
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Abhishek Tyagi,
Wake Forest Baptist Medical Center,
United States

REVIEWED BY

Katja Maria Sahlgren Bendtsen,
University of Copenhagen, Denmark
Valentina Pileczki,
Oncology Institute Prof. Dr. Ion
Chiricuta, Romania

*CORRESPONDENCE

Doru Paul
dop9054@med.cornell.edu

This article was submitted to
Cancer Epidemiology and Prevention,
a section of the journal
Frontiers in Oncology

SPECIALTY SECTION

RECEIVED 08 September 2022

ACCEPTED 25 November 2022
PUBLISHED 22 December 2022

CITATION

Paul D and Nedelcu AM (2022) The
underexplored links between cancer
and the internal body climate:
Implications for cancer
prevention and treatment.
Front. Oncol. 12:1040034.
doi: 10.3389/fonc.2022.1040034

COPYRIGHT

© 2022 Paul and Nedelcu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Systematic Review
PUBLISHED 22 December 2022

DOI 10.3389/fonc.2022.1040034
The underexplored links
between cancer and the
internal body climate:
Implications for cancer
prevention and treatment

Doru Paul1* and Aurora M. Nedelcu2

1Weill Cornell Medicine, New York, NY, United States, 2Biology Department, University of New
Brunswick, Fredericton, NB, Canada
In order to effectively manage and cure cancer we should move beyond the

general view of cancer as a random process of genetic alterations leading to

uncontrolled cell proliferation or simply a predictable evolutionary process

involving selection for traits that increase cell fitness. In our view, cancer is a

systemic disease that involves multiple interactions not only among cells within

tumors or between tumors and surrounding tissues but also with the entire

organism and its internal “milieu”. We define the internal body climate as an

emergent property resulting from spatial and temporal interactions among

internal components themselves and with the external environment. The body

climate itself can either prevent, promote or support cancer initiation and

progression (top-down effect; i.e., body climate-induced effects on cancer), as

well as be perturbed by cancer (bottom-up effect; i.e., cancer-induced body

climate changes) to further favor cancer progression and spread. This positive

feedback loop can move the system towards a “cancerized” organism and

ultimately results in its demise. In our view, cancer not only affects the entire

system; it is a reflection of an imbalance of the entire system. This model

provides an integrated framework to study all aspects of cancer as a systemic

disease, and also highlights unexplored links that can be altered to both prevent

body climate changes that favor cancer initiation, progression and

dissemination as well as manipulate or restore the body internal climate to

hinder the success of cancer inception, progression and metastasis or improve

therapy outcomes. To do so, we need to (i) identify cancer-relevant factors

that affect specific climate components, (ii) develop ‘body climate biomarkers’,

(iii) define ‘body climate scores’, and (iv) develop strategies to prevent

climate changes, stop or slow the changes, or even revert the changes

(climate restoration).
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1 Introduction

1.1 Premise

Despite increasing research efforts, our understanding of

cancer as a disease and our ability to cure or manage it are still

progressing slower than anticipated. The American Cancer

Society Facts and Figures annual report is sobering. Almost

40% of people in United States can expect a cancer diagnosis at

some point in their lives, and despite significant investment in

research for cancer therapies, only 65% of them will survive for

longer than five years after diagnosis (1). More than 50 years

after Nixon declared the famous war on cancer, still more than

600,000 people die yearly of cancer in United States (1).

A plethora of new ideas, views and frameworks have been

proposed (see (2) for a synthesis) to address the emergence and

progression of cancer. Many of the current views are using field-

specific frameworks that are usually assumed to either apply to

all aspects of cancer or are discussed in isolation. For instance,

mutation-based views are focused on identifying specific driver

mutations responsible for tumor initiation as well as cancer

progression (immune evasion, drug resistance) with the goal of

designing targeted and personalized therapies. On the other

hand, most evolutionary views consider mutations as the

substrate on which selection can act and see cancer as an

evolutionary process that can be predicted and even altered.

However, although evolutionary theory has been successfully

used to understand tumor progression and the emergence of

drug resistance, its applicability to other aspects of the disease

(e.g., metastasis, cachexia) is not as clear. Furthermore, within

the evolutionary framework, the main focus is still mainly on

mutational changes (genetic or epigenetic), their dynamics and

the intrinsic fitness benefits (e.g., increased cell proliferation,

death and immune evasion) they might confer to different

cancer clones. Ecological principles are also starting to be

applied to understand tumor progression [i.e., the concept of

tissue and tumor microenvironments) and metastasis [i.e., the

“seed and soil” hypothesis (3)]. However, the focus is mainly on

the local environment (i.e., primary or secondary tissue) (4–6).

Nevertheless, recent studies are emphasizing the fundamental

role that communication between the primary tumor and other

organs (i.e., bones) appears to play both in the metastatic process

– through the formation of the metastatic niche, as well as in

cachexia (7–9). Additionally, sociological/behavioral concepts –

highlighting interactions between cells (cooperation, cheating)

have been used to understand cancer’s evolutionary origin (as a

breakdown of multicellular cooperation) as well as tumor

progression and metastasis (i.e., interclonal cooperation). At

the other end, views that are built on the framework of

reversal to embryonic states (de-differentiation) or to early

stages in the evolution of multicellularity or the eukaryotic cell

itself (atavism) emphasize the activation of existent genetic
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programs without the need to specifically invoke evolutionary

or ecological principles (see (10) for discussion and references).
1.2 The problem

Cancer is a complex disease that requires a multifaceted and

integrated approach to understand and manage all its aspects.

Building on Claude Bernard’s concept of “milieu interne” (11),

Walter Cannon’s concept of homeostasis (12) and James

Hardy’s concept of set points (13), we introduce here the

concept of body “climate”. In our view, all organisms are

characterized by an internal body climate, which is a pervasive

element that (i) is the resultant of the activities of all the different

elements of the body (the cells, the tissues and the whole

organism) and their interactions (bottom-up effects) as well as

the level where are all these changes are integrated, and (ii)

affects the functioning of all these embedded elements (top-

down effects) to maintain the homeostasis of the system. These

activities are fully analogous to the functioning of natural

systems involving interactions among different components of

the biosphere and with the climate, in terms of both how the

biosphere can change the climate and how the climate can affect

the biosphere.

In this framework, cancer is not only a disease of the cell (the

seed; used here to refer to both the initiating and dispersal cells).

