weeks of radiation therapy with or without chemotherapy

(3). Dysregulated tumor cell proliferation has been shown to

associate with treatment resistance [reviewed in (5–7)], and

immune evasion within the HNSCC tumor microenvironment

has also been shown to correlate with recurrence and metastasis

(8–11). Targeted therapies aimed at countering proliferative

signaling have failed, and new efforts underway to integrate

immunotherapy to improve treatment outcomes have been met

with limited success (12, 13).

While progress has been made in understanding the biology

of HNSCC and OSCC, translating traditional laboratory research

findings into clinical success has been overall slow and

disappointing. In particular, a challenge to studying human

papilloma virus (HPV)-negative HNSCC is the lack of effective

predictive animal models. Improving cancer treatment outcomes

for patients with advanced HPV-negative HNSCC relies on the

availability of appropriate preclinical animal models. Comparative

oncology research can fill an important gap between pre-clinical

rodent and human studies, ultimately providing valuable,

predictive, translational results for human cancer patients (14).

Companion animals naturally develop a variety of cancers, many

of which have been demonstrated to have significant biological

overlap with their human counterparts, including shared genomic

aberrations and molecular drivers, and a comparable clinical

course of disease (14). Pets receive state-of-the-art medical care,

which can include experimental therapeutics and novel
02
technologies, offering an important opportunity for clinical

cancer discovery (15). The National Cancer Institute has

developed the Comparative Oncology Program to promote this

area of increased research interest.

Spontaneously occurring canine OSCC share several

characteristics with human OSCC, which makes it a relevant

preclinical model. Canine OSCC is a locally invasive tumor,

commonly invading bone, with the potential for metastasis to

regional lymph nodes and distant sites late in the course of

disease (16, 17). Additionally, it has been shown that

spontaneously occurring carcinoma of the head and neck in

dogs also represents the human counterpart at the molecular

level with analogous genomic copy number abnormalities and

mutational landscapes, alteration of known HNSCC genes and

pathways, and comparably extensive intertumor heterogeneity

(17). Notably, canine OSCC develops naturally in a setting of an

intact immune system. The major cellular subsets of the dog

immune system have been characterized and there is significant

homology to humans, opening the door for translational cancer

immunology research utilizing comparative oncology trials (18).

Recently, there have been investigations into treating human

and canine HNSCC patients with stereotactic body radiotherapy

(SBRT). SBRT, which allows delivery of high dose, high precision

radiation in a few fractions, is a radiotherapy technique that can be

used to treat HNSCC patients (19–24). Another positive aspect of

SBRT treatment for HNSCC is reduced overall treatment time,

and a decreased probability of accelerated repopulation (25), a

biological phenomenon long associated with radio-resistance of

HNSCC (26). Regarding tumor immunity, evidence exists that

SBRT may be a more potent activator of anti-tumor immune

responses compared to conventional radiotherapy (27). Emerging

preclinical and clinical data suggest SBRT combined with

immunotherapy has the potential to convert immunologically

“cold” tumors into “hot” tumors by a combination of distinct

mechanisms including increasing tumor immunogenicity via the

upregulation of tumor antigen expression, antigen processing,

major histocompatibility (MHC) molecule expression, and

costimulatory signals; overcoming an immunosuppressive tumor

microenvironment by shifting the cytokine balance in favor of
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immunostimulation; and recruiting antigen-presenting and

immune effector cells to the tumor microenvironment (28–34).

The ability to effectively harness the therapeutic benefits of

radiotherapy and anti-tumor immunity could translate to

considerable clinical improvements for HNSCC patients with

advanced disease. However, the current reality is that

combination radiation therapy (RT) and immunotherapy,

despite demonstrable promise in different cancers, carries a poor

overall response rate, particularly in a disease such as advanced

HNSCC (35).

Thus, continued efforts are necessary to both identify

and better optimize novel approaches to combining RT and

immunotherapy in order to increase response rates and

therapeutic outcomes for cancer patients, including those with

advanced HNSCC (12). Pre-clinical vetting of novel radio-

immunotherapy combinations in trials involving canine OSCC

patients could accelerate translational preclinical research and

bridge the gap between mechanistic rodent-based research and

prolonged human clinical trials. Determining the safety

and efficacy of novel RT and immunotherapy combinations in

dogs with naturally occurring head and neck cancer could serve

as a clinical surrogate with high predictability to inform how best

to time, sequence, and dose these combination treatments, as

well as identify more robust biomarkers for stratification of those

patients most likely to response to these therapies.

