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Immuno-oncology is an emerging field in the treatment of oncological

diseases, that is based on recruitment of the host immune system to attack

the tumor. Radiation exposure may help to unlock the potential of the immune

activating agents by enhancing the antigen release and presentation, attraction

of immunocompetent cells to the inflammation site, and eliminating the tumor

cells by phagocytosis, thereby leading to an overall enhancement of the

immune response. Numerous preclinical studies in mouse models of glioma,

murine melanoma, extracranial cancer, or colorectal cancer have contributed

to determination of the optimal radiotherapy fractionation, as well as the radio-

and immunotherapy sequencing strategies for maximizing the antitumor

activity of the treatment regimen. At the same time, efficacy of combined

radio- and immunotherapy has been actively investigated in clinical trials of

metastatic melanoma, non-small-cell lung cancer and renal cell carcinoma.

The present review summarizes the current advancements and challenges

related to the aforementioned treatment approach.
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Principles of cancer immunotherapy

Recruiting the patient’s immune system for cancer treatment

was proposed by the American surgeon William Coley back in

1891 (1). Using bacterial cultures and their metabolic products

he developed a vaccine to treat patients with inoperable tumors.

Despite the positive results of his research, this treatment

strategy did not received an approval and was soon replaced

by chemotherapy (CT) and radiation therapy (RT).

The progress in understanding the molecular mechanisms of

immunity in the late 20th century, including the role of various

cell populations and cytokines in the activation, maintenance

and downregulation of the immune response, revitalized the idea

of using the host immune system against the tumor cells (2–4).

According to the current concept, proposed by D. Chen and I.

Mellman (2013) (5), specific antigens released from tumor cells

during stress-induced immunogenic cell death (ICD) stimulate

clonal expansion of the tumor-specific T-lymphocyte subsets.

Next, dendritic cells (DCs) present the antigens on major

histocompatibility complex (MHC) class I and MHC class II

molecules to T cells. The activated T cells attack the tumor cells

and enhance the antitumor immune response. The effects of ICD
Frontiers in Oncology 02
stimulate the recruitment of T cells and their ability to recognize

the tumor cells (6) (Figure 1).

However, practical observations show that the activation of the

immune response is not always sufficient for tumor rejection, which

can lead to natural selection of cancer cells, resistant to the immune

attack due to multiple immunosuppressive mechanisms. This

phenomenon has been termed immunoediting (3, 7). The

resistant tumor cell populations recruit various mechanisms to

create a tumor microenvironment (TME), which not only

reduces the immune response but also stimulates tumor growth.

Therefore, one of the main challenges of the current oncotherapy is

to shift TME from the immunosuppressive to the immunoreactive

state, which requires establishing and implementation of new

therapeutic strategies. Immune tolerance was shown to be driven

by multiple TME components including immunosuppressive cell

populations such as regulatory T (Treg) cells and myeloid derived

suppressive cells, various cytokines, soluble factors, enzymes and

metabolites (e.g. arginase, adenosine, TGF-b) (8).
Immune checkpoint (IC) proteins were shown to play an

important role in the immunosuppression and have been

increasingly recognized as an important target for anticancer

drug development. In non-pathological conditions IC proteins
FIGURE 1

Cancer immunity cycle. Immunogenic death of tumor cells leads to release of tumor-specific antigens (AG) that are captured by antigen
presenting cells (APC) and after binding to major histocompatibility complex (MHC) class II are presented on their surface. The receptors CD4
dock to an MHC class II, activate the naive T helper (TH) cells followed by clonal selection of antigen-specific T cells, their proliferation,
migration into the tumor site and differentiation into cytotoxic T-lymphocytes (CTL). CTL express receptors CD8, which dock to MHC class I.
Finally, CTL recognize tumor-specific antigens and kill the tumor cells, which produces a further release of tumor antigens into the surrounding
space and potentiates the immune response. Natural killer (NK) cells recognize tumor cells without the involvement of the MHC class I, making
the response mediated very quick. AG, tumor-associated antigens; MHC I, major histocompatibility complex class I; MHC II, major
histocompatibility complex class II; TH, T helper cell; NK, natural killer cell.
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prevent hyperactivation of the immune system and are crucial

for immune tolerance. Cancer cells, however, use these proteins

to limit the specific antitumor immune response, thus protecting

themselves from the T cell attack. The programmed death 1

(PD-1), its ligand PD-L1, and cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4) are the best characterized ICs.