Likewise, cancer is not only affected by, and it does not only

affect, the tissue (the soil; both primary and secondary). The

entire organism can indirectly influence cancer initiation (seed

germination) and progression by affecting tissues (the soils) via

systemic factors. And tumors (opportunistic weeds) can also

directly perturb not only the tissues (soils) or organs

(ecosystems), but also the entire system (biosphere) and its

climate. The body climate, in turn, can affect other tissues and

thus the potential for successful metastasis (secondary seed

establishment) and result in the demise of the system.

Ultimately, cancer is a systemic/climate disease both in terms

of its causation and its consequences.
1.3 Our proposal and approach

We propose that cancer should be considered in the context

of the entire system – both from the point of view of how

systemic climate changes associated with physiological and

metabolic perturbations, diet or age (body climate-induced

changes) can prevent, induce or affect various aspects of cancer

initiation, progression and dispersal (top-down effects), as well

as how cancer can affect not only the residing or surrounding

tissue, but also the functioning and the climate of the entire

organism (cancer-induced body climate changes; bottom-up

effects). These interactions have important consequences
frontiersin.org

https://doi.org/10.3389/fonc.2022.1040034
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Paul and Nedelcu 10.3389/fonc.2022.1040034
(through positive feedback-loops) for the metastatic process and

the ultimate breakdown of the system (i.e., cachexia and death).

In our view, cancer not only affects the entire system; it is a

reflection of an imbalance of the entire system. Specifically,

cancer is a reflection of changes in the internal climate of the

system; and cancer affects the entire body climate.

This model not only provides an integrated framework to

study all aspects of cancer as a systemic disease, but can also

highlight unexplored links that can be altered to both prevent

climate changes that favor cancer initiation, progression and

dissemination as well as reconstitute or manipulate the internal

climate to hinder cancer initiation, progression and metastasis or

improve therapy outcomes. The goal of this approach is to shift

the focus from mutations and changes in cell phenotype/

behaviour or tissue microenvironments to entire body climate.

To do so, we need to (i) identify relevant ‘body climate factors

and components’ relevant to cancer initiation and progression,

(ii) develop ‘body climate biomarkers’, (iii) define ‘body climate

scores’, and (iv) develop strategies to prevent ‘body climate

change’, stop or slow the changes, or even revert the changes

(‘climate reconstitution’). Here, we provide an overview of the

framework we need to develop in order to fully understand and

manage cancer as a systemic disease, as well as some (non-

exhaustive) examples of the complex issues and aspects that need

to be considered to achieve those goals.
2 The body’s internal climate

The importance of the body’s internal “milieu” was first

noticed by Walter C. Canon who wrote in “The wisdom of the

body” (12): “stable states for all parts of the organism are

achieved by keeping uniform the natural surroundings of these

parts, their natural environment or fluid matrix. That is the

common intermedium, which, as a means of exchange of

materials, as a ready carrier of supplies and waste, and as an

equalizer of temperature, provides the fundamental conditions

that facilitate stabilization in the different parts. The central

problem in understanding the remarkable stability of our bodies,

therefore, is that of knowing how the uniformity of the fluid

matrix is preserved”.

This “milieu interne”, an expression coined by Charles Robin

and used subsequently by Claude Bernard, confers the body a

certain independence in relationship with the external

environment: “This kind of independence which the organism

possesses in the external environment derives from the fact that

within the living being the tissues are in fact removed from direct

external influences and are protected by a veritable internal

environment which is constituted particularly by the fluids

which circulate in the body [ … ]. In humans and in warm-

blooded animals, the independence of the external environment

and the internal environment is such that one could consider

these beings as living in their own organic environment” (11). In
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our view, however, the internal body climate is more than just the

“fluids which circulate in the body”; it is a pervasive systemic

element that is influenced by, as well as influences, all levels – from

cells and tissues to organs and the entire organism (Figure 1A).

These integrated, complex and dynamic interactions within

the body can be likened to the interactions that determine (and

can be determined by) the climate in natural systems.

Specifically, similar to how interactions among various climate

factors (such as the sun, the earth, the oceans and the seas, the

atmosphere and all life forms) reflect in several climate

components (like radiation, air pressure, temperature,

humidity, wind speed), interactions among body factors (e.g.,

cells, tissues, organs, body structure, and microbiota) can affect

(and be affected by) the body’s internal climate components (i.e.,

internal fluid composition, pressure, temperature, pH, electrical

charge and biorhythm).

Also, as in natural systems, the body climate has a temporal

and spatial dimension. For instance, the body climate can changes

with age (i.e., the body climate of a teenager is different from the

body climate of a nonagenarian), physiologic state (e.g., pregnant

woman vs. non-pregnant woman), and in response to the external

climate (e.g., pollutants, tobacco, sun exposure). Different cancers

developing in different tissues and organs may be related to very

different changes in their local climate characteristics. But the

organismic level – through systemic factors (e.g., damaging agents,

metabolites, hormones), can directly (by affecting cells) or

indirectly (by affecting tissue health) suppress or promote

cancer initiation and progression. Similarly, tumors can directly

or indirectly (e.g., through factors released in the circulation) affect

resident and distant tissues (e.g., during metastasis) as well as the

entire organismic climate (e.g., during cachexia) (Figure 1B).

Importantly, these various climate factors and the way they

interact with each other also change over time (in a temporal

context) both as cancer progresses as well as a function of the age

and changes in the life-style of the organism (Figure 2).

Overall, the utility of the internal body climate concept (in

contrast to other more abstract concepts) is that it encompasses

a series of systemic components that can be measured and whose

fluctuations reflect systemic changes. Furthermore, the effects of

changes in the body climate components can be predicted.

