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Can a proposed double branch
multimodality-contribution-
aware TripNet improve the
prediction performance of the
microvascular invasion of
hepatocellular carcinoma based
on small samples?
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Ahong Ren1, Zhenchang Wang1, Dawei Yang1*

and Zhenghan Yang1*

1Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
2Medical Imaging Division, Heilongjiang Provincial Hospital, Harbin Institute of Technology,
Harbin, China, 3Faculty of Information Technology, Beijing University of Technology, Beijing, China,
4Department of Radiology, The People’s Hospital of Jimo.Qingdao, Qingdao, China
Objectives: To evaluate the potential improvement of prediction performance

of a proposed double branch multimodality-contribution-aware TripNet

(MCAT) in microvascular invasion (MVI) of hepatocellular carcinoma (HCC)

based on a small sample.

Methods: In this retrospective study, 121 HCCs from 103 consecutive patients

were included, with 44 MVI positive and 77 MVI negative, respectively. A MCAT

model aiming to improve the accuracy of deep neural network and alleviate the

negative effect of small sample size was proposed and the improvement of MCAT

model was verified among comparisons between MCAT and other used deep

neural networks including 2DCNN (two-dimentional convolutional neural

network), ResNet (residual neural network) and SENet (squeeze-and-excitation

network), respectively.

Results: Through validation, the AUC value of MCAT is significantly higher than

2DCNN based on CT, MRI, and both imaging (P < 0.001 for all). The AUC value

of model with single branch pretraining based on small samples is significantly

higher than model with end-to-end training in CT branch and double branch

(0.62 vs 0.69, p=0.016, 0.65 vs 0.83, p=0.010, respectively). The AUC value of

the double branch MCAT based on both CT and MRI imaging (0.83) was

significantly higher than that of the CT branch MCAT (0.69) and MRI branch

MCAT (0.73) (P < 0.001, P = 0.03, respectively), which was also significantly

higher than common-used ReNet (0.67) and SENet (0.70) model (P < 0.001, P =

0.005, respectively).
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Conclusion: A proposed Double branch MCAT model based on a small sample

can improve the effectiveness in comparison to other deep neural networks or

single branch MCAT model, providing a potential solution for scenarios such as

small-sample deep learning and fusion of multiple imaging modalities.
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Introduction

As one of the most common primary liver malignancies,

hepatocellular carcinoma (HCC) is the third leading cause of

tumour-related deaths worldwide (1, 2). The optimal treatment

choices for HCC like surgical resection and transplantation have

been consistently improved in recent decades. However, due to

high recurrence rates, early recurrence and long-term prognoses

remain unsatisfactory (3). Among several factors, such as

histological grade and tumour size, previous studies (4, 5) have

confirmed that microvascular invasion (MVI) is a vital factor for

early recurrence and poor long-term prognosis in HCC patients

treated by resection or transplantation (6, 7). However, the

preoperative evaluation of MVI is difficult, which warrants a

noninvasive, highly accurate tool for evaluating the presence/

absence of MVI in HCC patients when making treatment

decisions preoperatively.

Previous studies (8–11) have attempted to predict the

presence of MVI based either on computed tomography (CT)

or MRI imaging features alone. Although promising results were

presented, several limitations still existed to negatively affect the

diagnostic performance and clinical applicability to some degree.

For example, considerable interobserver variability were found

in the assessment of MVI in HCC using MRI (12), even for more

experienced radiologists due to inevitable subjective bias in the

process of personal imaging analysis. In addition, few study have

attempted to predict MVI in HCC based on multi-phase CT and

multi-sequence MRI techniques together. Previous studies have

seperately found that CT-based features like tumor margin (13)

or MRI-based features like ADC value (8) and peritumor

hypointensity in the hepatobiliary phase (HBP) (14) had

moderate to high correlation with the presence of MVI in

HCC. As the presence of MVI in HCC co-exists with diverse

radiologic features simultaneously, it is necessary to investigate

whether or not the noninvasive prediction accuracy of MVI in

HCC could be improved based on a combination of CT andMRI

imaging features rather than on a single imaging modality alone.