PD-1 is a receptor expressed on the surface of T- and B-

lymphocytes, macrophages and myeloid cells serving to suppress

the autoimmunity via specific modulation of apoptotic signaling

mechanisms in distinct populations of immunocompetent cells

(9, 10). PD-1 is expressed both in cancer and antigen presenting

cells (APC). Binding of PD-L1 to PD-1 activates the Src

homology-2-containing protein tyrosine phosphatase 2

(SHP2), which inhibits the phosphatidylinositol-3-kinase

(PI3k)/protein kinase B (PKB/AKT) signaling pathway by

dephosphorylation of the phosphatase and tensin homolog

(PTEN), thereby suppressing the downstream molecular

pathways including AKT, mitogen-activated protein kinase

(MAPK), extracellular signal-regulated kinase (ERK) and

others (11–15). Deactivation of these cascades leads to a

decrease in lymphocytes proliferative activity and effector

functions (16, 17).

PD-L1 up-regulation in tumors occurs either by constitutive

oncogenic signaling via AKT or signal transducer and activator

of transcription 3 (STAT3), a mechanism termed intrinsic

immune resistance, or by interferon gamma (IFN-g) released

from activated T cells or natural killer (NK) cells (adaptive

resistance) (18). High PD-1 and PD-L1 expression was detected

in several tumor cell lines, such as serous ovarian carcinoma (10)

and breast cancer (19), although the prognostic value of PD-1 or

PD-L1 expression is currently unclear (10, 20). Moreover,

conventional cancer therapies such as radio- or chemotherapy

have been associated with activation of the PD-1 signaling in

tumor cells conferring a certain resistance against these

treatments (21–23).

CTLA-4 represents another potential therapeutic target

among ICs. CTLA-4 appears on the surface of T cells after

their interactions with APC and prevents the T cells activation

by competing with CD28 for its ligands, CD80 and CD86.

CTLA-4 has a greater affinity for CD28-activating ligands than

CD28 itself. The resulting CD28 antagonism suppresses the

PI3k/AKT cascade (24–27). In contrast to the PD-1 signaling,

CTLA-4 likely acts via the protein phosphatase 2A (PP2A) to

decrease the abundance of phosphorylated AKT (15, 28, 29).

CTLA-4 is overexpressed under pathophysiological conditions

in the tumor environment, which substantially reduces the

availability of CD80 and CD86 for the CD28-pathway and

limits the proper activation of T-lymphocytes at early

maturation stages (14).

CTLA-4 and PD-1 act as negative regulators of T cells

function at different stages of the immune response: CTLA-4

regulates the proliferation of T cells in the early stages, primarily

in the lymph nodes, whereas PD-1 plays an important role in the
Frontiers in Oncology 03
regulation of previously activated T cells, predominantly in

peripheral tissues (9, 16).
Clinical application of immune
checkpoint inhibitors

Monoclonal antibodies to PD-1, PD-L1 or CTLA-4 are

emerging agents in cancer therapy due to their potential to

block the excessive IC activity and restore the antitumor

immune response. To date, several preparations of monoclonal

antibodies affecting various ICs have been developed and

approved for a wide range of cancer treatments (Table 1) and

multiple IC inhibitors (ICI) are currently at the stage of

preclinical or clinical trials (30).

The first ICI ipilimumab, which is an antibody to CTLA-4,

was approved by FDA for treatment of metastatic inoperable

melanoma in 2011 (31). The results demonstrated an improved

long-term survival over 5 years (more than 18% of patients

receiving the treatment), which led to a broad clinical and

scientific resonance and stimulated studies of other ICIs.

Nivolumab and pembrolizumab were further medications

approved by FDA for treatment of metastatic inoperable

melanoma in 2014 and small cell lung carcinoma in 2015.

Atezolizumab (PD-L1-specific monoclonal antibody) was

approved for the therapy of the urothelial carcinoma in 2016.

Further PD-L1-specific antibodies, avelumab and durvalumab,

received the FDA support for the treatment of urothelial

carcinoma in 2017. In addition, a PD-1-specific monoclonal

antibody, cemiplimab, has been approved by FDA for the

therapy of squamous cell skin cancer in 2018 (31). Preliminary

and early results of these studies indicate that ICIs may bear a

broad therapeutic potential for tumors of various histological

composition including treatment of advanced metastatic or non-

metastatic cancer stages.
Overcoming resistance to immune
checkpoint inhibitors

Although, the ICIs have demonstrated clinical efficacy in

patients with various types of cancer (see Table 1), the

inconsistency of patients’ responses and a relatively high

percentage of non-responsive patients remain a major

limitation for this therapy. According to various sources, up to

80% of patients with previously treated and advanced non-

small-cell lung cancer (NSCLC), recurrent squamous-cell

carcinoma of the head and neck, melanoma, as well as

relapsed or refractory Hodgkin’s lymphoma showed no

adequate response to ICI treatment (32–41).