However, in contrast to Earth’s climate, the body climate is

not a passive, un-regulated component in the organism’s

physiology. Both body climate factors and components are

under homeostatic control.
3 Body climate: factors and
components relevant to cancer

Several interdependent factors contribute to, and affect, the

body’s internal climate. They include both intrinsic factors –

such as body structure (fat, muscle, bone, microbiota) and

extrinsic factors – such as diet and external environment (sun,
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tobacco, exposure to pathogens or mutagens). These factors can

influence several internal climate components, including the

internal fluid composition, body pressure, temperature, pH,

electric potential, biorhythm, basal metabolism rate, and

inflammation. In addition, cancer itself can directly or
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indirectly affect body’s climate factors (e.g., body weight,

muscle mass, fat content, bone system, microbiota) and

internal climate components (e.g., pH, electric potential,

inflammation) and can be affected by the internal

climate (Figure 3).
FIGURE 2

Interactions among body levels (cell, tissue, organism) and the internal climate can change with time as cancer progresses as well as a function of
age and changes in the life-style of the individual. In young and/or healthy individuals, the internal climate can have a strong suppressing role on
cancer initiation (blue arrows). As age and/or cancer progresses, tumors (coloured masses) can increasingly affect the climate (red dashed arrows)
and the suppressing role of the internal climate diminishes. In advanced disease, the internal climate can even have a facilitating role (solid red
arrow) that will result in promoting tumor growth and cancer dissemination through pre-metastatic niche formation. The new tumors (pink
masses) will continue to affect the climate and the positive feedback loop will ultimately drive systemic cancerization (gray and black masses).
A B

FIGURE 1

The inter-dependence among the various interacting body levels and the internal climate, resulting in maintaining the homeostasis of the
system (A) or promoting cancer development (B). Internal climate changes induced by cancer can be measured and used to predict changes in
the system. Also, external interventions can be used to alter the internal climate in ways that can prevent or slowdown cancer development.
Tumor illustration from Servier Medical Art - https://smart.servier.com.
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Below we provide an overview of the main internal climate

factors and components that affect and define the organismic

climate, both in normal conditions as well as in relation to

various aspects of cancer development. We focus more on the

climate components because, by definition, they describe the

climate and can be affected by a multitude of interactions (and

changes) among climate factors. Also, due to their highly

dynamic nature (relative to climate factors), changes in their

levels can be assessed/measured and be used as indicators of

climate status, which in turn can have a prognostic or

diagnostic value.
3.1 Internal factors that can influence the
body climate

3.1.1 Body weight and fat deposition/
distribution can contribute to an
inflammatory climate

Body weight emerged as an important factor in the

development of cancer. In United States, among people aged

30 and older, it has been estimated that between 2011-2015,

about 37,670 new cancer cases in men (4.7%) and 74,690 new

cancer cases in women (9.6%) were due to excess body weight

(overweight, obesity, or severe obesity) (14). There is consistent

evidence that twelve cancer types (15) – ovarian (16), breast (17,

18), endometrial (19), thyroid (20), gallbladder (21), colorectal

(22), pancreatic (23), gastric (24), esophageal (25), liver (26),

kidney (27) and multiple myeloma (28), are related to excessive

body fat.
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Interestingly, the risk seems to be determined not only by

excessive fat accumulation per se but also by the location of fat

deposition (with increased risk for the intra-abdominal fat

deposition; i.e., central obesity) (29). Epidemiologic evidence

shows that the shape of the body (high waist-to-hip ratio, WHR;

e.g., apple-shape vs pear-shape) is also important (30). For

instance, people who carry most of the fatty tissue in the

abdominal region are 70% more prone to develop pancreatic

cancer compared to those who bear it around the hips (29); and

an apple-shaped body is associated with a higher risk of

colorectal cancer in men but not in women (31). Also, a large

Chinese study (32) that enrolled 1316 women demonstrated that

women with more fat around their thighs, hips, and buttocks

had a higher risk of hormone-receptor-positive breast cancer

compared to women with less fat in these locations.

These findings may be explained by the different metabolic

profile of subcutaneous fat compared to visceral fat (33). Visceral

adipose tissue was shown to be more prone to generate

inflammation – an important climate component (discussed later).

3.1.2 Muscle mass can act as an endocrine
organ and have beneficial systemic effects on
the internal climate

Skeletal muscle can play an active role in modifying body`s

internal climate. Overweight patients although at an increased

risk for cancer often have a paradoxically lower risk of overall

mortality after a cancer diagnosis, a phenomenon called the

“obesity paradox” (34). The apparent paradox may be explained

by the fact that, in addition to an excess of fat, overweight

patients may also have the necessary protective muscle reserves.
FIGURE 3

Similar to natural climate systems, several interdependent intrinsic climate factors – such as body structure (fat, muscle, bone, microbiota) affect
a number of climate components (internal fluid composition, body pressure, temperature, pH, electric potential, biorhythm, basal metabolism
rate, inflammation). In addition, cancer itself can directly or indirectly affect body climate factors and components. Tumor illustration from
Servier Medical Art - https://smart.servier.com.
frontiersin.org
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Recently, a high level of muscle mass was associated with

improved overall survival in prostate cancer patients regardless

of treatment stage (35). Over the last decade, it has been

demonstrated that skeletal muscle works as an endocrine

organ, which can produce and secrete hundreds of myokines

that may have a systemic effect on lipid and glucose metabolism,

browning of white fat, and tumor growth (36, 37).

3.1.3 Bone can affect and be affected by the
internal climate, with consequences for cancer
development

As demonstrated by recent studies, bone is not a static organ

and, similar to the muscle, also behaves like an endocrine gland

secreting several hormones that regulate energy metabolism and

reproduction (38). High serum levels of osteocalcin, a hormone

secreted by the bone (39, 40) have been linked to the development

of prostate cancer. Bone also plays a key role in cancer progression.

Several in vitro and in vivo experiments have shown that metastatic

cancer cells, upon arrival to bone, interact with osteoblasts on the

endosteal surface, which in turn maintain cancer cells in a dormant

state by inhibiting their proliferation. In contrast, osteoclasts play

an opposite role and may reactivate dormant cancer cells (36).

Furthermore, osteopontin released from primary “instigating”

tumours into circulation has been shown to activate and

mobilize bone marrow cells that can travel to distant location

and induce the growth of indolent tumours (37).
3.1.4 Microbiota – a microscopic climate
factor with major sensitivity to, and influence
on, several climate components

Gut microbiota has been shown to have an important

contribution to the overall health status of individuals, through

systemic effects, especially with respect to obesity and related

metabolic diseases (41). Importantly, microbiota is strongly

affected by diet (i.e., an extrinsic climate factor), which

modulates the activity of host and gut microbiota synchronously

to influence their interaction. For example, a high-fat

diet enhanced gene expressions of both the host and microbiota

(42, 43). The gut microbiota could induce or modulate the

signal transmission directly or indirectly to affect energy

homeostasis (44).