With the rapid development of machine learning, recent

studies have attempted to explore the potential of machine
02
learning including deep learning (15, 16) and radiomics (17, 18)

in prediction of MVI in HCC. Based on various deep learning

models, several studies found that the deep learning models could

achieve a moderate diagnostic accuracy in a range from 0.66 to

0.76 on CT or MRI imaging alone (19–21). However, the further

improvement of prediction accuracy of deep learning model for

MVI in HCC is hampered by several factors, in which the limited

well-annotated medical imaging data is a major one. It is well-

known that at least10 thousand data are required for deep learning

model to achieve a relatively optimal training and verification

results. Nevertheless, even the largest sample size of 750 cases in a

published multi-center study (19) is still far from the needs for

deep learning. Moreover, the substantial increase of well-

annotated medical imaging data to the requirement of deep

learning is deemed a genuine hardship considering the far from

enough qualified imaging data and high time-consuming for well

annotation. In addition, common deep learning models give the

same weight to each sequence channel in the diagnosis process of

medical problems, rather than assigning different weights to

different sequences according to their importance like the

diagnostic logic applied by radiologists. Theoretically, diagnostic

experiences from radiologists can improve the construction of

deep neural networks and alleviate the problem caused by

insufficient training samples to a large extent.

To solve the problems mentioned above, we propose a new

double-branch multimodality-contribution-aware TripNet

(MCAT) model. In this model, the data augmentation and

metric learning techniques were applied to overcome the

negative effect of small sample size, and the incorporated

radiologists’ diagnostic experience with modal (sequence)

attention schemes was used to improve the accuracy of deep

neural network and alleviate the effect caused by insufficient

training samples. It is hypothesized that the MCAT model could

improve the prediction accuracy of MVI in HCC compared to

other commonly-used deep neural networks on small samples.

Therefore, this study aimed to investigate the possible

improvement of prediction performance of MCAT model in

MVI of HCC compared to other deep neural networks, based on

a multi-modality CT and MRI data with small samples.
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Materials and methods

Patients

This retrospective study was approved by the institutional

Human Ethics Committee after the written informed agreement

was waived. From January 2015 to December 2020, 302

consecutive patients underwent dynamic contrast-enhanced

CT (CE-CT) or/and dynamic contrast-enhanced MRI (DCE-

MRI) with other conventional MRI sequences to evaluate HCC

in the Department of Radiology, Beijing Friendship Hospital.

The inclusion criteria were as follows: (1) four-phasic liver DCE-

MRI images were available, including precontrast images and

those of the arterial, portal venous, and equilibrium phase, or

three-phasic CE-CT images were available, including

precontrast images and those of the arterial and portal venous

phase (PVP); (2) the pathologic MVI of HCC was obtained by

surgical resection; (2) no previous treatment, such as

percutaneous ethanol injection, radiofrequency ablation, or

transcatheter arterial chemoembolization had occurred. The

exclusion criteria were as follows: (1) inaccurate time point of

phase; (2) hepatobiliary contrast agent for MRI; (3) an interval

between CT or MRI imaging examinations and resection longer

than 4 weeks; and (4) prominent artifacts that affected the

observation of HCCs. See Flow Chart Figure 1 for details.
Image acquisition

Liver CE-CT scans were acquired by various multidetector CT

scanners. CT images were obtained before and after

administration of contrast agent during the arterial phase (AP),

portal venous phase (PVP) and/or equilibrium phase. Among

them, plain scan, AP and PVP images were used for analyses. All

CE-MRI examinations were performed in 3.0 T scanners. Three

MRI sequences were used for analyses: T2-weighted imaging

(T2WI), diffusion-weighted imaging (DWI) and T1-weighted

imaging (T1WI), including imaging before and after

intravenous injection of diethylenetriaminepentaacetic acid

(DTPA) at the AP, PVP, and equilibrium phase (EP). Details of

imaging acquisition protocols are shown in Supplementary File 1.
Histopathologic MVI diagnosis of HCC

Histopathologic examination for surgical specimens was

performed at each site by two experienced pathologists who

were unaware of the patient’s radiologic examination results and

clinical history. The MVI of HCC was defined as the presence of

tumour thrombus in small peritumor vessels (portal vein,

hepatic vein or large capsular vesselslined with surrounding

liver tissue) only detected under the microscopy. Any differences
Frontiers in Oncology 03
were resolved by consensus. Details of the histopathologic

diagnosis of MVI are provided in Supplementary File 2.
Double-branch multimodality-
contribution-aware TripNet based on
small samples

Due to the particularity of the data composition with only CT

form, only MRI form, and CT&MRI mixed form, the double-

branch multimodality-contribution-aware TripNet based on

small sample is adopted, and the 2D slice with the largest lesion

area in each modality of CT images and MRI images was used for

ROI (region of interest) extraction and greyscale normalization.

