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Automation and artificial intelligence in radiation oncology
The ongoing advancement of radiation oncology has always been significantly

influenced by technology. A number of therapeutic advancements have been made

recently as a result of technology-driven advancements in radiotherapy planning and

delivery. In particular Particularly in the field of radiation oncology, artificial intelligence

approaches are spreading more widely and moving from the realm of specialized research

to that of accepted clinical practice. Automation and big data analysis have drawn a new

era of treating cancer patients with precision and outcome prediction. The continues

increase of computing power together with the improvement of treatment accuracy in

fighting cancers could lead to huge progress in increasing patient’s outcomes and survival

rate. The integration of artificial intelligence with modern radiation therapy technologies

has the potential to herald an unprecedented change for the field of radiation oncology.

The aim of this Topic was to collate original researches focusing on new

developments in the application of machine learning and deep learning processes,

patient outcome prediction, treatment technique improvements with automation and

applications of radiomics, an emerging and promising research field based on

quantitative imaging technology in the radiation oncology field. All these aspects have

been well-captured in the present Research Topic which has been successfully launched

in Frontiers in Oncology. We were thrilled to get a large number of contributions from

authors of their most recent research findings on automation and artificial intelligence

techniques for radiation oncology purposes. Twenty-one papers were finally accepted

after rigorous reviews for a total of 177 authors. Contributions came from various nations

and regions, including China, Italy, South Korea, Thailand, the United States

and Indonesia.

Several researchers investigated the possibility for automated treatment planning

solutions generated by AI algorithms to improve quality, decrease variability, and shorten

planning times. One of the most time-consuming step of radiation therapy is the manual

segmentation of target and normal structures, which is subject to high intra- and inter-
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observer variability. Recently, numerous research groups have

been focusing on the use of AI to increase the speed and accuracy

in the definition of clinical target volumes for treatment.

Convolutional neural network-based deep learning models

have made significant advancements and demonstrated major

promise as tools for automated segmentation of target volumes

and organs-at-risk (OARs). For CTV delineation in cervical

cancer, Liu et al. suggested a novel adversarial deep-learning-

based auto-segmentation algorithm. To directly test the model

and reduce inter- and intra-observer variability, a three-stage

multicenter randomized controlled evaluation procedure was

created. The evaluated AI model was shown to be precise and on

par with the manual CTV segmentation in patients with cervical

cancer. By integrating the fully convolutional network (FCN)

and atrous convolution deep learning techniques, Xie et al.

sought to fully automate the organs segmentation. According

to the authors, this network model may efficiently increase the

precision of automated segmentation of chest computed

tomography images in thoracic radiotherapy. To successfully

avoid radiation side effects, precise target volume and OAR

delineation is essential in head-neck malignancies. In order to

segment the thyroid gland on localized CT scans and to identify

the gland as an OAR in radiotherapy, Wen et al. devised a model

that incorporated a Spatial Squeeze and Channel Excitation

Block (cSE) attention mechanism with HRNet. Due to the low

contrast at the tumor’s border and the wide range of tumor sizes

and morphologies between different stages, the delineation of

target volumes in nasopharyngeal cancer is a particularly

difficult process. To solve the aforementioned issues, Yang

et al. proposed a new three-dimensional (3D) automatic

segmentation system that uses cascaded multiscale local

augmentation of convolutional neural networks. The suggested

approach may enhance and facilitate clinical applications by

precisely segmenting NPC in CT scans from multi-institutional

datasets. The possibility of using deep learning to automatically

delineate multiple contours for breast cancer radiation therapy

was examined by Dai et al. Their study showed that the devolped

deep learning techniques can reliably produce target and OAR

contours on planning CT and daily synthetic CT images from

CBCT images, which may significantly speed up the re-planning

process and satisfy the needs of online plan adaptation.

The goal of radiotherapy plan optimization is to find the

optimal balance between two competing goals: delivering the

highest radiation dose to the target while delivering the lowest

radiation dose to nearby OARs. These OARs are typically given a

numerical weight to reflect their relative importance in the

optimization calculus. In order to produce a plan that fulfills

the minimal acceptable threshold for each aim, physicists must

repeatedly adjust the parameters that control radiation dose

deposition. This fine-tuning typically goes on until time

resources run out, at which point the planner is compelled to

decide on the best plan he can achieve. Therefore, plan quality

may strongly vary between planners and between clinical
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institutions. Additionally, the time and labor requirements of

the existing planning paradigm can put patients at risk for delays

and potentially suboptimal care while also appearing to be

insurmountable barriers to adaptive radiotherapy. In this

perspective, the introduction of automated systems may

translate in important benefits as time saving, high quality

planning, and protocol standardization, as reported by Cagni

et al. Together with template-based iterative planning (1), the

use of knowledge-based automated planning (KBP) techniques

has recently received a special attention. Using machine learning

techniques that learn from databases of previous clinically

acceptable plans, KBP may assist physicists and radiation

oncologists to find the best solutions for planning

optimization. Castriconi et al. implemented a KBP solution for

right and left-sided whole breast treatment through a new

volumetric technique mimicking conventional tangential fields

irradiation that can efficiently replace manually optimized plans.