Microbiota present in the gut is under a different type of

homeostatic control called “commensal homeostasis” (45).

Recently, it has been proposed that the host regulates

microbiome homeostasis, which allows for the possibility that

imbalances in gut microbiome can be monitored through

measuring host parameters such as the oxygen and nitrate

concentration along the longitudinal axis of the intestine, and

the quantity and composition of bile acid metabolites (46).

However, microbiota can also directly affect cancer progression

and therapy (47); for instance, during androgen deprivation
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therapy, gut microbiota can produce androgens that are

absorbed into circulation and promote prostate tumor growth (48).
3.2 Body climate components that can
affect and are affected by cancer

The internal body climate can be defined by a multitude of

components that reflect interactions among various elements of

the body (intrinsic climate factors: cells, tissues, organs,

microbiota, and cancer) as well as between the body and the

external environment (including diet – discussed later). Below

we provide an overview of some of the internal climate

components that reflect interactions relevant to cancer. In the

sections on cancer prevention and cancer treatment we focus on

the ways these specific internal climate components can be

manipulated to prevent or slow the progression of cancer.

3.2.1 Internal fluid composition – a complex
and dynamic internal climate component

The composition of internal fluids (blood, lymph, interstitial

fluid) is a premier example of an internal climate component as

it is the result of various processes that reflect the functions of

multiple internal climate factors and their interactions with the

external environment. But this complex climate component can

also be affected by, and affect, cancer progression – from

promoting to inhibiting it, directly or indirectly. Some blood

parameters are used as general health indicators (body climate

markers) and others can be used as specific prognostic or

indicators of cancer progression. The interstitial fluid

composition, which reflects both the cellular and tissular

activity and the blood and lymph composition, has also been

implicated in cancer progression and treatment (49).

3.2.1.1 Cellular blood components

Many cellular blood components are employed as indicators

of health status, especially with respect to infections (e.g.,

eosinophils for parasitic infections), inflammation (neutrophils),

and cancer progression (circulating tumor cells – CTCs;

circulating tumor DNA – ctDNA). Cancer can also induce

changes in the levels of various blood cells (i.e., cancer-altered

body climate components), which are often used as prognosis

indicators. For instance, increased circulating neutrophils is a

known adverse prognostic factor in several cancer types (50, 51).

Anemia is another independent prognostic factor for survival in

patients with cancer (45); and in colorectal cancer the severity of

anemia is also associated with disease stage (52). A decreased

cytotoxic functionality of NK cells correlates with increased

numbers of circulating tumor cells (CTCs) in patients with

metastatic breast, colorectal and, prostate cancer (53). Also,

platelets can be used by cancer cells to protect them from
frontiersin.org
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Natural Killers (NK) cells attack, and may help cancer cells in the

metastatic process (54, 55).

3.2.1.2 Macromolecules

Levels of lipids, carbohydrates and proteins in internal fluids

are associated, in part, with dietary inputs. Compared to normal

cells, tumor cells have a higher demand of precursors for

proliferation, and reprogram multiple intracellular metabolic

pathways to satisfy these needs (56, 57). Thus, various

precursors can promote (but also prevent) cancer development

and progression (discussed later in the section on Diet); that is,

they act as cancer-promoting or cancer-preventing climate

components. For instance, an increase in the serum level of

branched chain amino acids (leucine, isoleucine, and valine)

may precede with several years the clinical development of

pancreatic cancer (58, 59). Besides pancreatic cancer, a

disruption of systemic metabolism of branched-chain amino

acids has been described in several cancers (60). However,

changes in the levels of various macromolecules can also

reflect changes in various body activities, including cancer

progression (i.e., act as cancer-altered climate components).

For instance, cachectic cancer patients have both adipose

tissue and skeletal muscle wasting (61). Interestingly, the

overall plasma fatty acid levels seem to be maintained and

only oleic acid is significantly higher in patients with

cachexia (62).

3.2.1.3 Hormones and other active molecules

The levels of circulating hormones are also good indicators

of health and internal climate status. Changes in the levels of

many hormones have been demonstrated both in animal models

and in large epidemiological studies to play a key role in the

development of many types of cancer, including breast, prostate,

uterine, ovarian, testicular, thyroid and bone cancers (63–72)

(Table 1 and Supplementary Material).

Tumours themselves can also release a series of hormones

that can support cancer progression. Production of specific
Frontiers in Oncology 07
hormones by tumors of particular types is not random (73).

For example, squamous cell carcinomas typically produce

parathyroid hormone-related proteins, and small cell

carcinomas (SCC) of the lung typically produce calcitonin,

adrenocorticotropin (ACTH), or gastrin releasing peptide

(GRP). In some case for example, bombesin (BBS)-like

neuropeptides secreted by SCC can act as autocrine growth

factors (74). Furthermore, osteopontin released by primary

tumours can instigate the growth of distant indolent

tumours (37).

3.2.1.4 Metabolites

Changes in the levels of many metabolites have also been

associated with disease promotion (cancer-promoting climate

change) or reflect disease progression (cancer-induced climate

change). For instance, a nested case-control study of 2,248

women from the European Prospective Investigation cohort

found that concentrations of arginine, asparagine and

phosphatidylcholines were inversely associated with breast

cancer risk, while the acylcarnitine C2 was positively

associated with disease risk (70). More recently, variations in

levels of glycine, serine, sphyngomyelin and free carnitine were

linked to endometrial cancer development (75). Systemic

circulating metabolites have also been found in other types of

cancer [e.g., lung – (76); kidney – (77), ovarian-(78); colorectal –

(79); pancreas – (80); prostate –(81)] pointing to potentially

novel biomarkers and treatments. Similarly, methylmalonic acid

(MMA), a by-product of propionate metabolism, was found to

be upregulated in the serum of older people and functions as a

mediator of tumor progression (82). This suggests that MMA

targeting may be a novel therapeutic approach for advanced

carcinomas (82).

3.2.1.5 Exosomes

Among other activities, exosomes are known to be involved

in cancer metastasis and help cancer cells avoid immune attack

(83). Specifically, there are several reports describing the
TABLE 1 Several hormones and active molecules associated with cancer risk.

