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Objective: To develop a radiomics nomogram for predicting microvascular

invasion (MVI) before surgery in hepatocellular carcinoma (HCC) patients.

Materials and Methods: The data from a total of 189 HCC patients (training

cohort: n = 141; validation cohort: n = 48) were collected, involving the clinical

data and imaging characteristics. Radiomics features of all patients were

extracted from hepatobiliary phase (HBP) in 15 min. Least absolute shrinkage

selection operator (LASSO) regression and logistic regression were utilized to

reduce data dimensions, feature selection, and to construct a radiomics

signature. Clinicoradiological factors were identified according to the

univariate and multivariate analyses, which were incorporated into the final

predicted nomogram. A nomogram was developed to predict MVI of HCC by

combining radiomics signatures and clinicoradiological factors. Radiomics

nomograms were evaluated for their discrimination capability, calibration,

and clinical usefulness.

Results: In the clinicoradiological factors, gender, alpha-fetoprotein (AFP) level,

tumor shape and halo sign served as the independent risk factors of MVI, with

which the area under the curve (AUC) is 0.802. Radiomics signatures covering

14 features at HBP 15 min can effectively predict MVI in HCC, to construct

radiomics signature model, with the AUC of 0.732. In the final nomogram

model the clinicoradiological factors and radiomics signatures were integrated,

outperforming the clinicoradiological model (AUC 0.884 vs. 0.802; p <0.001)

and radiomics signatures model (AUC 0.884 vs. 0.732; p < 0.001) according to
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Delong test results. A robust calibration and discrimination were demonstrated

in the nomogram model. The results of decision curve analysis (DCA) showed

more significantly clinical efficiency of the nomogram model in comparison to

the clinicoradiological model and the radiomic signature model.

Conclusions: Depending on the clinicoradiological factors and radiological

features on HBP 15 min images, nomograms can effectively predict MVI status

in HCC patients.
KEYWORDS

hepatocellular carcinoma, microvascular invasion, radiomics, gadoxetic acid-
enhanced mri, nomogram
Introduction

Hepatocellular carcinoma (HCC) is the most prevalent

cancer in China, with a high fatality rate (1, 2). Despite the

surgical resection adopted as an effective treatment for HCC,

recurrences remain common (3), which are experienced by

approximately 70% of liver resection patients within five years,

and approximately 25% of liver transplant patients (4). The

microvascular invasion (MVI) refers to the tumor invasion in

small intrahepatic vessels, covering portal veins, hepatic vessels,

and lymphatic vessels (5). MVI in HCC is considered a feature of

histologically generated case changes, implying the early

postoperative recurrence with correspondingly lower survival

(6). It is critical to accurately identify MVI in patients with HCC

for developing appropriate treatment options. Surgery with wide

margins is considered the best option for patients at high risk for

MVI (7). However, in contrast to macrovascular invasion that

can be detected by diagnostic imaging, MVI can only be

diagnosed by pathologic evaluation currently. Thus, a

quantitative method urgently required for preoperative

prediction of MVI.

It has been demonstrated that by converting medical images

into higher quality, quantifiable and mineable data, the radiomic

features can serve as the diagnostic and prognostic markers for

cancer phenotypes and tumor microenvironments (8, 9). Our

previous study (10) has indicated that MVI could be predicted

by radioactivity in the hepatobiliary phase (HBP) on Gd-EOB-

DTPA magnetic resonance imaging. However, further

integration with clinical data and radiological features is

required for physicians to accept its full and robust role in

patient management. As a direct extension of our previous work,

the objective of this study is to predict the state of MVI in HCC

patients by creating a nomogram that incorporated the

clinicoradiological factors and radiomics signatures.
02
Materials and methods

Patients

This retrospective study was approved by an institutional

review board, with the patient’s own informed consent waived.