Xu et al. evaluated the effectiveness of a proton-specific KBP

model in the development of robustly optimized intensity-

modulated proton therapy plans for the treatment of advanced

head and neck cancer patients, reporting that the quality of KBP

plans is comparable to, and occasionally even exceeds, that of the

expert plans. In this clinical setting, radiation therapy is the

primary therapeutic option for early and locally progressed

nasopharyngeal cancer. When compared to computed

tomography, magnetic resonance imaging (MRI) has the

advantage of high soft-tissue resolution, but it does not

provide information on electron density (ED) for planning

radiotherapy. To provide the necessary ED data for MRI-only

planning, Ma et al. created a pseudo-CT generating approach.

The suggested deep learning model can precisely predict CT

from MRI, and the resulting pCT can be used in accurate

dose estimations.

Proton therapy may also greatly benefit of using AI strategies

and techniques. For example, a great interest in beam angle

optimization research has been on the rise recently for proton

therapy, in order to generate optimal proton plan. Cheon et al.

suggested a method for beam angle optimization based on a

convolutional neural network to automatically find the optimal

beam angles for proton treatments set with the double-scattering

delivery approach (BAODS-Net). This approach dramatically

reduced the planning time increasing the potential for a real-

time adaptive proton radiotherapy. Furthermore, it is well

known that a double scattering proton system’s beam output

fluctuates depending on the beam option, range, and

modulation, translating in inaccurate modeling by the

treatment planning system. Because of this, the majority of

proton centers with a double scattering beam system must

measure the output of patient-specific proton beams in a water

phantom in order to determine the necessary machine output.

Three machine learning algorithms were developed by Zhu et al.

to efficiently estimate the output of a proton beam using a

Gaussian process regression model with various kernels. One of
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these models showed accurate estimation, meeting the ±3%

clinical requirement.

A second fundamental point is the growing application of

artificial intelligence techniques for prediction purposes.

First, methods for machine learning have been investigated,

with an emphasis on applications for machine and patient-

specific quality assurance (QA) (2). The performance of various

delivery system components, such as the multileaf collimator

(MLC), imaging system, mechanical parameters, and dosimetric

parameters, can be examined using machine learning. As a

result, a “virtual” QA may forecast passing rates using different

measurement techniques, different treatment planning systems,

and different treatment delivery machines across multiple

institutions. In this topic, Huang et al. introduced a new

QA prediction model based on UNet++ using the dose

distribution as input. This model was able to predict the

gamma-pass rates for various gamma criteria as well as

provide classification results.

Secondly, AI models have recently demonstrated the

potential for effective toxicity prediction aiming to limit

radiotherapy-related side effects (3). The proactive, rather than

reactive, management of acute and late toxicities in patients is

exacerbated by the mostly unpredictable occurrence and/or

intensity of such side effects. Nevertheless, it is possible to

create predictive models of radiation toxicities based on

imaging data and risk variables, such as specific clinical traits,

germline genetic alterations, and the radiation dose

distributions, and these models can be used to guide treatment

planning. Additionally, multi-omic data may capture complex

tumor features, contributing to a comprehensive patient risk

assessment. In particular, two complementary strategies have

emerged in recent years: the integration of patient-specific

biological risk factors into dose–volume-based outcome

models (called radiogenomics), and the integration of imaging

together with treatment-related and biological data for outcomes

prediction (called radiomics). Both these approaches have the

potential to develop personalized and tailored treatment plans.

The current advances and challenges in radiomics of brain

tumors have been highlighted by Yi et al. The authors

demonstrate how radiomics, in contrast to conventional brain

imaging, offers quantitative data related to important biologic

characteristics and application of deep learning which sheds

light on the complete automation of imaging diagnosis.