With that goal in mind, the objective of this study was to

characterize the baseline immune landscape of spontaneous

canine OSCC tumors, as a critical and necessary first step

towards utilizing dogs as a surrogate for human OSCC. We

provide the first characterization of the immunogenomic

landscape of canine OSCC and demonstrate the presence of

relevant immunotherapeutic targets that could be translationally

valuable for future comparative radio-immunotherapy trials in

dogs with spontaneous OSCC.
2 Materials and methods

2.1 Patient samples

Archived frozen and formalin-fixed paraffin-embedded

(FFPE) canine OSCC and normal mucosal tissue samples were

obtained from the Flint Animal Cancer Center tissue

biorepository and Colorado State University Veterinary

Diagnostic Laboratory.
2.2 Histology and immunohistochemistry

Hematoxylin and eosin slides were reviewed by a board-

certified pathologist (DPR) to confirm diagnosis and the presence

of adequate viable tumor tissue prior to immunohistochemical

labeling. Immunohistochemistry was performed using a Leica
Frontiers in Oncology 03
Bond Max autostainer (Leica Biosystems Inc.), with the following

panel of previously published canine cross-reactive primary

antibodies directed against the following antigens/cell types, at the

listed concentrations: monoclonal mouse anti-human CD3 (pan T

lymphocyte marker; Leica, clone LN10; 10 mg/mL), monoclonal

mouse anti-human CD204 (macrophages; TransGenic Inc., clone

SRA-E5; 1.25 mg/mL), mouse monoclonal anti-human CD79a

(B lymphocytes; Abcam, clone HM57; 10 mg/mL), and mouse

monoclonal anti-human FoxP3 (regulatory T cells; ThermoFisher,

clone eBio7979; 5 mg/mL). Deparaffinization and rehydration was

performed on the Bond autostainer using a series of xylenes and

graded ethanols. Antigen retrieval was performed using either: Leica

Epitope Retrieval 2 (Tris-EDTA buffer, pH 9; CD3, CD204, FoxP3),

or Leica Epitope Retrieval 1 (Citrate buffer, pH 6; CD79a),

both for 20 min at 100 °C. Detection was performed with

PowerVision IHC detection systems (Leica Biosystems, Inc.),

using a polymeric horseradish peroxidase anti-mouse IgG

(CD204) and Bond Polymer Refine DAB chromogen, with

routine hematoxylin counterstain.

For quantitative analysis of tumor-infiltrating leukocyte

(TIL) density, whole slide brightfield images of IHC stained

slides were digitally captured using an Olympus IX83

microscope with the Olympus SC30 camera at 10x

magnification and fixed exposure times for all samples.

Quantitative image analysis was performed using ImageJ

software (National Institutes of Health, NIH). Brightfield

images were converted to gray scale images for analysis.

Tumor tissue regions-of-interest (ROIs) were segmented from

adjacent normal tissue by manual annotation in ImageJ in

blinded fashion, with annotation accuracy confirmed by a

board-certified veterinary pathologist. Following determination

of the ROI, positively labeled immune cells were quantified using

the color deconvolution algorithm. Briefly, a positive pixel

threshold for all immune cell markers was determined visually

by a veterinary pathologist using appropriate isotype-stained

control slides. Images were subjected to color deconvolution,

followed by uniform automated application of this positivity

threshold to all images. Following analysis, positive pixel masks

of each image were blindly evaluated by a pathologist to ensure

feature selection accuracy. Data was analyzed and the number of

infiltrating immune cells was expressed as a percentage of total

tumor tissue area.
2.3 Histological characterization of
tumor immunity pattern

Whole slide digital images of all CD3+ immunolabeled

tumors slides were blindly qualitatively scored (by LH, MKB,

and DPR) to characterize the distribution pattern of tumor-

infiltrating T cells (“pre-existing immunity”, “excluded

infiltrate”, or “immunologically ignorant”), according to Hedge,

et al (36).
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2.4 Nanostring gene expression analysis