The segmentation boundaries were drawn with ITK-SNAP

software (https://www.radiantviewer.com) slice by slice for each

volume along the visible borders of the lesion. In order to facilitate

understanding, the whole process was divided into three parts.

The first part is the establishment of multimodality-channel

contribution aware single-branch TripNet, which consists

feature embedding module and evaluation module, using pure

CT image data and pure MR data respectively. In the feature

embedding module, multimodal channel adaptive weighted

modules (MAWM) are added to consider the final classification

weight of the features in different modal channel dimension that is

similar to the prior knowledge of radiologists to consider the

importance of different modal in clinical diagnosis. For example,

in clinical work, radiologists believe that arterial phase images in

CT are more important in the diagnosis of MVI in hepatocellular

carcinoma, so we give more weight to arterial phase channels in

MAWM. In the second part, single-branch pretraining based on

small samples is added for each of the multimodality-channel

contribution aware single-branch TripNet to form single branch

network including CT branch network and MRI branch

network. It consists of two stages, namely, the feature

embedding pretraining and the fine-tuning stage of model. The

data augmentation and metric learning (22, 23) are added in the

feature embedding pretraining to solve small samples problem. In

the third part, CT branch network and MRI branch network are

weighted and fused according to a certain proportion, and the

parameters of the two branches are further updated by mixed CT

and MRI data, and finally the double-branch multimodality-

contribution-aware TripNet based on small sample is obtained.

See Figure 2 and detailed mechanism and formula in

Supplementary File 3.
Statistical analysis

Comparison method
To evaluate the effectiveness of the proposed method in the

diagnosis and evaluation of hepatocellular carcinoma (HCC)
frontiersin.org
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MVI, three groups of comparative tests were conducted

including comparison with other deep neural networks,

comparison with end-to-end training model and Comparison

between double branch network and single branch networks.

The whole three comparisons used the same data and same

conditions from this study. (1) Comparison with other deep

neural networks; we compare the MCAT with other deep neural

network (24–26) including two-dimensional convolutional

neural networks (2DCNN), residual neural network (ResNet

18), squeeze-and-excitation networks (SENet 18), efficient

channel attention network (ECANet 18). Channel attention is

introduced from SENet firstly. ECANet and MCAT are

optimized on the basis of SENet. ECANet is efficient channel

attention and MCAT is Mutli-modals (sequences) contribution

aware mechanism. (2) Comparison with end-to-end training

model; For the small sample problem, single branch pretraining
Frontiers in Oncology 04
were added in the model and compare it with the conventional

end-to-end training in the same experiment setting. (3)

Comparison between double branch network and single

branch networks. The double branch network was compared

with CT branch network and MRI branch network respectively.

Evaluation indicators
The evaluation indexes adopted in this paper are Accuracy,

Sensitivity, Precision and F1-Score. The default value 50% was

used as the threshold value. The receiver operating characteristic

curve (ROC) was drawn for the prediction results of each model,

and the area under the curve (AUC) was further used to evaluate

the diagnostic quality of MVI. Comparison between AUC values

were performed by Z test and P values less than 0.05 were

considered statistically significant. Some of the formulas are

shown in Supplementary File 4.
FIGURE 1

Flow chart for details. HCC, hepatocellular carcinoma; MVI, microvascular invasion; TACE, transcatheter arterial chemoembolization; RFA,
radiofrequency ablation; PEI, percutaneous ethanol injection.
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Results