The response to ICIs has been shown to depend on various

factors including the presence of certain T cell and APC
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subpopulations, immunosuppressive cytokine responses, levels

of antigenic molecule inhibition in malignant cells, recruitment

of immunoregulatory cells of the myeloid and lymphoid series to

the neoplasm area, and dysfunction of DCs (10).

Multiple mechanisms of the tumor resistance to the ICI have

been identified. These mechanisms can be classified into the

primary mechanisms due to insufficient tumor recognition by

the immune system, the adaptive mechanisms related to the

immune response downregulation, and the acquired

mechanisms driven by the immunoediting of the tumor (42).

Managing the resistance to immune therapy depends on the

kind of therapeutic intervention and should be, as much as possible,

personalized in each patient. The resistance to ICI can be

determined by the absence of tumor antigenic proteins (primary

resistance) or development of mechanisms decreasing antigen

presentation and enabling immune evasion (secondary

resistance). Multiple primary and adaptive tumor-intrinsic
Frontiers in Oncology 04
mechanisms include signaling through the MAPK pathway and/

or loss of PTEN expression, which enhances the PI3K andWNT/b-
catenin signaling pathways partially via suppression of the IFNg
(42). In addition, tumors of patients non-responding to the anti-

PD-1 therapy showed signs of epithelial-mesenchymal

transformation, which may further promote the tumor survival

(43). The composition of molecular and cellular tumor

microenvironment seems to be critical to the anti-tumor

immune response.

The strategies to overcome resistance to the immunotherapies

are aimed at selection of patient populations which are likely to

respond to the treatment or using combination strategies to target

diverse immunosuppressive pathways.

Assessment of PD-L1 and PD-1 as biomarkers of primary

and metastatic tumors is often required for making clinical

decisions on use of treatment strategies targeting ICs (44).

Clinical studies of PD-1/PD-L1 blocking antibodies with
TABLE 1 Approved ICIs according to FDA labels.

Drug name, company Approval year Target Indications

IPILIMUMAB
(YERVOY)
BRISTOL MYERS SQUIBB

2011 CTLA-4 Melanoma
Renal cell carcinoma
Colorectal cancer
Hepatocellular carcinoma
Non-small cell lung cancer

PEMBROLIZUMAB
(KEYTRUDA)
MERCK SHARP DOHME

2014 PD-1 Melanoma
Non-small cell lung cancer
Small cell lung cancer
Head and neck squamous cell cancer
Classical Hodgkin Lymphoma
Urothelial carcinoma
Microsatellite Instability-High or Mismatch Repair Deficient Cancer
Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer
Gastric Cancer
Esophageal Cancer
Cervical Cancer
Hepatocellular Carcinoma
Merkel Cell Carcinoma
Renal Cell Carcinoma
Endometrial Carcinoma
Tumor Mutational Burden-High Cancer
Cutaneous Squamous Cell Carcinoma

NIVOLUMAB
(OPDIVO)
BRISTOL MYERS SQUIBB

2015 PD-1 Melanoma
Non-small cell lung cancer

ATEZOLIZUMAB
(TECENTRIQ)
GENENTECH INC

2016 PD-L1 Urothelial Carcinoma
Non-Small Cell Lung Cancer
Triple-Negative Breast Cancer
Small Cell Lung Cancer
Hepatocellular Carcinoma

AVELUMAB
(BAVENCIO)
EMD SERONO INC

2017 PD-L1 Merkel Cell Carcinoma
Urothelial Carcinoma
Renal Cell Carcinoma

DURVALUMAB
(IMFINZI)
ASTRAZENECA UK LTD

2017 PD-L1 Urothelial carcinoma
Non-small cell lung cancer
Extensive-stage small cell lung cancer

CEMIPLIMAB-RWLC
(LIBTAYO)
REGENERON PHARMACEUTICALS

2018 PD-1 Сutaneous squamous cell carcinoma
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patient stratification according to the PD-L1 expression at the

tumor site showed a higher overall and relapse free survival, as

well as a greater number of responses to therapy in patient

groups with a higher biomarker level (45). At the same time, the

use of one factor in stratification of patients for the treatment

order may not be sufficient considering the complex TME

structure. Therefore, various combined biomarker strategies,

including tumor genome profiling, assessment of the T-cell

repertoire, and studies of TME are currently being tested to

develop multivariate predictive models for assessing the

likelihood of successful treatment outcomes (46–49).