RNA was extracted from archived frozen and FFPE tumor

and normal tissues using Qiagen RNeasy and Qiagen RNeasy

FFPE kits, respectively. For the FFPE samples, five to seven tissue

sections (5-10 µm thick) were cut from each block and pooled

for RNA extraction. RNA was extracted from flash-frozen lymph

node tumor tissues using the RNeasy Plus Mini Kit (QIAGEN)

following manufacturer protocol. Depending on starting

material, samples were eluted in 30-50uL and were initially

checked for quantity and purity on a Nanodrop ND-1000

Spectrophotometer (Thermo Fisher) prior to being stored at

-80c until further processing. Samples were additionally quantity

and quality checked using the RNA High Sensitivity assays on

the Qubit 2.0 Fluorometer (Invitrogen/LifeTechnologies) and

5200 Fragment Analyzer Automated CE System (Agilent),

respectively. NanoString gene expression analysis was

performed using a custom-designed 48 gene canine immune

panel derived from Rooney et al (37). The genes included in this

panel are listed in Supplementary Table 1. Nanostring analysis

was performed with the nCounter Analysis FLEX system at the

University of Arizona Genetics Core. Gene expression count

data was analyzed via nSolver software.
2.5 Statistical analyses

All statistical analyses were performed using commercial

software (Prism 8; GraphPad Software, Inc.). Continuous data

are expressed as means ± standard deviation. For assessment of

correlations between immune cell IHC scores and Nanostring

gene expression data, tumor samples were stratified as either

high (“immunologically hot”) or low (“immunologically cold”)

immune cell infiltration according to median dichotomization of

percent density. IHC scores and Nanostring gene counts were

then log-transformed, and correlations assessed by Spearman

non-parametric rank correlation with correlations containing r

values >0.5 or <-0.5. For all analyses, the statistical significance

level was defined as alpha < 0.05.
3 Results

3.1 Patient characteristics

Tissue samples from 33 dogs were analyzed, which included

34 tumor samples and 2 normal mucosal samples, with one dog

providing both tumor and normal mucosal samples. Breeds of

the dogs consisted of mixed breed (n=11, 33%), Labrador

retriever (n=4, 12%), golden retriever (n=3, 9%), and one each

of the following: papillon, boxer, American Eskimo dog, Boston

terrier, pug, Doberman pinscher, Jack Russell terrier, Siberian
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husky, vizla, shih tzu, German shepherd, Australian shepherd,

cocker spaniel, west highland white terrier, and standard poodle.

Within this group, there was one intact male (3%), one intact

female (3%), 15 spayed females (46%), and 16 neutered male

dogs (48%). The median age of the dogs at diagnosis was 10

years old (range 5 months – 14 years; not reported for two dogs).
3.2 Immunohistochemical analysis of
tumor-infiltrating leukocytes

Tumoral immune cell infiltration was quantified via IHC in

all (n=34) canine OSCC samples. The density of tumor

infiltrating CD3+ T cells, expressed as percentage of total

tumor area, ranged from 0.001% to 19.31%. The density of

CD204+ macrophages ranged from 0.002% to 7.02% while the

density of CD79a+ B cells ranged from 0% to 0.155%, and the

density of FoxP3+ Treg cells ranged from 0% to 0.504%. CD3+ T

cells accounted for the highest mean percentage of tumor-

infiltrating leukocytes (1.57% +/- 3.68), followed by

macrophages (0.83% +/- 1.45, regulatory T cells (0.05% +/-

0.10), and B cells (0.02% +/- 0.04), respectively (Figures 1A, B).

With regard to any co-dependent relationships between

infiltrating immune cell types, significant correlations were

found between the density of: CD3+ T cells with CD204+

macrophages (r=0.681, p=7e-6), FoxP3+ cells (r=0.692, p=4e-6),

and CD79a+ cells (r=0.572, p=3.4e-4); CD204+ macrophages

and FoxP3 (r=0.767, p=7.9e-8) and Cd79a+ cells (r=0.563,

p=0.0004); and FoxP3+ cells and CD79a+ cells (r=0.565,

p=0.0004) (Figure 1C).

CD3+ T cell micro-anatomical distribution within tumors

was qualitatively analyzed according to those patterns described

by Hegde et al (36). Specifically, the three CD3+ labeling

patterns consist of “pre-existing immunity” which is

considered highly inflamed, “excluded infiltrate” which is

considered immunosuppressive, and “immunologically

ignorant” which is considered non-inflamed (36). Within the

tumor samples analyzed, 27 cases (77%) were characterized as

“preexisting immunity”, five (14%) as “immunologically

ignorant”, and two (6%) as “excluded infiltrates” (Figure 2).