Hormone Change Effect Reference

Thyroid Low Reduced cancer aggressivity and decreased risk of prostate cancer
Increased risk of colorectal and hepatocellular carcinoma

(63)

High Increased breast cancer risk (64)

Insulin High Increased breast, endometrial, ovarian and pancreatic cancers risk; increases cancer mortality, in general (65)

Estrogen High Increased risk of both estrogen positive and negative breast cancer (66) (67)

Testosterone Low Increased prostate cancer aggressivity (68)

Melatonin High Prevents metastases (69)

Disregulated Increases breast cancer risk (70)

Epinephrine/norepinephrine High Increased in head and neck cancer (71)

Glucocorticoids High Increase breast cancer metastases (72)
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involvement of tumor secreted exosomes in metastasis, and

many exosome-associated micro RNAs have been described

(i.e., miR-105, miR-181c) (84, 85). Thus, exosome-related

components either as part of the exosome cargo or on the

exosomes surface can also be used as climate markers (86, 87).

3.2.1.6 Circulating PD-L1

PD-L1 is a protein found on the surface of some normal

immune cells and in higher-than-normal amounts on some

types of cancer cells. When PD-L1 binds to PD-1 (a protein

found on T cells), it acts as a sort of “brake”, impeding the ability

of T cells to kill PD-L1-expressing cells, including cancer cells.

Circulating PD-L1 has been detected in lung cancer, gastric

cancer, renal cell carcinoma, melanoma, hepatocellular

carcinoma, pancreatic cancer, breast cancer, and soft tissue

sarcoma (88, 89). Its significance for cancer progression is

currently under investigation. Recently, removal of circulating

soluble and PD-L1-positive extracellular vesicles from periphery

through plasmapheresis (i.e., a manipulation of the internal

climate) has been developed as a therapeutic intervention in

melanoma, as an adjunctive of immunotherapy (90).

3.2.1.7 Oxygen

Oxygen is an important climate component whose levels can

vary within the body. Local hypoxia is associated with tumor

progression, but it is unclear whether blood oxygen levels play

any role in patients with cancer. A recent study suggested that in

patients with advanced cancer and low oxygen saturation,

oxygen use was not significantly associated with survival (91).

Interestingly, the body maintains specific oxygen levels in

different parts of the gut (i.e., high in the small intestine but

low in the colon), which can directly influence gut microbiome

composition (aerobic vs fermentative) (46). And changes in the

ability to maintain gut microbiome homeostasis has been linked

to many diseases, including cancer (discussed later).
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3.2.1.8 Microelements

Microelements, although found in extremely low levels, are

an important internal climate component that can play complex

roles in cancer (i.e., act as cancer-promoting or cancer-

preventing climate components); as well as can be affected by

cancer. Several examples of such components and their relation

to cancer-inducing climates are included in Table 2 (see

Supplementary Material for additional details).

Cancer itself can also affect the levels of some minerals. For

instance, potassium released from dying tumor cells has been

found to suppress the activity of T cells of the immune system.

Enhancing the removal of potassium from T cells restores their

ability to attack cancer (113).
3.2.2 Body pressure can affect
cancer progression

The interstitial fluid pressure is determined by the

hydrostatic and the colloid osmotic pressures in capillaries and

in the interstitium, together with the hydraulic conductivity and

the plasma protein reflection coefficient (114). It has been

proven for two decades now that interstitial fluid pressure in

the tumor tissue is related to survival in some cancer types (115).

It has been also shown in xenograft models that lowering the

tumor interstitial fluid pressure reduces tumor cell proliferation

(116). Also, the increase in the interstitial fluid pressure limits

access of drugs into tumor cells distant from the exchange blood

vessels and is one of the mechanisms of drugs resistance (117).

Recent studies have shown that both hypertension (118) and

cardiac insufficiency (119) may be significant risk factors for

different cancer types, and an integrated approach to both

conditions has been proposed (120). Strong positive

associations were observed between hypertension and breast,

kidney, colorectal cancer (121–123). Also, hypertension

was found to increase the risk of esophageal adenocarcinoma

and squamous cell carcinoma, liver and endometrial cancer,
TABLE 2 Several microelements associated with cancer risk.

Microelement Change Effect Reference

Zinc Low Increased cancer incidence (92)

High Increased metastasis in thyroid cancer (93)

Selenium High Lower risk of breast cancer (94)

Phosphorus High Lethal and high-grade prostate cancer (95)

Calcium High Increased risk of prostate cancer (96–103)

Iron High May increase or decrease risk of colorectal cancer according to the nutritional source (104)

Iodine High Lower risk of breast cancer (105)

Magnesium Low Increases risk of colorectal and pancreatic cancer (106–108)

Salt High Increases risk of gastric cancer (109)

Manganese High Decreases risk of prostate cancer (110)

Iron High May increase or decrease risk of colorectal cancer according to the nutritional source (104)

Copper Low Associated with decreased risk of breast cancer metastases (111)

High May decrease zinc in several cancer types (112)
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but the majority of studies did not perform comprehensive

multivariable adjustments (118). In general, the mechanism

behind these associations is unclear. For renal cancer, it has

been speculated that chronic renal hypoxia, lipid peroxidation

and deregulation of renin-angiotensin system may be involved

(118, 124).

Cancer and cardiac insufficiency share several risk factors:

diabetes mellitus, smoking, obesity, hypertension; and the

common underlying pathophysiological mechanism

underlying both conditions may be inflammation (125, 126).

An interesting suggestion has been that the “climates”

promoting cancer and cardiac insufficiency are similar (127)

and, besides inflammation, similar genetic alterations may be

related to both some hematological malignancies and cardiac

failure. The same authors also suggested that cardiac failure is an

oncogenic condition that can directly influence cancer

development. Supporting this idea, it was found that the

postischemic failing heart stimulates colon tumor growth in a

mouse model, through different secreted factors including

SerpinA3 (128).
3.2.3 Body temperature can affect and be
affected by cancer

The body temperature reflects body metabolic activity and is

maintained relatively constant by feedback loops coordinated by

two hypothalamic nuclei, the preoptic area and the dorsomedial

hypothalamus (129). Thus, body temperature is a good indicator

of health, especially in contexts associated with microbial

infections and inflammation. But body temperature is also an

important climate component that can both be affected by

cancer or promote/prevent cancer. For instance, cancer can

induce an increase in body temperature (cancer-induced

climate change). On the other hand, changes in body

temperature can also affect cancer (cancer-promoting or

cancer-preventing internal climate changes).