189 consecutive HCC patients from the period January 2015 to

April 2022 were enrolled. The cohort was divided into a training

set from January 2015 to May 2020, with 82 MVI+ patients (76

men and 6 women; range, 37-79 years) and 59 MVI- patients (40

men and 19 women; range, 35-77 years) and a validation set

from May 2020 to April 2022, with 29 MVI+ patients (25 men

and 4 women; range, 38-76 years) and 19 MVI- patients (14 men

and 5 women; range, 39-75 years). The inclusion criteria were:

(1) Gd-EOB-DTPA-enhanced MRI performed within one

month before surgical resection; (2) The postoperative

pathological features met the clinical criteria for HCC. The

criteria for exclusion were: (1) patients receiving liver cancer-

related treatment before surgery; (2) patients with

macrovascular invasion on MRI; and (3) insufficient images

for radiomic analysis.
MR Techniques

MR imaging was performed on all participants with a 3.0 T

scanner (GEHCGEHC, GE medical systems, Waukesha, WI).

All patients received the GdEOB-DTPA (Primovist, Bayer

HealthCare, Berlin, Germany) with 0.1 mL/kg (0.025 mmol/

kg). After 5 minutes, 10 minutes, and 15 minutes (i.e., HBP are

the three different time periods mentioned above, respectively)

injected with the comparator agent, data on the inhibition of

liver production by 3D fat-suppressed Liver Acquisition with

Volumetric Acceleration (LAVA, GE Healthcare) sequence in
frontiersin.org
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the axial plane were collected. Contrasts for LAVA sequences

include TR/TE, 2.5/1.1; slice spacing, 2.5 mm; thickness, 5 mm;

reverse time, 5.0 ms; field of view, 380-450mm; Get the number

of characters, 0.70; and the bandwidth, 976.6 kHz.
Clinicoradiological risk factors

The clinical characteristics of the patients were recorded by

our hospital’s HIS system, including patient age, gender, alpha-

fetoprotein (AFP) level, presence of liver cirrhosis, and hepatitis

B and C surface antigen (HBsAg) status (positive or negative).

The MVI statue was obtained from the pathology report. The

imaging, including diameter, halo sign, shape, border,

radiocapsule, necrosis, and tumor/liver signal ratio, was carried

out based on MRI findings by two radiologists independently

through the collection of pictures and communication

systems (PACS).

Tumor diameter was defined as the largest diameter imaged

by transverse at HBP 15 minutes; Halo sign was defined as a

hypointense ring in the center of the lesion on HBP images;

Tumor shape was classified as round or non-round, with the

ratio of long diameter to short diameter less than 1.2 means

round, otherwise, it means not round; Radiological capsule

appearance was defined as hyperenhancing structures

surrounding the tumor in the portal vein or at extension;

tumor/liver signal ratio was expressed as the signal of the

tumor/surrounding liver parenchyma on HBP images; necrosis

was defined as high T2 and no enhancement in the tumor. To

identify the single factor for MVI discrimination, univariate

analysis was performed, and significant univariate factors

(P<0.1) were entered into a multivariate logistic regression

mode in the training cohort. P<0.05 was regarded as

significant in the multivariate analysis.
Frontiers in Oncology 03
MR Radiomics analysis

Radiomics analysis mainly refers to tumor segmentation,

feature extraction, feature selection, and model building and

evaluation. The regions of interest (ROIs) were delineated on

HBP 15 min images by IBEX software (http://bit.ly/IBEX).

Tumor ROIs were manually segmented covering the whole

tumor by two abdominal radiologists blinded to the pathology

results (Figure 1). A total of 1768 MR image features of HBP 15

min from the tumor were analyzed using IBEX software.

Radiomic parameters were determined depending on IBEX

software, obtaining a total of 8 groups of parameters, each

with different radiomics. To analyze and examine the

reproducibility of the features extracted by repeated sequences,

30 tumor samples were randomly selected for the calculation of

the intra-group correlation coefficient (ICC), with the features

with ICC<0.80 excluded. The classification of images and the

main filtering process were detailed in a previous study (10). The

least shrinkage regression analysis and selection operator

(LASSO) were adopted to select the most critical parameters

obtained within 15 minutes of HBP. The combination of

radiological features calculated by the LASSO coefficient

weighting method was considered the radiomics score for

each patient.
Construction and evaluation of MVI
prediction models

After univariate and multivariate logistic regression, the

significant variables were selected to establish the

clinicoradiological model. Radiomics signature model was built

based on selected radiomics features. The nomogram model was

constructed combining the clinicoradiological risk factors and
FIGURE 1

Example of ROIs delineation on HBP 15 min images by IBEX software.
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radiomics signature. The potential predictive value of the three

models was first assessed in the training cohort and then

validated in the validation cohort by converted into

quantifiable data using the area under the curve (AUC) in the

receiver operating characteristic (ROC) curve, with the curves

expanded for multiple contrasts by performing the Delong test

on Bonferroni-adjusted p-values. AUC with 95% CI, precision,

sensitivity and specificity was calculated.
Construction and validation of the
radiomics nomogram