Combination strategies to combat resistance include

coadministration of several immunotherapeutic agents with

various mechanisms of action, as well as combinations with

chemo-, radio- or targeted therapies (50). Combined

administration of CTLA-4 and PD-1/PD-L1 blocking

antibodies has been extensively investigated as an option to

improve their therapeutic efficacy. To date, the only approved

treatment combination consists of ipilimumab and nivolumab.

This combination was approbated in 2015 for metastatic

melanoma treatment and a 60% response was demonstrated

(31, 51, 52). At a minimum follow-up of 60 months, the median

overall survival was more than 60.0 months in the nivolumab-

plus-ipilimumab group and 36.9 months in the nivolumab

group, as compared with 19.9 months in the ipilimumab

group (53). Combined nivolumab and ipilimumab therapy has

been approved for various indications (54) and demonstrated

sustained overall survival benefit in renal cell carcinoma (RCC)

(54, 55) and in NSCLC (56). In 2020, the combination of

ipilimumab and nivolumab received a further FDA

approvement for the treatment of adults with malignant

pleural mesothelioma (MPM) that cannot be removed by

surgery (57). Other immunotherapy combinations are

currently being investigated in clinical settings including

coadministration of the registered ICIs with vaccines, other

ICIs, adoptive cell transfer or agents, targeting various

immunosuppressive TME components (58, 59). Generally, the

choice of drug combinations for an optimal treatment is a

complex task requiring careful consideration of their

individual and synergistic therapeutic vs. side effects. It should

be also noted that optimization of combined treatments is

challenging and includes not only rationale selection of

therapeutic modalities, but also the optimization of dosing

regimens for each of them as well as their sequence.

One of the potential effective approaches to treat patients

with cancer is a combination of CT and ICI. Some cytotoxic

chemotherapeutic drugs such as anthracycline and oxaliplatin

could induce ICD and stimulate antitumor immune response

(60). Nowadays, CT combined with a-PD-1/PD-L1 has become

a standard option for some cancer patient categories. The

efficacy and safety of such combinations has been confirmed

by a large number of clinical trials. Patients with NSCLC

receiving pembrolizumab combined with standard CT
Frontiers in Oncology 05
(carboplatin and pemetrexed) had a higher response rate and

longer progression-free survival, as well as overall survival than

patients receiving standard CT only. As a consequence,

pembrolizumab plus CT has been approved by the FDA as the

first-line treatment for advanced non-squamous NSCLC,

regardless of the PD-L1 level. Subsequently, the indication of

pembrolizumab plus CT was expanded to the advanced triple-

negative breast cancer (TNBC), esophageal cancer, and

gastroesophageal junction cancer (GEJC). Apart from a-PD-1
the a-PD-L1-based chemoimmunotherapy attracts an intensive

attention too, especially the drug atezolizumab. Based on the

results of IMpower150, which is a pioneer clinical trial assessing

the efficacy of atezolizumab plus angiogenesis inhibitor and CT

in patients with advanced non-squamous NSCLC, the FDA

approved atezolizumab plus bevacizumab, paclitaxel, and

carboplatin as the first-line treatment for advanced non

squamous NSCLC. Later, the FDA approved atezolizumab

plus CT for TNBC and SCLC (60).

Moreover Deng et al. (2021) shows that ICIs plus platinum-free,

single-agent CT can provide promising progression-free survival

and overall response rate benefit, along with a low rate of severe

adverse events in patients with epidermal growth factor receptor-

tyrosine kinase (EGFR-TKI)-resistant advanced NSCLC (61). The

result of another research shows that triple combination therapy

with CT or agents eliciting oncolytic virus-like responses may

overcome multiple resistance mechanisms (62).
Immunologic aspects of
radiation therapy

RT has been widely used in oncology practice as a

monotherapy or in combinations with other therapeutic

strategies depending on the disease and patient characteristics

(63). The first experimental observation pointing to the role of

the immune system in antitumor activity of RT was obtained in

1979: the radiation dose required to control the tumor in 50% of

mice was twice as large in the group of immunodeficient animals

compared to the control group (64). Immune-mediated indirect

suppression of tumor metastases by RT was first reported by R.

Mole et al. in 1953 and called «abscopal effect» (65). Many years

later, in 2004 S. Demaria et al. demonstrated importance of the

immune system in abscopal effect of RT implying distant control

of unirradiated tumor lesions in mouse (66). In summary,

mechanism of RT action is complex and includes both direct

cytotoxic effect of RT on cancer cells and an immune-related

component (67).

Recent studies showed that the therapeutic effect of RT is

mediated by formation of reactive oxygen species (ROS)

affecting DNA structure and leading to ICD. This process is

accompanied by multiple changes in molecular signaling

pathways and intercellular interactions such as release of
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tumor antigens and damage-associated molecular patterns

(DAMPs) into extracellular space followed by activation of

signaling pathways involved in the immune response

(Figure 2) (23, 68–70).