Representative images from three of the tumors, one of each

pattern, are shown in Figures 2A–C.
3.3 Immune-related gene expression
profiling of tumors

Comparing all tumors (n = 32) to normal oral mucosa (n=2),

22 differentially expressed genes with Log2 fold-change of >1 or

<-1 were identified, and, of these, 11 genes reached statistical

significance based on an FDR-adjusted p value of <0.05. The

following genes were significantly overexpressed in tumor
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samples: CD8a (p<0.0001), GZMA (p=0.0022), IFNg
(p<0.0001), PD-1 (p<0.0001), TBX (p<0.0001), CXCL2

(p=0.0005), CD70 (p<0.0001), HLA-A (p<0.0001), LAG3

(p<0.0001), while the expression of RORC (p<0.0001), and

CLEC4C (p<0.0001) were significantly downregulated in

tumor samples (Figure 3). Broadly, this pattern of tumor

immune gene expression, in conjunction with the CD3

immunolabeling results, suggests that the canine OSCC

microenvironment is highly inflamed and primarily

characterized by the presence of a pre-existing anti-tumor

immune response dominated by cytotoxic\effector T cells and

NK cells, as evidenced by increased expression of CD8a, GZMA,

OX40, and HLA-A. However, overexpression of genes associated
Frontiers in Oncology 05
with effector T cell exhaustion and microenvironmental

immunosuppression (PD-1, LAG3, CXCL2) was also identified.

Thus, to gain further insight into those immune genes

associated with a heightened T cell response in canine OSCC,

differential gene expression analysis was performed comparing

those tumors with “high T cell infiltration” versus “low T cell

infiltration” based on median dichotomization of CD3+ cell

density according to our immunohistochemical profiling

(Figure 4). Twenty-one genes with significantly different

expression were identified (Supplemental Table 1); however,

when considering those genes with Log2 fold-change of >1 or

<-1, 13 genes were revealed as significantly differentially

expressed between “high” versus “low” T-cell infiltrated
A

B C

FIGURE 1

Immunohistochemical characterization of the immune landscape of canine OSCC. (A) Representative photomicrographs of CD3+, CD204+,
FoxP3+ and CD79a+ tumor infiltrating leukocytes. 10x magnification. (B) Quantification of tumor-infiltrating leukocyte density according to cell
type, as determined by quantitative whole slide image analysis. Data represent mean +/- S.D. (C) Correlation matrix of Spearman r values
demonstrating association between the densities of each tumor-infiltrating leukocyte subset.
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tumors. Notably, CD8a was significantly upregulated

(p=0.0003), demonstrating that these CD3+ T cells are

primarily of a cytotoxic phenotype, consistent with the

presence of a pre-existing immune response. Other

significantly up-regulated genes in “T cell high” tumors

included many immune checkpoint molecules, including both

co-stimulatory molecules (ICOS (p=0.0001) and CD28

(p=0.0002), as well as co-inhibitory molecules associated with

an exhausted phenotype in human cancer patients (PD-1

(p=0.0001), CTLA-4 (p=0.0014) [reviewed in Chen, et al. (13)].

Interestingly, another significantly up-regulated gene in “T cell

high” tumors was CXCL2 (p=0.0081), a chemokine known to play a

significant role in myeloid-derived suppressor cell (MDSC)

recruitment and differentiation [reviewed in Safarzadeh et al. (38)],

suggesting a potential role for tumor-associated macrophages

(TAMs)/MDSCs in mediating the expression of the T cell

exhaustion markers (PD-1) observed to be upregulated in our T

cell high tumors. Thus, based on this result, we also performed

differential gene expression analysis between those tumor samples

with a high infiltration of CD204+ TAMs versus low CD204+

density, again based on median dichotomization of CD204+ density

as determined by our immunohistochemical analysis; however, the

analysis did not reveal any significantly differentially expressed genes.
Frontiers in Oncology 06
3.4 Correlation between tumor-
infiltrating immune cell density and
immune gene expression

Statistically significant correlations were found between CD3+

T cell infiltration as determined by IHC and expression of 23

immune genes in our panel, with 11 of these genes having Pearson

r values > 0.5 or < -0.5. These included key genes associated with

cytotoxic anti-tumor T cell responses (GZMA, GZMB, PRF1), co-

stimulation of T cells (CD27, CD28, ICOS), and genes associated

with other immune processes, including Type I IFN response

(TNF, TNFSF10), as well as T cell exhaustion (CTLA4). CD204+

IHC cell density was significantly correlated with expression of 9

genes in our panel, with 2 genes having Pearson r values > 0.5 or <

-0.5, which included decreased expression of ICOSLG and Pax5.

Correlation of CD204+ TAM infiltration and decreased

expression of these genes further suggests evidence of

microenvironmental immune suppression in these samples.