The nomogram is calibrated by drawing a calibration curve

in the training cohort. The Hosmer-Lemeshow test was carried

out to analyze and determine the agreement between the MVI

predicted by the nomogram and the actual MVI derived from

the calibration curve. Decision curves were plotted to assess the

clinical validity of nomogram in the combined training and

validation cohorts.
Statistical Analysis

SPSS (version 20, Chicago, IL, USA) and R (https://www.r-

project.org/) were utilized as the statistical analysis tool.

Only two-tailed in the case of p<0.05 was considered

statistically significant.
Frontiers in Oncology 04
Results

Construction of clinical radiological
characteristics and clinical radiological
models of patients

The clinicoradiological characteristics of the patients are

detailed in Table 1. After univariate and multivariate analysis,

it was determined that gender (odds ratio (OR) 6.06; 95%

confidence interval (CI) 1.93–18.99), AFP level (OR 3.44; 95%

CI 1.33–8.92), halo sign (OR 0.14; 95% CI 0.02–0.92), and shape

(OR 0.12; 95% CI 0.05-0.31) can be chosen to construct

clinical models.
Radiomics signature calculation

A total of 1768 features were obtained from MR image

features on HBP within 15 minutes. 356 radiomic features with

most significant difference were then selected from the MVI+

and MVI- groups and introduced into a LASSO logistic

regression model to screen out the most contributing features.

Finally, 14 features with significant relation to MVI status were

chosen for construction of the radiomics signature. Radiomics

scores were calculated with the following formulas:

Radiomics score = -0.0144246× MedianAbsoluteDeviation-

0.149397×5Percenti le+0.00529663×Mass-6.210769×S

phericalDisproportion-0.0005163601×4.7AutoCorrelation

+0.02526177×1.7Contrast-0.008745637×9.4Contrast-
TABLE 1 Comparisons of clinicoradiological characteristics in MVI (+) and MVI (-) patients.

Clinicoradiological characteristics MVI (+) (N=82) MVI (-) (N=59) Univariate analysis Multivariate analysis

Odd ratios (95%CI) p Odd ratios 95%CI) p

Clinical characteristics

Age, (Median [range]), year 57[37-79]] 55[35-77] 1 (0.96-1.03) 0.841 – –

Gender (male/female) 76/6 40/19 6.02 (2.23-16.25) <0.001 6.06 (1.93-18.99) 0.002

Cirrhosis (present/absent) 81/1 55/4 5.89 (0.64-54.17) 0.117 – –

HBsAg (positive/negative) 75/7 54/5 0.99 (0.3-3.29) 0.99 – –

HCsAg (positive/ngative) 4/78 1/58 2.97 (0.32-27.3) 0.335 – –

AFP (> 400 ng/mL≤ 400 ng/mL) 32/50 10/49 2.98 (1.32-6.72) 0.009 3.44 (1.33-8.92) 0.011

MR imaging features

Diameter (Median [range]), milimetre 20.95[6-167] 23[3.36-106.7] 1.01 (1-1.02) 0.136 – –

Halo sign (present/absent) 2/80 6/53 0.22 (0.04-1.13) 0.071 0.14 (0.02-0.92) 0.04

Shape (round/not round) 11/71 31/28 0.14 (0.06-0.32) <0.001 0.12 (0.05-0.31) <0.001