The RT-induced immune response is facilitated by release of

adenosine triphosphate (ATP), uric acid and other intracellular

components serving as chemo-attractants for APC (69). ATP,

released in millimolar concentrations, promotes phenotypic

maturation of the DCs by binding to their purinergic P2X and

P2Y receptors (71–73). Interestingly, upon activation of the

P2X7 receptor DCs can synthesize the precursor IL-1b, which
is an essential component of the antitumor immune response

(74, 75).

Secretion of pro-interleukin is carried out by a cascade

activation mechanism including the nod-like receptor family

pyrin domain containing 3 (NLRP3) and inflammasome-

mediated secretion with following caspase-1-mediated

processing (76, 77). It is important to note that the secretion

of IL-1b requires concomitant signaling from the P2X7 receptors

and toll-like receptors (TLRs), which can be suppressed by heat

shock proteins (HSPs) and calreticulin (78, 79). Uric acid can

additionally promote the immunological component by

stimulating nucleotide-binding oligomerization domain-like

receptor NALP3 via urate ion interactions with TLR4 (80, 81).

Alternatively, to the mentioned above ATP-dependent

mechanisms of immune response, Y. He et al. (2013)
Frontiers in Oncology 06
demonstrated stimulation of cytokine secretion without high

interstitial concentrations of ATP in a mouse model, suggesting

a role of autocrine DCs activation (82).

As a protective reaction to irradiation tumor cells increase

surface expression of various plasma membrane proteins,

including HSPs and high-mobility group box 1 (HMGB1)

(83). HSPs play a critical role in enhancing immunogenicity

by signaling to APC and stimulating phagocytosis and cross-

presentation of antigens mediated by NK cells. Specifically, HSPs

70 and 90 can bind to CD40 and CD91 receptors of DCs (84).

Moreover, HSP70 has been shown to activate the cytotoxic effect

of CD8 T cells after interacting with the co-activating molecule

CD40 (85), and the interaction of HSP90 with CD91 potentiates

the killing of tumor cells via cross-presentation of tumor

antigens by DCs (86).

In this context, irradiation causes formation of necrotic

tumor areas, characterized by calreticulin overexpression at the

cell surface (87), which stimulates phagocytosis of tumor cells

and further antigen release promoting the immune response (88,

89). Numerous studies show that it is calreticulin that plays the

vital role in potentiating the immune system activity, since the

level of its expression on the plasma membrane surface is

directly proportional to the degree of immunocompetent cells

attraction to the inflammation focus and antigen-specific T cell

response (89). In addition, various studies have demonstrated a

correlation between calreticulin expression and overall patient
FIGURE 2

Immunologic aspects of radiation therapy (RT). RT effect is mediated via formation of reactive oxygen species (ROS) affecting the DNA structure
and leading to immunogenic cell death (ICD). This process is accompanied by release of tumor antigens (AG) and damage-associated molecular
patterns (DAMPs) into extracellular space and activation of signaling pathways involved into the immune response. After RT the interaction
between immune cells is increased, ICI can further enhance it, thus increasing the overall therapeutic efficacy. AG, tumor-associated antigens;
DAMPs, damage associated molecular patterns; ICD, immunogenic cell death; ROS, reactive oxygen species; HMGB1, high-mobility group
protein B1; HSP70, heat shock protein 70; HSP90, heat shock protein 90; TLR, toll-like receptors; MHC I, major histocompatibility complex
class I.
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survival, which clearly distinguishes calreticulin from other

DAMPs suggesting potential use of calreticulin as a prognostic

marker for success of the RT in various types of cancer (89–92).

Additional evidence for stimulation of the antitumor

immune response caused by radiation comes from the

expression of HMGB1 (a nuclear DNA-binding protein

synthesized during cell death) on the surface of tumor cells,

which promotes its processing by DCs via TLR-mediated

pathways and the receptor of advanced glycation end-products

(RAGE)-mediated signaling (93, 94).

Moreover, irradiation increases MHC class I expression on

the surface of cancer cells, which allows cancer-specific T cells to

recognize and destroy the tumor cells. Increased expression of

MHC class I is one of the best-characterized major mechanisms

for enhancing immune responses to radiation. The activation of

mammalian target of rapamycin (mTOR), enhanced translation

and antigen presentation are crucial for this process. Enhanced

surface expression of Fas induced by radiation promotes the

apoptotic tumor cells death and represents another important

mechanism mediating effects of RT on the host immune

system (95).