A total of 103 patients with 121 pathologically confirmed

HCCs were included in this study, including 77 negative for MVI

and 44 positive for MVI. The data in this study were composed

of 49 CT images (18 positive/31negative), 32 MR images (12

positive/20negative) and 40 mixed images (14 positive/

26negative) of HCCs. The demographic and pathological

information of the patients is summarized in Table 1. Each

network training set and validation set were matched in a ratio of

4:1. The data of the training set was expanded by data

augmentation in single-branch pretraining based on small

samples. The validation set used the original sample data

without augmentation. Each network carries out 5 fold

cross validation.
Comparison with other deep
neural networks

The results are shown in Table 2. In the comparison of

different deep learning models, no matter in CT branch, MRI

branch or double branch, compared with 2DCNN, ResNet,

SENet, ECANet, the performance and stability of MCAT are
Frontiers in Oncology 05
the best. The AUC value of MCAT is the highest in different

branches compared with other deep learning models. Especially

in the double branch, the AUC values of MCAT compared with

2DCNN, ResNet, SENet and ECANet were 0.83 VS 0.62, 0.67,

0.70 and 0.70, respectively, showing significant differences

(p<0.05). In order to display this result more intuitively, we

made histogram to show the accuracy, sensitivity, precision and

F1-score of different networks of CT branch, MRI branch and

double-branch model. See Figure 3.
Comparison with end-to-end
training model

In the same experiment setting, comparison between end-to-

end training and single branch pretraining based on small

samples in different branches have been carried out. The

results are shown in Table 3. The AUC value of model with

single branch pretraining based on small samples is higher than

model with end-to-end training in CT branch, MRI branch or

double branch (0.62 vs 0.69, 0.68 vs 0.73, 0.65 vs 0.83,

respectively). And among them the AUC values in the CT

branch and double branch were statistically different (Z=2.41,

p=0.016 and Z=2.54, p=0.010, respectively). In order to
FIGURE 2

Flow chart of CT&MRI double-branch multimodality-contribution-aware TripNet. MAWM, multimodal channel adaptive weighted modules.
The whole model consists of three steps. The first step is to establish Multimodality-Channel Contribution Aware Single-Branch TripNet. The
highlight of this step is to integrate the prior knowledge of radiologists by setting the multimodal channel adaptive weighted modules (MAWM).
Considering the importance of different modal in clinical diagnosis, the network can adaptively increase important modal features, and the
attention to the features of the unimportant modal channels can be reduced. In the second step, based on the first step, a single-branch two-
step training strategy is added for small sample problems, including data enhancement and metric learning, and then the CT branch network
and MRI branch network are obtained. In the third part, the CT Branch and MRI Branch network are fused and updated with CT and MRI Mixed
data, and double-branch Multimodality- contribution-aware TripNet is finally obtained.
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intuitively demonstrate the effectiveness of the single branch

pretraining based on small samples, we also visualized the

feature embedding space of the CT branch and MRI branch

obtained by the two training methods, as shown in Figure 4.
Comparison between double branch
network and single branch networks

The comparison results between double branch network and

single branch networks are shown in the Table 2. ROC curves

and AUC values of CT branch network, MRI branch network

and double branch network in the 5-fold crossover experiment

were plotted and calculated, and the experimental results are

shown in Figure 5. By comparing the average AUC value of

different branch network, the average AUC value of the double

branch network was significantly higher than that of the CT

branch network or MRI branch, network with Z=3.39, p<0.001

and Z=2.18, p=0.029, respectively. But there is no significant
Frontiers in Oncology 06
difference in the average AUC value between CT branch network

and MRI branch network (Z=0.934, p=0.350).

The diagnostic results of two cases with MVI positive lesions

(No.108 and No. 12) in different branch networks (CT branch

network, MRI branch network and double branch network) were

presented. The double branch network andMRI branch network of

lesion No. 108 were correctly diagnosed, while the CT branch

network was incorrectly diagnosed (the probability of predicting

positive MVI was 0.7, 0.7 and 0.1, respectively). The double branch

network and CT branch network of lesion No. 12 were correctly

judged, while the MRI branch network was incorrectly judged (the

probability of predicting positive MVI was 0.6, 0.8 and 0.4,

respectively). When the probability of predicting positive MVI

was greater than 0.5, the network classified it as positive. CT and

MRI images and pathological results of these two lesions are shown

in Figure 6.
Discussion

In comparison to other deep neural networks, our study

shows that the proposed double-branch MCAT model could

significantly improves the prediction accuracy of MVI in HCC

by the use of the modal (sequences) attention schemes and

fusion of CT and MRI images based on small samples.