Boundary (clear/unclear) 74/8 55/4 0.67 (0.19-2.35) 0.534 – –

Radiologic capsule (present/absent) 13/69 7/52 1.4 (0.52-3.75) 0.504 – –

Necrosis (present/absent) 28/54 17/42 1.28 (0.62-2.65) 0.503 – –

Tumor/liver signal ratio (mean ± SD) 0.5585±0.1659 0.52±0.1581 1.87 (0.23-15.06) 0.555 – –
frontiersin.o
P values were obtained from univariate and multivariate regression analyses between the MVI (+) and MVI (-) patients.
AFP alpha-fetoprotein, HBsAg hepatitis B surface antigen status, HCsAg hepatitis C surface antigen status, MVI, microvascular invasion.
rg

https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.3389/fonc.2022.1034519
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1034519
1.448129×6.1DifferenceEntropy-0.1107169×4.7Dissimilarity-

15.27011×8.4InverseDiffNorm+3.353539×1.1InverseVariance

+4.034202×11.4InverseVariance-5.335912×12.4InverseVarian

ce-0.607462×8.4MaxProbability.
Performance of the models

As shown in Table 2 and Figure 2, In the training cohort, the

AUC of the clinicoradiological model was 0.802 (95% CI: 0.730-

0.875), radiomics signature model was 0.732 (95% CI: 0.650-

0.813), and the nomogram model was 0.884 (95% CI: 0.790-

0.924), with the Delong test results of the three models listed in

Table 2. In the training cohort, the nomogram model was

significantly better than the clinicoradiological model and

radiomics signature model (P<0.001). In the validation cohort,

the radiomics signature model and the nomogram model

showed comparable discriminative power (AUC, 0.770 vs.

0.878, P = 0.0990), while the final nomogram model was

significantly better than clinicoradiological model (AUC, 0.878

vs. 0.749, P = 0.0428).
Nomogram construction

The nomogram model integrating clinicoradiological factors

and radiomic signatures displayed robust predictive

performance, so the calculated nomogram was adopted as the

prediction graph (Figure 3). Acceptable calibrations of the

nomogram are shown in Figure 4. The Hosmer-Lemeshow test

suggested no significant difference between the predicted

calibration curve and the MVI ideal curve in the training and

validation cohorts (P = 0.450, P=0.761, respectively). In Figure 5

the DCA results of the above three models in the training and

validation cohorts are depicted. The nomogram model exhibited

a larger net benefit in comparison to clinicoradiological model

and radiomics signature model.
Frontiers in Oncology 05
Discussion

Previous studies indicated that MVI was the most robust

independent predictor of recurrence and poor outcome for HCC

(11, 12). Surgeons would be able to make better management

decisions and improve prognostication if they were aware of

MVI status before surgery. If the risk of predicted MVI indicates

high, other alternative treatment options, such as the adjuvant

therapy performed before surgery, should be considered or liver

transplantation may not suitable for the patient (13). But for

now, the predictive accuracy of MVI remains difficult, so we

attempted to address this problem with radiomics.

Radiomics analysis is currently considered as a potential bridge

connecting medical imaging and personalized medicine (14). The

quantitative image processing can contribute to effectively evaluating

the spatial relationship of pixel intensities (15) with a large role in

medical practice and application value (16). As a relatively novel

field, radiomics help to deeply mine medical imaging data by

applying advanced computational methods, and the collected data

can be further converted into quantitative data that can be applied to

diagnosing the parameters of cancer, stage, prognosis, predicting

treatment response, monitoring disease, etc. (8).

Some recent studies have demonstrated that the combined

radiomics features can also play a predictive role in preoperative

MVI in HCC patients (17–20). Consistently, we also found the

good discrimination shown by radiomics features, as the AUC

was 0.732. It is challenging to analyze and interpret the

relationship between radiomic features and MVI status,

considering more information maximized from radiographic

analysis in comparison to visual inspection.

We found that gender can serve as an independent risk

factor for MVI, which is obviously distinguished from previous

studies (18, 21). The value of gender in predicting MVI in HCC

has not been demonstrated, and further research is required.

HCC is often associated with a higher level of AFP, which

significantly increased in MVI patients. Our final study

demonstrated AFP level as an independent risk factor for

MVI, which is also consistent with previous conclusions (18,
TABLE 2 Predictive performance of the three models.