The T cell immune response has been shown to be

proportionally stimulated by the released of tumor antigen

according to the radiation dose (96, 97). The RT destroys the

tumor cells leading to the local activation of immune system

with later generalization of the anti-tumor immune response.

DAMPs may induce migration of neutrophils in the tumor site

and enhance antitumor immune response as well (98). Attracted

by sterile inflammation to the area of irradiation, neutrophils

destroy tumor cells with free oxygen radicals and ensuing

phagocytosis (98).

Thus, irradiation contributes to tumor necrosis, inflammation

in the tumor site and multiple responses of the immune system to

the tumor (99). Among various forms of cell death caused by

ionizing radiation, ICD is caused by direct stimulation of tumor-

specific immune response. Apart from activating anti-tumor

immunity, RT may cause immunosuppressive effects as well. In

this context, increased expression of PD-1 and its ligand PD-L1 in

tumor in tumor microenvironment may serve as an important

predictor for ICI administration (100, 101). Combining RTwith ICI

may also help to overcome local immunosuppressive effects

originating from tumor cells.

The current state of knowledge strongly suggests that RT

acts not only on the irradiated tumor site but also elicits a

specific immunologic response, which puts forward the

combination of radio- and immunotherapy as a promising

strategy for improved management of metastatic tumor

conditions. The systemic effect of RT on the immune system is

further manifested by enhancing the homing effect of NK cells,

that is an essential factor of innate antitumor immunity (102). In

addition, RT can decrease the suppressive effect of Treg cells

which usually down modulate immune responses against

cancers (103). At the same time, irradiation has been
Frontiers in Oncology 07
associated with immunosuppressive mechanisms such as PD-

L1 expression (21, 104). Therefore, therapeutic blockade of the

PD-1/PD-L1 axis may be considered as a strategy to enhance the

antitumor effect of RT (Figure 3). However, these results were

obtained in animal models and need further verification.

The RT exerts not only a direct effect in the area of

irradiation but also indirectly stimulates the immune response

due to low doses of irradiation beyond the target zone. These low

irradiation doses may stimulate an immune response to the

general stress, caused by radiation, including the adaptive

response and immune system repair (103). The reduction of

immune tolerance to tumors caused by RT may amplify the

general anti-tumor immune response and mediate the abscopal

effect, although mechanisms underlying the abscopal effect

require further characterization.
Preclinical efficacy of radio- and
immunotherapies

Summarizing the available data, it can be stated that a

combination of RT and immunotherapies may represent a

biologically rationale approach to improve cancer treatment

outcomes (19). Synergy of these treatment modalities has been

extensively investigated in several mouse models of cancer (105).

As was mentioned earlier, rational selection of the radiation

dose, fractional content and the sequence of prescribing the

therapy components are required to achieve the most

pronounced treatment benefits. Fractionation (separation of

the total dose of radiation into several fraction) allows

maximum destruction of malignant cells with minimal damage

to healthy tissues.

Currently, there are three optimal modes of dose

fractionation used in RT:
• Hypofractionation (3-20 Gy/fraction, one fraction/day,

2-5 fractions/week);

• Conventional fractionation schemes (1.8-2.2 Gy/

fraction, one fraction/day, 5 days/week for 3-7 weeks);

• Hyperfractionation (0.5-2.2 Gy/fraction, two fractions/

day, 2-5 fractions/week for 2-4 weeks) (106).
Immunological effects of different regimens and the

molecular mechanisms underlying the immune response to

radiation remain unclear. It’s established that single high-dose

(12 Gy) RT did not deplete CD8 T cells but kills tumor cells

more effectively when combined with immunotherapy (107).

In experimental mouse models after exposure to

hypofractionated RT a strong upregulation of PD-L1 was

observed (radiation and anti-PD-L1 treatment synergistically

promote antitumor immunity in mice), so we can suppose that

the combination of the PD-1/PD-L1 blockade and RT may
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overcome tumor immunosuppression and improve the systemic

effect of RT.

In contrast to the conventional and hypofractionated

regimen, the single, high-dose irradiation did not increase the

surface expression of PD-L1 on B16-F10 melanoma and GL261

glioblastoma cells in vitro (22). The positive effect of a single

exposure has been also established in other studies. It was

demonstrated that a single high dose of radiation (12 Gy) does

not cause the death of immunocompetent cells suggesting that

combination of this regimen with ICI may be successful (107).

Therapeutic potential of combining PD-1 blockade with a single

exposure of 10 Gy has been further demonstrated in a mouse

model of glioma (108).