A key preclinical study showed that tumor growth rate and

metastatic burden of mice housed at thermoneutral temperature

(approximately 30 to 31°C) were significantly reduced compared

to those housed at standard temperature (approximately 22 to

23°C) (130). These differences were not seen in immunodeficient

mice suggesting that sub-thermoneutral temperatures may affect

antitumor immune responses. In the immunocompetent

mice, the numbers of antigen-specific CD8+ T lymphocytes

and CD8+ T cells with an activated phenotype in the tumor

microenvironment significantly increased at thermoneutrality.

Interestingly, the body temperature of the USA population has

been declining over the last century (131) and this decrease

might have contributed to the concomitant increase in cancer

incidence during the same time period. Furthermore, a negative

correlation between the average annual environmental

temperature and cancer incidence has been reported for the

female (and less for the male) population in the USA (132).
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3.2.4 Local pH affects cancer progression
Internal fluids are characterized by a relatively constant pH

(around 7.4), and changes in pH are generally buffered,

especially in the blood. However, local decreases in pH are

known, especially in advanced tumors; but these changes are not

reflected in the blood pH of cancer patients, which, in general, is

not influenced by tumoral pH (133). The low pH of tumor

microenvironment is mainly the consequence of cancer

metabolic reprogramming resulting in the release of lactic acid

as by-product of anaerobic glycolysis (134). The acidic

microenvironment promotes cancer growth and metastasis

(135, 136). The pH of the local tissue microenvironment can

also influence cancer progression. Acidic pH may favor

development of certain cancers [oral, bladder; (137, 138) and,

reversely, an alkaline pH may favor other cancers (cervical

cancer; (139)].

3.2.5 Bioelectricity: abnormal depolarization
can promote cancer

Bioelectricity is another important component of the

internal climate of the organism. The cellular resting potential

is actively maintained by the activity of ion channels and pump

proteins and is related to the differentiation state and

proliferation of the cell (140, 141). Generally, a depolarized

state is indicative of more undifferentiated cells (i.e., stem cells

and cancer cells), while differentiation is associated with a more

polarized state (142, 143). It has been proposed that abnormal

depolarization of resting potential can be used as a marker for

neoplasia, and depolarization may activate a metastatic

phenotype in genetically-normal cells in vivo (144, 145).

3.2.6 Biorhythm changes can lead to cancer
Many processes at the level of the organism are controlled

through biorhythms (146). A change in the body biorhythm

associated with night shifts (i.e., a global climate change

induced by changes in life-style), for example, is known to

lead to cancer development/progression (147, 148). Certain

sudden changes in the organismic biorhythm parameters

(through chemotherapy, for example) can also lead to cancer

progression (149). In some cases, cancer cells lose the response

to the body biorhythms and gain independence from the

systemic clocks, which allows them to have constant access to

the body nutritional resources (149).

3.2.7 Basal metabolic rates affect cancer risk
Basal Metabolic Rate (BMR) is the number of calories burnt

as the body performs basic (basal) life-sustaining functions. In a

recent study, among normal weight participants, higher basal

resting metabolism (BMR) was associated with elevated risks of

esophageal adenocarcinoma and distal colon cancer among men;

and proximal colon, pancreatic, thyroid, postmenopausal breast

and endometrial cancers in women (150).
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3.2.8 Local and generalized inflammation can
favor cancer

Both local and generalized systemic inflammation can

promote cancer progression (cancer-promoting climate

change); and cancer progression can also increase general

levels of inflammation (cancer-induced climate change).

Several factors can contribute to systemic inflammation. For

instance, in addition to the many ways in which increased body

fat level can affect health, the altered secretion of metabolically

active, proinflammatory adipocytokines from adipose tissue is

believed to play a key role in the mechanisms relating obesity

and cancer, which are only starting to be uncovered (151).

Moreover, obesity is associated with a state of chronic low-

level inflammation, characterized by abnormal cytokine

production which might affect both tumor initiation and

tumor progression; for instance, adipocyte-conditioned

medium can promote tumor migration (152, 153). On the

other hand, tumor-induced circulating cytokines can be both

used as climate markers and targeted for treatment purposes

(154, 155). Epidemiologic studies suggest that in patients with

several types of solid cancers, elevated circulating levels of C-

reactive protein (CRP) are associated with poor prognosis,

whereas in apparently healthy individuals from the general

population, elevated levels of CRP are associated with

increased future risk of cancer of any type (156).

The generalized inflammation associated with cancer

progression may represent a physiologic process (i.e., a global

climate change) that went out of control. Cancer becomes a sort

of “auto-inflammatory” disorder like a “chronic shock”. Indeed,

ultimately, in the terminal cases – when cachexia develops,

cancer induces a kind of fatal “cytokine storm”. The excessive

energy expenditure associated with prolonged inflammation

may be a form of maladaptation (157).
4 Homeostasis and body
climate control

The optimal functioning of an organism is ensured by

homeostatic processes located at different levels (158). The

first level involves automatic feedback mechanisms that

control both cellular physiochemical processes and organ and

tissular functions. The second level contains autonomous (self)

regulation mechanisms trough which changes of the first level

variables are sensed and adjusted (i.e., baroreceptor reflex). The

third level is represented by neuron networks located in the

central nervous system; this level integrates information

transmitted from the second level with information from other

sensory inputs from the outside world in order to coordinate the

physiological and behavioral response to changing internal and/

or external environmental conditions. A fourth level pertains to
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the bigger picture of human communities and social interactions

that have a distinct influence on the organism. The key master-

homeostatic coordinator that integrates all the different inputs

and provides finely tuned responses maintaining the dynamic

balance of the various properties of the organism is

the hypothalamus.

Within the general homeostasis, the body also has specific

systems that act as the body energy, weight and composition

rheostats. The hormone leptin secreted by the adipose cells plays

a critical role in whole body energy and weight homeostasis: lack

of functional leptin or leptin receptors results in severe and early

onset obesity in rodents and humans (159). Recently a leptin

independent system has been demonstrated in rodents. This

second system contains a sensor for body weight in the long

bones of the lower extremities acting as “body scales”; and is part

of a body weight homeostat, “gravitostat,” that keeps body

weight and body fat mass constant (160). Besides these body

weights rheostats, it also seems that body composition is tightly

regulated. A minor decrease in liver glycogen increases the

eating drive in order to replenish glycogen stores. By contrast,

protein and fat imbalances are not tightly counter-regulated,

leading to greater losses or gains in these individual components

in response to nutrient intake (161). During fasting, liver

glycogen shortage activates a liver–brain–adipose neural axis

that has an important role in switching the fuel source from

glycogen to triglycerides under prolonged fasting conditions

(162). These rheostats are highjacked by cancer in order to

direct the energy towards its growth.