Training cohort Validation cohort

AUC (95%CI) SEN SPE P AUC (95%CI) SEN SPE P

(1) Clinicoradiological model 0.802(0.730-0.875) 0.627 0.878 0.749(0.601-0.896) 0.409 1.000

(2) Radiomics signature model 0.732(0.650-0.813) 0.797 0.573 0.770(0.613-0.928) 0.909 0.579

(3) Radiomics nomogram model 0.884(0.790-0.924) 0.829 0.938 0.878(0.773-0.983) 0.909 0.573

1 vs. 2 0.1868 0.8624

1 vs. 3 0.0002 0.0428

2 vs. 3 0.0003 0.0990
frontiers
1 indicates clinicoradiological model; 2 indicates radiomics score model; 3 indicates radiomics nomogram model.
SEN sensitivity, SPE specificity, AUC area under the curve, CI confidence interval.
*P < 0.05 indicates a significant difference.
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22). Previous studies have also concluded that larger tumors

significantly increased the risk probability of MVI in HCC (23,

24). However, this association was not indicated in our study,

probably due to the selection bias. In addition, we found that the

absence of halo signs and non-circular MR imaging features are

the key predictor of MVI, which is consistent with previous

studies (25–27). The results of observation on the pathological

data indicated that among the current cases of MVI+ HCC, the

most common is the single-nodular type and the multi-nodular

type with additional nodular growth or fusion (28), which means

the non-round tumor shape is the MR image feature of MVI+

HCC. In our previous study (10), HBP 15 minutes has better

radiomic characteristics in comparison to HBP 5 minutes and
Frontiers in Oncology 06
HBP 10 minutes. In addition, the case collection and analysis

were conducted at the same medical center with the same

research methods. Therefore, all feature scoring in our study

was based exclusively on HBP 15 min images in previous study.

Despite the good performance exhibited by radiomic signatures,

it remains a gap compared to clinical radiology models (AUC

0.732 vs. 0.802). We further incorporated radiomics signatures

into clinicoradiological model to enhance the predictive power.

The subsequence radiomic nomograms displayed modified

diagnostic performance, suggesting the higher usefulness of

combined approach in MVI prediction in comparison to

clinical radiology models. This was consistent with previous

study (22, 29), also showing that combined radiomics signatures
FIGURE 3

Radiomics nomogram combining the radiomics signature derived from HBP 15min MR images and clinicoradiological factors including gender,
AFP, halo sign and shape for predicting MVI in the training cohort.
A B

FIGURE 2

Comparison of receiver operating characteristic (ROC) curves for the prediction of microvascular invasion. ROC curves of the clinicoradiological
model, the radiomics signature model and the radiomics nomogram model in the training and validation cohort (A, B), respectively.
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and clinicoradiological factors should clearly be preferred over

clinical risk factors alone in predicting MVI in HCC. For further

comparison of the three models, we applied decision curve

analysis, which is used for constructing models capable of

assessing clinical outcomes and calculating the loss of gain

from the assessment model for each individual, largely

compensating for the shortcomings of traditional statistical

measures (30). In terms of decision curve analysis, the

radiomics nomogram proposed in our study is potentially

serving to estimate postoperative outcomes in clinic.

In conclusion, the radiomics nomogram successfully

presented in our study possesses significant utility in
Frontiers in Oncology 07
predicting MVI in HCC. It will contribute to providing an

important reference for clinicians to protocol the best

treatment plan, thereby improving clinical outcomes.
Limitations

There also exist some limitations in this study. First, this

study is a retrospective single-center study, which requires in-

depth prospective multicenter validation with a larger cohort.

Second, the complex relationship between radiomic signatures

and biological behavior fails to be effectively explained.
A B

FIGURE 5

The clinical utility of the nomogram was evaluated by decision curves in the training and validation cohort (A, B), respectively. In the decision
curves, the black line indicates the net benefit of assuming that there are no patients with microvascular invasion (MVI), and the grey line
indicates the net benefit of assuming all patients with MVI. The radiomics nomogram model (green line) provided a greater net benefit than the
clinicoradiological model (blue line) and radiomics signature model (red line).
A B

FIGURE 4

The performance of the nomogram was assessed by calibration curves in the training and validation cohort (A, B), respectively. The y-axis
represents the actual microvascular invasion (MVI) rate, the x-axis represents the predicted MVI possibility, and the diagonal dashed line
indicates the ideal prediction by a perfect model.
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