ICOSLG is the ligand which serves as the specific receptor for

ICOS, as the ICOS/ICOSLG axis is associated with regulating

T cell-antigen presenting cell interactions (39, 40). FoxP3+

cell density as determined by IHC was significantly correlated

with decreased expression of ICOSLG, but with an r value < -0.5.
FIGURE 2

Distribution patterns of CD3+ tumor-infiltrating T cells in canine OSCC represent those observed in human cancers. (A–C) Representative
photomicrographs of the three different CD3+ cellular infiltration patterns observed in our subset of cases, including “pre-existing immunity” (A),
“immunologically ignorant” (B), and “excluded infiltrate” (C). 5x magnification. (D) Quantification of the number of tumor samples characterized
as each of the relative densities of T cell micro-anatomical distribution patterns.
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Cd79a+ cell density was correlated with decreased expression of

KDM6B, a gene associated with the generation of effector CD8+ T

cells (41, 42). Finally, statistically significant correlations were

found between the ratio of CD3+:CD204+ cell density as

determined by IHC and expression of 25 genes, with 15 of these

genes having Pearson r values > 0.5 or < -0.5. These included

genes consistent with pro-inflammatory immune responses

(CD27, CD28, CD3e, CD8a, ICOS, ICOSLG, Pax5, TBX,

GATA3, HLA-A, TNFSF14, GPR146), but also immune

suppressive influences in the tumor immune microenvironment

(CTLA-4, FoxP3, PD-1). These correlations are shown in

Figure 5A and Table S3.
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Additionally, according to Rooney et al. (37), we calculated a

cytolytic activity score (mean PRF1 and GZMA expression) for

each tumor sample and assessed its correlation with CD3+,

CD79a+, CD204+, and FoxP3+ cell density as determined by

IHC. CD3+ T cell density by IHC analysis was strongly correlated

with cytolytic activity score (r = 0.57, p = 0.0004) (Figure 5B).
4 Discussion

The objective of this study was to characterize the baseline

immune landscape of spontaneous canine OSCC tumors as a
FIGURE 3

Immune gene expression patterns in canine OSCC. Log2 fold
change forest plot of differentially expressed genes with a log2
fold change >1 or < -1 between tumors (n=34 and normal oral
mucosa (n=2). Genes are groups according to their immune cell
type and/or function. Data represents mean +/- S.D. * indicates
significantly differentially expressed genes with an FDR-adjusted
p-value <0.05.
FIGURE 4

Differential immune gene expression between immunologically
“hot” vs. “cold” canine OSCC. Log2 fold change forest plots of
differentially expressed genes with an FDR q value <0.05
between CD3 “high” (n=17) vs CD3 “low tumors” (n=17). Tumors
were stratified into CD3 “high” vs “low” groups based on median
dichotimization of IHC density. Genes are grouped according to
immune cell type/function. Data represent mean +/- S.D.
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critical initial step towards utilizing dogs with this naturally

occurring cancer as a surrogate for human OSCC. The tumor

microenvironment of human HNSCC, of which OSCC is the

most common, consists of multiple subsets of infiltrating

immune cells that interact with tumor cells and each other

through various networks. There is a spectrum as to the degree

of inflammation in the tumor immune microenvironment across

the subsets of human HNSCC, ranging from immune-cold to

inflamed phenotypes [reviewed in (12, 13, 43)].

As we have documented in this study, canine OSCC also

contains a heterogenous tumor immunemicroenvironment. CD3+

T cells were the predominant tumor infiltrating immune cell

population in the tumor samples; however, there was a wide

range in the density of CD3+ T cells across the samples, from

0.001% to 19.31% cells of the total tumor area. Further, upon

histological characterization of the tumor immunity pattern, the

CD3+ T cell micro-anatomical distribution associated with most

tumors was characterized as “pre-existing immunity”, but the

remaining 20% of tumor samples were characterized as either

“immunologically ignorant” or “excluded infiltrates” patterns.

When the immune-related gene expression profile of the

tumors was compared to normal oral mucosa, the pattern of

tumor immune gene expression suggests that the canine OSCC

microenvironment is highly inflamed and primarily characterized

by the presence of an anti-tumor immune response dominated by

cytotoxic\effector T cells and NK cells (CD8a, GZMA, OX40, and

HLA-A); however, overexpression of genes associated with effector
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T cell exhaustion and microenvironmental immunosuppression

was also identified (PD-1, LAG3, CXCL2).