In our framework, the hypothalamus integrates all the

climate components that reflect the activities of, and the

interactions among, all levels to ensure the climate parameters

remain in the functional range of the organism (Figure 4A).

Internal climate variations induced by intrinsic and extrinsic

factors, outside the range that the hypothalamus can operate, can

result in permanent climate changes that, if not restored, can

affect the proper functioning of the system and ultimately trigger

its collapse. Some of these climate changes can promote cancer

development and progression. But cancer itself can also induce

irreversible climate changes that the hypothalamus cannot

control anymore (Figure 4B). Alternatively, cancer-associated

changes can directly affect the hypothalamus and its ability to

maintain internal homeostasis, which ultimately results in a

permanent climate change. Overall, we suggest that cancer is a

disease of homeostasis – and its late stages reflect of the inability

of the system to restore homeostatic control.

For instance, cytokines, like IL-1b and TNF-a, generated in

the periphery during cancer progression are amplified and

modified within the hypothalamus, leading to hypothalamic

inflammation and aberrant activity of weight- and activity-

modulating neurons that may induce muscle atrophy

via activation of the hypothalamic-pituitary-adrenal axis
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(163,164). Hypothalamic inflammation may be followed by

dysregulation of homeostatic regulation of autonomic nerves

(innervation of muscles, liver, fat tissue, endocrine glands and

other organs) that may further potentiate dysregulation of

metabolism and enhance peripheral, proinflammatory

reactions (165). Hypothalamus appears to be an important

contributor in the development and maintenance of the

cachectic state (166).
5 Implications for prevention
and treatment

Our framework, including the concept of an internal body

climate that is the result of several intrinsic (including cancer)

and extrinsic factors, and that – once perturbed, can affect many

aspects of the body (including cancer development and

progression) provides a new perspective on cancer prevention

and treatment. Specifically, cancer prevention will encompass all

the ways in which the internal climate can be maintained in the

range that the hypothalamus can control, in response to both

intrinsic and extrinsic factors. In terms of cancer management

and treatment, we propose strategies that can slow down/stop

climate change or reconstitute the climate by manipulating some

of the climate components or modulate the rheostats.
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5.1 Cancer prevention by maintaining
a healthy internal climate and avoiding
climate changes

Cancer prevention is often discussed in terms of life-style

choice that diminish the potential for mutations, by avoiding sun

exposure, smoking and other chemical mutagens. Our

framework emphasizes more general life-style changes that

affect the internal body climate in two directions: (i) to

promote a climate that can mitigate the direct effects of

mutagens (i.e., in terms of reducing oxidative stress and

inflammation) and (ii) to avoid climate changes that can

promote cancer development and progression.

In our view, besides hereditary cancers that represent a

minority, at least 90% of cancers are ultimately caused by

internal climate changes. These include both cancers initially

triggered by external climate factors (e.g., small cell lung cancer

related to cigarette smoking, or cervical adenocarcinoma caused

by a human papilloma virus infection) and cancers promoted by

internal climate changes (e.g., breast cancer in women and

prostate cancer in men related to hormone levels). Both the

external and the internal body climate influences on the

organism`s genome have been characterized (167, 168).

Mutations induced by carcinogens, radiation, or endogenous

sources may promote, inhibit or have neutral consequences for
A B

FIGURE 4

The central nervous acts as a rheostat that integrates all the body climate components that reflect the activities of, and the interactions among,
all levels. (A) In normal conditions, the rheostat is able to ensure that the climate parameters remain in the functional range of the organism and
the homeostasis of the system is maintained (arrows indicate stable reciprocal interactions between various levels and the climate). (B) During
cancer progression, perturbations in various levels result in positive feedback loops that changes the body climate outside the range that the
hypothalamus can control, ultimately resulting in the collapse of the system.
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cancer inception and progression (169–171). But the internal

body climate can modulate the effect of these mutations and

direct the cancer trajectory towards progression or extinction.

For instance, it is important to note that even for cancers in

which the external environment plays an important role, the

internal climate’s participation is crucial in order for mutated

cells to progress to malignancy as only a minority of patients

exposed to different noxa, carcinogens, viruses, radiation, etc,

develop cancers. Free radicals produced by substances present in

cigarettes, sun exposure, and some chemicals can induce

oxidative DNA damage that could lead to cancer. But anti-

oxidants produced by our bodies or acquired from our diets

work by preventing such oxidative damage and thus have

protective effects against cancer.

Nevertheless, when cancer is fully developed, anti-oxidants

may also protect cancer cells and may accelerate cancer

progression (172, 173). Interestingly, the source of anti-

oxidants appears to be a key factor. For example, a high

dietary intake of beta-carotene is associated with a modest

decrease of lung cancer incidence (174), but, among smokers,

the use of beta-carotene supplements actually appeared to

increase the risk of lung cancer (175). Similarly, dietary

vitamin E is associated with a lower risk of developing prostate

cancer, but a study evaluating vitamin E supplements found an

increased risk (176). Also, another study demonstrated that end-

stage patients with cancer who had a predicted life expectancy of

only 12 months had a median increase in survival of five months

when treated with a supplement of coenzyme Q10, vitamins A,

C, and E, selenium, folic acid, and beta-carotene (for those

without lung cancer) (177).

Diet can influence the climate – and the potential for cancer

development and progression, in many other ways (178).

Interestingly, caloric restriction – by decreasing the food

intake by 30-40%, has been shown across multiple studies to

significantly inhibit the growth of diverse tumor types, including

breast, lung, prostate, brain, pancreatic and colorectal cancer

[reviewed in (178)]. Specific components of the diet can also

have an effect on the internal climate, and – directly or indirectly,

on cancer.

For instance, regarding protein consumption, a study of

more than 6,000 subjects reported that 50-65 year-old subjects

who ate a high-protein diet had a four-time higher risk of

developing cancer compared to those who had a low-protein

diet. Interestingly, above age 66, subjects on a low protein diet

had an increased cancer risk. In this age group, subjects with

high protein consumption had a 60% reduction in cancer

mortality (179).