SeNet (25) is proposed as a representative channel attention

mechanism based on ResNet and CNNs in 2017. It proposes a

novel architectural unit, which is termed the “Squeeze-and-

Excitation” (SE) block, calculates the weighted features by

focusing on the importance of different channels of feature

vectors. Considering that different channel-wise features have

various contributions to the different clinical issues such as

diagnosis of HCC or evaluation of MVI in HCC, some studies

have attempted to apply SE block in the field of medical image

analysis. In Chen et al. (27) study, a SE block was introduced into

traditional CNN which achieved a good performance

improvement in classification of benign and malignant

pulmonary nodules with a max AUC value of 0.930. In Jia et al.

(28) study to the diagnosis of HCC pathologic grades, a SE block

was combined with residual calculation Block to calculate the

contribution degree of multiple MRI sequences such as T2WI and

T1WI with a purpose to inhibit the influence of non-important

MRI sequences while paying attention to important MRI

sequence. However, although several studies (19–21) were

focused on the prediction of MVI in HCC by using traditional

CNN or ResNet, few study has applied SE block to improve the

prediction accuracy. ECANet (26) and MCAT are optimized on

the basis of SENet. ECANet is efficient channel attention and

MCAT is Mutli-modals (sequences) contribution aware
TABLE 1 Clinical characteristics of 103 patients and MVI pathological
features of HCCs.

MVI (-) MVI (+) P value

Number 77 44

Age(mean,year) 57.23 ± 10.57 57.14 ± 12.82 0.924

Sex 0.583

male 53 28

female 13 9

Tumor Diameter(mean,
cm)

3.31 ± 2.19 4.31 ± 2.46 0.028

AFP(mean,ng/ml) 362.90 ±
1510.86

2839.88 ±
14174.01

0.540

Cirrhosis 0.072

NO 15 3

YES 51 34

Child-Pugh stage 0.586

A 49 31

B 12 3

C 5 3

Location 0.028

Left Lobe 14 18

Right lobe 63 26

Pathology classification 0.010

Poorly differentiated 8 10

Moderately
differentiated

66 33

Well differentiation 5 1
MVI, microvascular invasion; HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1035775
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2022.1035775
TABLE 2 Diagnostic evaluation performance of different neural networks for HCC MVI (validation data).

Lesions MVI
(+)

MVI
(-)

Neural net-
works

Accuracy
(%)

Sensitivity
(%)

Precision
(%)

F1 score
(%)

AUC Z p

CT branch 49 18 31 2DCNN 47.33 ± 18.66 38.27 ± 13.45 27.44 ± 7.52 39.94 ± 17.04 0.45 ±
0.20

6.242a <0.001a

ResNet 59.11 ± 12.77 54.58 ± 8.37 50.53 ± 23.87 54.11 ± 18.10 0.62 ±
0.12

2.268a 0.023a

SENet 61.56 ± 14.17 59.46 ± 11.14 62.36 ± 12.03 60.34 ± 15.54 0.65 ±
0.14

1.228a 0.220a

ECANet 65.33 ± 13.43 62.80 ± 14.12 65.71 ± 16.59 65.28 ± 13.10 0.66 ±
0.13

0.946a 0.344a

MCAT 71.55 ± 19.22 68.45 ± 16.57 75.46 ± 19.60 71.05 ± 18.56 0.69 ±
0.18

3.395d <0.001d

MRI branch 32 12 20 2DCNN 53.33 ± 8.05 54.83 ± 11.07 46.28 ± 17.23 49.27 ± 13.72 0.47 ±
0.23