We propose that canine OSCC could serve as a relevant

translational animal model for comparative investigations into

the biology of HNSCC and OSCC. Alcohol and tobacco use

(smokers drinkers, SD) is associated with the development of

human HNSCC; while these predisposing factors cannot be

investigated translationally in companion dogs, the canine

model may still be valuable for studying never-smoker and

never-drinker (NSND) patients with OSCC, which comprise 10-

15% of cases (44, 45). Oncogenic human papillomavirus (HPV)

infection is also a risk factor associated with oral and

oropharyngeal HNSCC. HPV-positive and HPV negative

HNSCC are two distinct biological entities with different clinical

behaviors and outcomes; however, the basic immunobiology of

HNSCC, particularly differences between HPV-positive and

HPV-negative immune tumor microenvironments, remains

largely undefined and an area of active research (45–47). Dogs

can be infected with canine papillomavirus (CPV), but rarely do

these infections persist and progress beyond papillomas to

malignant cancer. CPV2 has been associated with metastatic

cutaneous SCC in a research colony of dogs with X-linked

severe combined immunodeficiency (48), and there have been

rare reports of cancer, including OSCC, associated with other

CPV (49–53). Recently, integration of CPV16 into the host

genome was reported, having investigated the viral genome

from a viral plaque that progressed to metastatic SCC in a dog,
A

B

FIGURE 5

Gene expression profiling to determine immune function of tumor-infiltrating leukocyte subsets in canine OSCC. (A) Pearson correlation matrix
of immune cell densities of all analyzed cell types, as determined by IHC, with Nanostring gene expression data. Black boxes denote statistically
significant (p < 0.05) correlations with r values > 0.5 or < -0.5. (B) Spearman correlation plot of CD3-IHC+ cell density with cytolytic activity
score (mean perforin and granzyme expression values).
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raising the possibility that CPV16 may be a potential canine high-

risk papillomavirus type (54). While most canine HNSCC are

considered CPV-negative, there may be a role for future

comparative oncology research investigating similarities and

differences in the TME and therapeutic responses in human and

canine papillomavirus-negative versus positive HNSCC.

The human HNSCC tumor microenvironment is composed

of multiple different subsets of stromal and innate and adaptive

immune cells including cancer-associated fibroblasts, T cells, B

cells, neutrophils, macrophages, MDSCs, natural killer (NK)

cells and mast cells (13, 55, 56). In one study of OSCC patient

tumor samples, it was observed that the majority of intratumor

tumor-infiltrating lymphocytes (TILs) were CD8+ T cells (57);

this is consistent with the findings in our canine OSCC study

where high CD3+T cell-infiltrated tumors had significant

overexpression of CD8a. CD8a was significantly upregulated

gene in “T-cell high” versus “T-cell low” tumors, suggesting that

the observed CD3+ T cell infiltrates are primarily of a cytotoxic

phenotype, consistent with the presence of a pre-existing

immune response. We also evaluated correlations between

CD3+ T cell density and immune gene expression and key

genes associated with cytotoxic anti-tumor T cell responses

(GZMA, GZMB, PRF1), co-stimulation of T cells (CD27,

CD28, ICOS), and genes associated with other immune

processes, including Type I IFN response (TNF, TNFSF10), as

well as T cell exhaustion (CTLA4), were identified. Finally, CD3

+ T cell density in canine OSCC was significantly correlated with

a previously reported cytolytic activity score (mean PRF1 and

GZMA expression), suggestive of active effector CD8 T cell

function in the tumor microenvironment.

Exhausted and dysfunctional TILs in human HNSCC cases

have been characterized by the upregulation of several inhibitory

checkpoint molecules, including PD-1, LAG-3, TIM-3, and

CTLA-4. In one study, CD8+ TILs of human HNSCC were

found to express PD-1 in 96% of evaluated samples (58).

Evaluation of HPV-negative HNSCC samples revealed 40% of

cases exhibited PD-L1 positivity associated with tumor cells,

lymphocytes, and macrophages, and approximately 50% of

these samples also showed positive PD-1 expression (46). In

that study, PD-L1 and PD-1 positivity correlated with a high

density of both CD8+ and FOXP3+ TILs (46). In our study, we

found that canine OSCC tumors which were heavily infiltrated

with T cells had up-regulation of immune checkpoint molecule

genes including both co-stimulatory molecules (ICOS, CD28), as

well as co-inhibitory molecules known to be associated with an

exhausted immune phenotype (PD-1, CTLA-4).