Other studies demonstrated the superiority of fractionated

RT over single-session RT. Fractionated RT appears to be more

synergistic with ICI therapy, inducing tumor regression and

increasing long-term survival rate in various extracranial cancer

models (109). It was suggested that the single dose RT has a

positive effect on the micrometastases regression but is not active

enough against the mature ones. Comparison of two dose

regimen of fractionated therapy (3*8 Gy and 5*6 Gy) in

combination with CTLA-4 blockade showed that the dose of

3*8 Gy was more efficient (109).

There is evidence for the role of the size of the ablative

radiation fraction (minimum 6 Gy), as well as the linear energy
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transfer level affect the release of immunogenic antigens. A.

Lugade et al. (2005) compared 15 Gy in one fraction versus 15

Gy in 5 fractions of 3 Gy in a murine melanoma model. They

found that fractions equally lead to tumor infiltration by

lymphocytes, but larger fraction sizes produce a better

effect (110).

The DNA exonuclease three prime repair exonuclease 1

(TREX 1) may serve as a marker for the optimal dose

determination, since its expression proportionally correlates

with the radiation dose and reflects the severity of the

radiation-induced DNA-damage (111). Cells treated with a

single dose of 20 and 30 Gy showed a larger increase in TREX1

exonuclease expression than cells treated with 3*8 Gy. High

dose radiation (above 12-18 Gy) in a single fraction promotes

the TREX 1-induced DNA degradation and cytosolic

accumulation of damaged DNA in irradiated cancer cells,

which inhibits the type-I interferon (IFN-I) pathway and

decreases the immunogenicity of cancer cells. In contrast, the

radiation dose of 3*8 Gy given in a repeated fashion is below

the threshold dose for TREX 1 induction. This dose regimen is

also optimal in terms of the IFNb stimulation required for

recruitment of Batf3-dependent DCs and CD8 T-cells to the

tumor site. Use of ICI, in this context, may promote a sustained

regression of the irradiated and non-irradiated tumors via

direct and abscopal effects.
FIGURE 3

Effects of radiation therapy (RT) and immune checkpoint inhibitors (ICIs) combination. RT induces PD-L1 upregulation on tumor cells. Blockade of PD-
L1/PD-1 signaling via antibody therapy repairs the function of CD8 T cells after RT stimulation. These functionally active CD8 T cells are able to
effectively attack and kill cancer cells, which leads to tumor cell necrosis and inflammation increase. AG, tumor-associated antigens; CTLA-4, cytotoxic
T-lymphocyte-associated protein 4; DAMPs, damage-associated molecular patterns; DC, dendritic cells; ICI, immune checkpoint inhibitors; MHC, major
histocompatibility complex; PD-1, programmed cell death protein 1; RT, radiotherapy; TCR, T-cell receptor; FasR, Fas receptor.
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Notably, the success of combination therapy is influenced

not only by the fractionation scheme but also depends on the

type of immunotherapeutic intervention, as well as sequence of

the immunotherapeutic and RT modalities. Concurrent PD-1/

PD-L1 blockade and RT was shown to be more effective

compared to sequential administration of RT followed by ICI

(21), whereas anti-CTLA-4 therapy was shown to be the most

effective when given before RT in a colorectal cancer model

(112). Therefore, disease-specific approaches and personalized

medic ine should be appl ied for dec is ions on the

concrete strategy.

Thus, optimal modes of radiation and immunotherapy in

pre-clinical studies are various and are determined primarily by

the mechanics of action of a specific immunotherapy agent. This

should be taken into account when designing clinical trials.
Clinical usage of radio- and
immunotherapies

It should be stated that the first clinical trials of combined

radio- and immunotherapy were conducted in 80th and

included administration of cancer vaccines and RT for
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treatment of melanoma, breast, colorectal or lung cancer but

failed to demonstrate the efficacy of combined therapy (113).

Following decades of oblivion, the interest to the radio- and

immunotherapies was renewed after ICI discovery.

Clinical benefit of combining ICI and RT was initially

described by multiple retrospective analyses comparing efficacy

of RT alone or RT in combination with ICI in patients with

highly immunogenic cancer forms such as metastatic melanoma,

NSCLC and RCC (114). The following prospective clinical trials

have corroborated the therapeutic potential of the combined ICI

and RT approach (Table 2) (119, 120). Identification of the

optimal sequencing strategy has been performed retrospectively

and comprehensive meta-analysis of the accumulated clinical

evidence suggested superiority of concurrent over sequential ICI

and RT treatment (121). In contrast to the retrospective

observations, the prospective single institution ELEKTRA trial

demonstrated superiority of RT given prior to ICI treatment,

which was reflected by more pronounced increases in circulating

CD4 and CD8 cell populations (122). These discrepancies may

be related with confounding factors, affecting conclusions of the

retrospective trials (122).