In patients with ovarian cancer, Yu et al. assessed the

accuracy of radiomics characteristics based on multiparameter

magnetic resonance imaging for peritoneal carcinomatosis. A

multi-factor logistic regression method was utilized to create a

radiomics nomogram in combination with radiomics features

and clinicopathological risk factors, reporting a better diagnostic

effect than the clinical model, able to identify peritoneal

carcinomatosis in ovarian cancer patients before surgery.

Gastric cancer is a typical heterogeneous malignant tumor.

Chemotherapy is ineffective against this tumor and this is a
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common cause of tumor recurrence and metastasis.

Conventional pathological TNM prediction focuses on cancer

cells to predict prognosis, but they do not provide adequate

prediction. Jin et al. devoloped a radiomics signature in order to

predict patients’ overall survival and disease-free survival after

undergoing surgery for gastric cancer. The radiomics trait-

associated genes identified clinically significant biological

pathways and possible drug metabolic mechanisms for

chemotherapy agents.

With respect to rectal cancer, although several prognosis

nomograms have been established, statistical tools for

predicting long-term survival in rectal cancer are lacking.

Additionally, neither qualitative nor quantitative imaging

findings were included in modern prognostic analyses. Nie

et al. used a radiomics signatures and multiparametric MRI

data to build a predictive model able to predict 5-year overall

survival for patients with advanced rectal cancer. An

interesting aspect of the detected radiomics signature was

that it contained three from dynamic contrast-enhanced

(DCE)-MRI, four from anatomical MRI, and one from

functional diffusion-weighted imaging (DWI). This brought

attention to how crucial multiparametric MRI is in

addressing the problem of estimating long-term survival in

rectal cancer.

The 5-year survival rate of lung cancer is significantly

increased by early detection and treatment. Immunotherapy

has recently grown quickly, caught the attention of more and

more oncologists, and established itself as a significant area of

study in the field of tumor therapy. The immunotherapy against

programmed cell death protein 1 (programmed death-1, PD-1)

and its ligand 1 (programmed death ligand-1, PD-L1) has been

used in non-small cell lung cancer (NSCLC), and good results

have been achieved in patients, especially in individuals with

high expression of PD-L1 (4). Finding a fresh method to gauge

PD-L1 expression level is thus critically required. Based on this

premises, Li et al. aimed to evaluate the expression of PD-L1 in

patients with NSCLC by radiomic features of 18F-FDG PET/CT

and clinicopathological characteristics. In order to predict PD-

L1 expression in individual NSCLC patients, the authors

generated a prediction model that used both the radiomic

signature and clinicopathologic risk variables. Significant

correlations were found between the radiomic signature and

PD-L1 expression in lung cancers. The aforementioned papers

reported how the recently emerged radiomics methods are able

to extract a large number of spatial features from medical images

in order to predict therapeutic responses. Enlightened by those

works, a recent approach called “dosiomics” has been put out, in

an effort to extract spatial features from dose distribution for

radiotherapy response prediction. It has been shown that the

dosiomics features may be able to improve radiation therapy

toxicity prediction since they have more dose distribution data

than DVH features (5). For example, dosiomics informations

can be used for the prediction of radiation pneumonitis.
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Puttanawarut et al. investigated the feasibility of of dosiomics

and radiomics features to predict the development of radiation

pneumonitis over traditional dose-volume histogram. Then,

four predictive models for radiation pneumonitis were

compared on a esophageal and a lung cancer datasets,

resulting in predictive performance of the dosiomics- and

radiomics-based models significantly higher than that of the

DVH-based model.

Finally, it must be underlined that studies on the dosiomics

and radiomics features are still in the early stage and yet there

exist some concerns regarding the stability and generalizability

of this texture analysis. For example, it has been reported that

some dosiomics features are unstable across various grid

resolutions or dose calculation algorithms (6), showing that

the reproducibility of dosiomics features depends on the

process of producing images. Moreover, for many cancers,

because of inter-fractional error, a different total number of

fractions may induce different error behavior. These errors may

also further affect the reproducibility of dosiomics features.

Puttanawarut et al. investigated the stability of dosiomics

features under random inter-fractional error and evaluated the

uncertainties in the values of dosiomic features under inter-

fractional error with IMRT and VMAT in a lung cancer dataset.

The authors reported that some dosiomics features were found

not reliable under inter-fractional error and with lower

fraction numbers.
Conclusions

The ultimate goal of this Research Topic was to promote

research and development of automation, advanced computing
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and AI applications in radiation oncology by publishing high-

quality research articles. The 21 papers published in this

Research Topic reported promising results and offered new

and original perspectives regarding the role of AI in radiation

oncology. We thank all the authors of the published papers for

their valuable contributions and the referees for their

rigorous review.
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