Tumor infiltrating T regulatory (Treg) cells also influence the

immune microenvironment of HNSCC. In HNSCC, Tregs have

been associated with immunosuppression, anti-inflammatory

cytokine production, and therapeutic resistance (33, 59–61);

however, increased densities of FoxP3+ Tregs in HNSCC has

also been linked with improved therapeutic outcomes for treated

patients (62–64). As Tregs serve to regulate excessive immune
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presence of high densities of FoxP3+ Tregs in HNSCC could

indicate an active, robust antitumor immune response,

contributing to improved tumor control (13). This is an area of

active research, and perhaps canine OSCC may serve a role in

understanding the tumor microenvironmental effects of Tregs.

Infiltrating FoxP3+ cells were identified in canine OSCC tumors in

this study and the density of these cells significantly correlated with

the densities of all other evaluated infiltrating immune cells (CD3+

T cells, CD204+ macrophages, and CD79a+ B cells). Further,

overexpression of FOXP3 was identified in our CD3+ T cell-high

tumors as compared to T cell-low tumors, and its expression was

also significantly positively correlated with the ratio of CD3+:

CD204+ cells, suggesting their presence may be an indicator of an

overall inflamed tumor microenvironment in canine OSCC.

Myeloid cells represent another heterogenous cell population

with significant influences on the tumor microenvironment and

anti-tumor immunity. Tumor-associated macrophages (TAMs)

have been shown to be enriched in human HNSCC tumors, and

increased infiltrating TAM density has been shown to correlate

with advanced stage of disease (65). Additionally, the clinical

relevance of myeloid-derived suppressor cell (MDSC) subsets is

also under investigation in human HNSCC patients, and strong

correlations of MDSC subsets with treatment outcome have been

made recently (66). Although TAMs and MDSCs are regarded as

separate entities, the boundaries between them are not clearly

demarcated and they share many characteristics (67, 68). In our

study, immunohistochemistry identified CD204+ macrophages as

the second most abundant tumor infiltrating immune cell.

Moreover, when comparing canine OSCC tumor gene

expression to normal oral mucosa, two differently expressed

genes associated with the presence of TAMs and MDSCs were

identified: CXCL2, CD70. Additionally, overexpression of CXCL2

was also identified in our canine OSCC “T cell-high” tumors

compared to “T cell-low” tumors. CXCL2 is a chemokine known

to play a significant role in myeloid-derived suppressor cell

(MDSC) recruitment and differentiation (38). Thus, it is

possible that this CD204+ macrophage infiltrate observed may

be contributing to expression of the T cell exhaustion markers

(PD-1, CTLA-4) observed to be significantly upregulated in our

“T cell-high” tumors. We also found that CD204+ IHC cell

density in canine OSCC was significantly correlated with

decreased expression of ICOSLG and Pax5. Correlation of

CD204+ TAM infiltration and decreased expression of these

genes further suggests evidence of microenvironmental immune

suppression in these samples. ICOSLG is the ligand which serves

as the specific receptor for ICOS, as the ICOS/ICOSLG axis is

associated with regulating T cell-antigen presenting cell

interactions (39, 40), and Pax5 regulates B cell immunity via

promoting development and maturation of B cells (69).

Recently, a pan-cancer, T-cell-inflamed 18-gene signature

indicative of a T-cell-activated tumor microenvironment was

reported to be associated with response to PD-1 immune
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checkpoint blockade, including patients with HNSCC (70, 71). A

canine anti-PD-1 therapeutic antibody has been developed and a

pilot study investigating its safety and efficacy in treating dogs

with a variety of spontaneous cancers demonstrated encouraging

results, supporting further comparative investigation of this

immunotherapy (72, 73). Moving forward, investigation of this

human T-cell-inflamed gene expression profile in dogs with T

cell targeted immunotherapies may also be useful. One

limitation of our study is that the immune gene expression

panel used was limited to a custom-designed 48 gene panel

derived from Rooney et al. (37), and designed prior to the

commercial release of the nCounter® canine IO panel. Thus,

not all of the 18 genes in the T-cell-inflamed gene expression

profile were included in our panel, with those that were shared

being only CD27, LAG3, and CD8a. In reviewing our results

with respect to these shared genes, tumors compared to normal

oral mucosa had significantly increased expression of CD8a and

LAG3. Additionally, tumors with high T cell density also had

significantly increased expression of CD27 and CD8a compared

to those with low T cell density, and PD-1 was significantly

upregulated gene in these “T cell high” tumors. These data

suggest that investigation of the presence of a similar, pre-

existing T cell inflamed gene signature as a correlate to

response in trials of T cell targeted immunotherapies in dogs

may be useful in determining how best to employ these newly

developing canine specific immunotherapies.