4.926b <0.001b

ResNet 62.86 ± 20.90 63.00 ± 20.20 63.00 ± 20.20 62.86 ± 20.93 0.63 ±
0.26

1.755b 0.079b

SENet 68.10 ± 15.55 66.33 ± 19.84 63.17 ± 20.94 67.51 ± 16.89 0.68 ±
0.26

0.878b 0.380b

ECANet 69.05 ± 8.52 68.00 ± 14.54 61.83 ± 16.04 66.37 ± 11.61 0.69 ±
0.19

0.842b 0.400b

MCAT 74.76 ± 15.17 73.83 ± 19.50 67.66 ± 22.33 72.08 ± 17.97 0.73 ±
0.19

2.175d 0.030d

Double
branch

40 14 26 2DCNN 60.00 ± 18.37 55.14 ± 22.26 53.33 ± 22.11 59.89 ± 20.77 0.62 ±
0.27

3.953c <0.001c

ResNet 67.50 ± 10.00 70.14 ± 14.33 65.00 ± 9.72 67.59 ± 12.33 0.67 ±
0.10

4.529c <0.001c

SENet 72.50 ± 18.37 72.40 ± 20.14 69.33 ± 17.34 71.63 ± 19.76 0.70 ±
0.21

2.836c 0.005c

ECANet 75.00 ± 7.91 76.31 ± 11.04 76.48 ± 9.47 74.68 ± 8.74 0.70 ±
0.19

2.984c 0.003c

MCAT 75.00 ± 13.69 76.66 ± 16.16 71.66 ± 17.34 74.93 ± 15.19 0.83 ±
0.20
Frontiers in O
ncology
 07
 frontie
MVI, microvascular invasion; HCC, hepatocellular carcinoma; 2DCNN, two-dimensional convolutional neural networks; ResNet, residual neural network; SENet, squeeze-and-excitation
Networks; ECANet, efficient channel attention network; MCAT, multimodality-contribution-aware TripNet; AUC, the areas under the receiver operating characteristic curves; a,
comparison AUC value of CT branch between 2DCNN, ResNet, SENet, ECANet and MCAT respectively; b, comparison AUC value of MRI branch between 2DCNN, ResNet, SENet,
ECANet and MCAT respectively; c, comparison AUC value of double branch between 2DCNN, ResNet, SENet, ECANet and MCAT respectively; d, comparison AUC value of MCAT
model between CT branch, MRI branch and double branch respectively.
FIGURE 3

Histograms of accuracy, sensitivity, precision and F1 score of different networks in CT branch, MRI branch and double branch models. The
heights of the blue, dark blue, red, orange and yellow histograms represent the average values of accuracy, sensitivity, precision and F1 score in
the CT branch, MRI branch and double branch, respectively, using different deep neural networks. The short black line at the top of the
histograms represents the standard deviation of of the corresponding mean.
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TABLE 3 Comparison between end-to-end training and single-branch pretraining on the performance of the final model.

Training methods Accuracy (%) Sensitivity (%) Precision (%) F1 score (%) AUC Z p

CT branch end-to-end training 63.33 ± 16.05 62.61 ± 10.31 66.56 ± 16.57 61.64 ± 17.04 0.62 ± 0.09 2.408a 0.016a

single-branch pretraining 71.55 ± 19.22 68.45 ± 16.57 75.46 ± 19.60 71.05 ± 18.56 0.69 ± 0.18

MRI branch end-to-end training 68.09 ± 15.55 66.33 ± 19.84 63.17 ± 20.94 67.51 ± 16.89 0.68 ± 0.26 0.874b 0.382b

single-branch pretraining 74.76 ± 15.17 73.83 ± 19.50 67.66 ± 22.33 72.08 ± 17.97 0.73 ± 0.19

Double branch end-to-end training 65.50 ± 16.96 70.14 ± 19.82 62.29 ± 22.95 66.17 ± 21.31 0.65 ± 0.4 2.547c 0.011c

single-branch pretraining 75.00 ± 13.69 76.66 ± 16.16 71.66 ± 17.34 74.93 ± 15.19 0.83 ± 0.20
Frontiers in Onc
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AUC, the areas under the receiver operating characteristic curves; a, Comparison AUC value of CT branch between using end-to-end training and using single-branch pretraining;
b, Comparison AUC value of MRI branch between using end-to-end training and using single-branch pretraining; c, Comparison AUC value of double branch between using end-to-end
training and using single-branch pretraining; end-to-end training, without single-branch pretraining; single-branch pretraining= for solving small sample problem to create including
feature embedding pretraining (data augmentation and metric learning) and the fine-tuning stage of model.
A B

D E F

C

FIGURE 4

The comparison between the feature space obtained by single-branch pretraining based on small sample and the feature space obtained by
end-to-end training. Each point in the figure represents a lesion. Blue represents MVI-negative lesions, and orange represents MVI-positive
lesions. Panels (A, D) represent the original feature space of the CT branch and MRI branch. Blue and orange points are irregularly mixed
together. Panels (B, E) show the feature space of the CT branch and MRI branch after end-to-end training. Blue and orange points start to
gather, but they are still mixed together. Panels (C, F) show the feature space of the CT branch and MRI branch after single-branch pretraining
based on small samples. Points of the same colour begin to gather, and blue points and orange points are basically separated, which improves
the ability to distinguish between negative and positive MVI.
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mechanism based on modal (sequences) attention. ECANet is

currently mainly used in computer vision for image classification

and segmentation, such as electrocardiogram classification (29)

and image reconstruction (30). In our study, the double-branch

MCAT consists of MAWM (multimodal channel adaptive

weighted modules), an improved version of SE blocks, as the

main network for the first time to predict MVI of HCC, was better

performance than other neural networks in internal verification.