Efficacy of the ICI and RT combination has been also

investigated in other tumor types. A retrospective analysis of
TABLE 2 Examples of clinical trials evaluating efficacy of RT+ICI combinations.

Indication Phase Clinical outcomes Reference

Melanoma brain metastases II SRS and Ipilimumab
(n = 45)

6-month intracranial PFS 48%
12-month intracranial PFS 17%
12-month extracranial PFS 17%
OS 68%

(4)

SRS and Nivolumab
(n = 35)

6-month intracranial PFS 69%
12-month intracranial PFS 42%
12-month extracranial PFS 37%
OS 78%

Diffuse intrinsic pontine glioma R reRT and Nivolumab
(n=8)

OS 22.9 months
(p<0.0001)

(115)

reRT alone (n=4) OS 20.4 months
(p<0.0001)

No reRT or ICI (n=19) OS 8.3 months
(p<0.0001)

Advanced solid tumors I SBRT and Pembrolizumab (n=79) OR 13.2%
OS 9.6 months
PFS 3.1 months

(116)

Metastatic non-small cell lung cancer III (117)

CT and RT and Durvalumab
(n = 473)

PFS 16.8 months

Advanced melanoma III Ipilimumab and RT
(n=70)

OS 19 months (p=0.01)
PFS 5 months (p=0.20)
CR 25.7% (p=0.04)
OR 37.1% (p=0.11)

(118)

Ipilimumab alone
(n=31)

OS 10 months (p=0.01)
PFS 3 months (p=0.20)
CR 6.5% (p=0.04)
OR 19.4% (p=0.11)
fro
SRS, stereotactic radiosurgery; SBRT, stereotactic body RT; OS, overall survival; PFS, progression free survival; CR, complete response; OR, overall response; R, retrospective trial.
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diffuse intrinsic pontine glioma patients treated with RT alone or

RT in combination with PD-1 specific antibodies demonstrated

no additional benefit of ICI inclusion into the therapy. Two

prospective trials Checkmate-498 and Checkmate-548,

evaluating efficacy of the triple combination of nivolumab

with RT and temozolomide in patients with primary

glioblastoma have failed to meet primary endpoints. The lack

of the combination efficacy may be related to low activity of

immunotherapies by this indication due to low tumor

immunogenicity as well as activation of alternative

immunosuppressive pathways (115, 123). In contrast, another

prospective study Checkmate-577 demonstrated improvement

of the esophageal or gastroesophageal Junction cancer treatment

outcomes following the addition of nivolumab to neoadjuvant

chemoradiotherapy (124). Efficacy of ICI and RT combination

has been also tested in other indications such as metastatic breast

(NCT03483012, NCT03807765), pancreatic (NCT0436116),

ovarian cancers (NCT03283943), hematological malignancies

(NCT03610061) and hepatocellular carcinoma (NCT04913480).

Therefore, the effectiveness of combined radioimmunotherapy

depends on the choice of the optimal radiotherapy mode, including

both the total dose and the fractionation mode.

The different contribution of TME components of a

particular patient to the regulation of the immune system,

depending on the stage of immune response development,

determines the significance of the RT sequence and the taking

of immune drugs.

Prospective predicting of clinical responses to combined

radioimmunotherapy is possible by identifying predictive

biomarkers. Currently two biomarkers (PD-L1 and MMR/

MSI status) have already been implemented in the clinic.

Soluble NKG2D ligands and antibodies that neutralize their

activity are considered to be easily accessible predictive

biomarkers for patients receiving combination of RT and

ICIs (125, 126). RT promotes the exposure of NKG2D

ligands on the surface of tumor cells, hence rendering them

potentially susceptible to NK cell-dependent lysis or improved

recognition by CTLs (125). Cancer cells can shed ligands from

their surface, resulting in high circulating levels and can have a

negative predictive value in melanoma patients treated with

various ICIs including nivolumab, pembrolizumab and

ipilimumab (127–131).

Markers of cGAS-STING DNA-sensing pathway which is

essential for activation of IFN-dependent antitumor immunity

are also promising for the identification of patients with positive

response to combinatorial regimens involving RT and

ICIs (132).
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Conclusion

Therapeutic benefits of combined ICI and RT approach has

been suggested by numerous studies enrolling patients with

melanoma, NSCLC and RCC and is currently being

investigated in other indications. The optimal therapeutic

regimen in terms of the doses, RT fractionation and sequence

of RT and ICI administration has been addressed in preclinical

setting but needs a further corroboration in clinical trials. The

available studies categorize the combination of ICI and RT as a

promising approach for improved treatment of immunogenic

cancer forms.
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