This study also identified other actionable immunotherapy

targets which could inform future comparative oncology trials in

canine OSCC. Anti-CTLA-4 immunotherapy has been

investigated for the treatment of HNSCC, with or without

additional immune checkpoint inhibitors (anti-PD-1, anti-

PDL1) or radiotherapy (reviewed in (12, 74). CTLA-4 was

overexpressed in canine OSCC compared to oral mucosa, as

well as in “T cell-high” compared to “T-cell low” tumors and

correlated with the density of CD3+ cells and the ratio of

CD3:CD204+ cells. A canine CTLA-4 monoclonal antibody

has recently been developed for comparative oncology

research (75); however, it has not been evaluated yet in canine

cancer patients. Finally, clinical strategies aimed at targeting

MDSC recruitment into the tumor microenvironment, such

as via CXCL2 inhibition, may be critical to overcoming

immunosuppression. The prognosis and therapeutic value of

the CXC chemokine family, including CXCL2, in HNSCC is

under investigation (76, 77). We found canine OSCC had

increased CXCL2 expression compared to normal oral

mucosa, and in “T-cell high” versus “T-cell low” tumor

samples. Canine OSCC may contribute to investigations into

whether inhibition of CXCL2 results in reduction in the

recruitment and immune suppressive influence of MDSC in

the OSCC microenvironment.

With respect to immune biomarkers of response for HNSCC

undergoing treatment with radiotherapy or chemoradiotherapy,

infiltration of CD3 lymphocytes in the tumor microenvironment
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separately showed prognostic correlation with survival outcomes

or response to radiotherapy (78, 79). Additionally, in multiple

studies, retrospective analyses and meta-analyses have shown

that the baseline circulatory neutrophil-to-lymphocyte ratio is a

strong predictor of survival outcomes for chemoradiotherapy or

radiotherapy treatment for patients with HNSCC (80–83). The

degree to which radiotherapy, administered at various doses and

with alternate timing and sequencing strategies, can generate a

pro-inflammatory tumor microenvironment and increase T-cell

inflamed gene expression in HNSCC is being investigated in pre-

clinical animal experiments and ongoing clinical trials

combining radiotherapy and immunotherapy (12). As the

local, regional, and systemic immune effects of treatment can

be similarly measured and characterized for canine OSCC

patients, dogs may further contribute to the efforts underway

to identify underlying immune biomarkers of response to

treatment, including radiation and immunotherapy

combinations. There are a number of published and ongoing

efforts to explore novel immunotherapeutic approaches in

canine cancer trials [reviewed in (18, 84)]; however, access to

commonly used immunotherapy agents in human oncology,

such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies,

remain limited in access in veterinary medicine, but with

promise for availability in the future. As such, there has not

yet been a clinical trial performed investigating responses

to anti-PD-1, anti-PD-L1, or anti-CTLA-4 antibody

immunotherapy, with or without radiotherapy, in canine

OSCC, so comparisons of response with human OSCC or

HNSCC are not possible at this time.

In conclusion, while these data provide a good first step

towards utilizing spontaneous canine OSCC as a comparative

model for human OSCC radiation and immuno-oncology

research, there a few key limitations which if addressed in future

investigations, would allow the field to fully realize the potential of

this approach. The small number of tumor samples and immune

genes evaluated in this study limits the impact of the observed

correlates between cellular infiltrates and gene expression.

Additional studies utilizing the larger 800 gene nCounter® canine

IO panel and expanding this data set with clinically annotated

tumor samples in which TIL density and gene expression could be

correlated with clinical outcome would be valuable. Moreover,

pairing this immune microenvironment profiling with genomic

analyses such as whole exome sequencing would also allow for

comparative assessment of known human HNSCC tumor intrinsic

molecular drivers, like EGFR, and correlation of the TME

composition with both the presence of these molecular drivers as

well as mutational burden. As studies are performed in canine

OSCC, we will begin to understand more of the similarities and

differences between human and canine OSCC within the TME,

as well as regionally and distantly, and how tumor characteristics

in each of these species correspond with response to treatment.

Nonetheless, these results provide the first characterization of
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the immune landscape of canine oral carcinoma and

demonstrate the presence of relevant immunotherapeutic

targets that could be translationally valuable in the design of

future comparative radio-immunotherapy trials in dogs.
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