Comparing to similar studies Zhang Y et al. (20) using 3D CNN

and Liu, S et al. (21) using ResNet 18, the performances were also

significantly improved with AUC value of 0.83 vs. 0.72 and 0.75.

As popular approaches to solve the small-sample size

problems, both data augmentation and metric learning were

also used in the proposed MCAT model to improve the

prediction accuracy (28, 31). Theoretically, data augmentation

can enrich the sample diversity and solve the problem of small

samples at the data level. while the measurement of metric

embedding loss can make the obtained feature space more

discriminable and solve the problem of small samples at the

feature level (22, 23). In our study, we used both data

augmentation and metric learning to solve small sample

problems with remarkable results. Jingwei et al. (19) included

a sample size of 750 cases in their study, in which the deep

learning model ResNet18 without data augmentation and metric

learning. The AUC value of CE-CT and EOB-MRI were 0.734

and 0.802, respectively. The total number of samples in our

study was 121, and the data volume of the double branch was

only 40 cases, with an AUC value of 0.83, which is higher than

the previous results of a large sample size. This indicates that

data augmentation and metric learning could be a solution to the

problem of small sample size without affecting the results.

Moreover, our study shows that using single branch

pretraining can intuitively improve the diagnostic evaluation
Frontiers in Oncology 09
performance of the model compared with end-to-end training,

effectively reduce the standard deviation of each evaluation

index, and make the model performance obtained by training

more excellent and stable. In computing, the power of 10 is an

order of magnitude, and 100 and 1000 are small sample sizes for

a computer. In medical imaging, more than 100 well-annotated

images are difficult to obtain. Therefore, the application of data

augmentation and metric learning can greatly solve the problem

of small sample sizes in the medical field.

Additionally, in our study, the double branch of CT andMRI

images was more efficient than the single branch of CT or MRI

images alone, with AUCs of 0.83, 0.69 and 0.73, respectively. A

possible explanation is that CT and MRI are different imaging

techniques and have different advantages in evaluating MVI.

Jingwei Wei et al. (19) established ResNet18 models based on

CE-CT and EOB-MRI images and concluded that the model

based on EOB-MRI had a better effect than the model based on

CE-CT with AUC values of 0.802 and 0.734, respectively. In

addition, Hu et al. showed that CT is superior to MRI in

evaluating tumour margins (13). CT and MRI have their own

imaging characteristics. In contrast, CT has higher spatial

resolution, while MRI has higher tissue resolution. Therefore,

CT and MRI images may also provide texture features in

different directions for deep learning models, and the

simultaneous uptake of these features can improve diagnostic

efficiency. Moreover, our model can accept different imaging

images to predict MVI of HCC, such as CT, MRI, or both. This

may have broader clinical applicability. For various reasons, we

cannot guarantee that patients will be able to choose imaging

modalities as we require.

Our study also has some limitations. First, the number of

HCCs in the present study is limited, which may influence

the generalization of the deep learning model. However, we
A B C

FIGURE 5

ROC curves of the performance of different diagnostic branch models in the 5-fold cross test. (A) the AUC of the CT branch; (B) the AUC of the
MRI branch; (C) the AUC of the MIX branch; ROC, receiver operating characteristic curve; AUC, the area under the receiver operating
characteristic curve.
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adopted data augmentation and metric learning to solve this

problem. Second, MVI grade was not considered in the MVI-

positive group. In addition, other contrast agents or Gd-

EOB-DPTA-enhanced MRI images in the hepatobiliary

phase were not compared or evaluated in this study, and

we will continue to study them in the future.

In conclusion, our study indicates that double branch

MCAT based on small samples can improve the effectively

compared with other deep neural networks, providing a

solution for scenarios such as small-sample deep learning and

fusion of different imaging technologies.
Frontiers in Oncology 10
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