Data regarding the role of cholesterol in cancer is also

controversial. A large metanalysis did not find any role of

lowering blood cholesterol for cancer prevention (180). At

almost the same time, another large case–control study with

295,925 cancer patients, suggested a link between statin use and
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a slight reduction in cancer-related mortality for 13 different

cancer types, including prostate, colon, lung and urinary (181).

This difference may be due to the heterogeneity of lipid

metabolism in cancer. In different types of cancers, different

sets of cholesterol synthesis enzymes are either upregulated or

downregulated (182) and before using specific targeted

inhibitors their levels should be determined. For example,

ATP-binding cassette transporter A-1 (ABCA1) is upregulated

in melanoma but downregulated in colon cancer (182). It has

been suggested that in some cancer types, like pancreatic cancer

for example, combining inhibitors of low-density lipoprotein

receptor (LDLR), which facilitates cholesterol uptake, and

chemotherapy leads to a synergistic anti-tumor effect (183).

Fatty acids have been classically associated with cancer growth

and progression. They sustain membrane biosynthesis during rapid

proliferation, and are an important energy source for cancer cells

during conditions of metabolic stress (184). Omega-6 (n-6)

polyunsaturated fatty acids (PUFA) (e.g., arachidonic acid (AA))

and omega-3 (n-3) PUFA (e.g., eicosapentaenoic acid (EPA)) are

precursors to potent lipid mediator signaling molecules, termed

“eicosanoids,” which have important roles in the regulation of

inflammation. In general, eicosanoids derived from n-6 PUFA are

proinflammatory while eicosanoids derived from n-3 PUFA are

anti-inflammatory (185). An extensive systematic review assessing

the relationship between PUFAs consumption and cancer risk

found increasing total PUFA may very slightly increase cancer

risk, offset by small protective effects on cardiovascular diseases

(186). On the other hand, it has been previously shown that a low

dietary ratio of omega-6 to omega-3 fatty acids may delay

progression of prostate cancer (187). Also, dietary lipids can

promote metastasis through fatty acids interacting with the fatty-

acid receptor CD36 on metastasis-initiating cells (188).

Furthermore, it has been recently shown that dietary palmitic

acid (PA), but not oleic acid or linoleic acid, promotes metastasis

in oral carcinomas and melanoma in mice (189).

The evidence of an association between carbohydrates

consumption and cancer risk is scanty. There is some data for

an association between fiber and colorectal cancer, where

increased consumption is associated with reduced risk of

disease development and mortality after diagnosis (190). There

is also limited data suggesting an increased risk of colorectal

cancer associated with high intakes of sucrose and an increased

risk of ovarian cancer associated with high intakes of lactose

(191). Different susceptibilities to colorectal cancer have also

been correlated with dietary differences that reflect in different

compositions of gut microbiota (192).

Other interventions – such as anti-inflammatory diets,

appropriate rest, stress reduction and exercise, can strengthen

the immune system, which in turn can contribute to cancer

prevention. Systemic inflammation can be manipulated through

dietary interventions. Host metabolism and energy balance are

influenced by an interplay between the intestinal microbiota, bile
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acids and nutrients that may impact global inflammation,

immune responses, gut hormone secretion and neuronal

activity (193). Systemic changes associated with exercise can

also have a beneficial effect on cancer prevention and has been

demonstrated to reduce breast cancer recurrence (194). The

positive impact of exercise on the immune function (195) and its

impact on decreasing the incidence of breast cancer has been

well documented (196–199). Similar effects have been described

for several other cancer types (200): hematological malignancies

(201), bladder cancer (202), colon cancer (203), esophageal

cancer (204), stomach cancer (205), kidney cancer (206) and

endometrial cancer (207). For lung cancer, a meta-analysis of 25

observational studies (208) demonstrated that physical activity is

associated with reduced risk of lung cancer among former and

current smokers but not among never smokers. For cancers of

the pancreas, prostate, ovaries, thyroid, liver, and rectum, the

impact of physical activity for cancer prevention is not as clear

(209, 210). Besides improving the immune function, there are

several mechanisms that may explain the impact of physical

activity on cancer (211), including helping to prevent and treat

obesity that is a risk factor for many cancers, reducing

inflammation and preventing high levels of insulin, which has

been linked to breast and colon cancer development (212).
5.2 Cancer treatment through internal
climate interventions

Most oncology treatments available today are directed

towards cellular (chemotherapy and targeted agents) and

tissular (angiogenesis inhibitors and immunotherapy) levels.

Developing new interventions directed towards affecting the

organism’s internal climate should also be developed. In our

framework, cancer is associated with internal climate changes

that sustain cancer development and progression, but cancer

itself can also induce climate changes that affect the general

health status and homeostasis of the organism. Thus,

manipulating the internal climate can have two effects: (i) slow

or stop cancer progression and (ii) restore homeostasis or

improve the general health of the patient. What type of

changes can be induced in the body climate in order to

decrease local cancer progression and the development of

distal metastases?

Two approaches can be used:
Fron
A. Manipulate key climate components to restore climate to

levels that do not support cancer progression

B. Modulate the function of the master-homeostat
The key for using the internal climate framework for

individual cancer types is to define the internal climate factors

and components that can be manipulated in a particular clinical
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setting in order to prevent cancer progression. Note that in

addition to affecting cancer progression, the internal climate can

also affect the efficacy of treatments. For instance, as mentioned

earlier, commensal bacteria can promote endocrine resistance in

prostate cancer through androgen biosynthesis (48), and some

microbiota species can interfere with the response to

immunotherapies (see below). At the opposite spectrum,

fasting appears to decrease the cytotoxic effects of

chemotherapy on normal cells (discussed next). While some of

the body climate components that could be manipulated for

treatment purposes are the same as those discussed for

prevention, the types of changes required to restore a climate

already affected by cancer are different. Below we provide an

overview of such internal climate manipulation strategies.
5.2.1 Manipulating the internal climate for
treatment purposes
5.2.1.1 Intermittent fasting and diet changes can
induce climate changes with negative effects on
cancer progression

Intermittent fasting has been proposed as a means to

decrease tumor burden as well as the negative effect of

chemotherapy (213). For instance, in several mouse models

intermittent fasting decreased the rate of metastasis, prolonged

survival, and reduced tumor growth, as measured by weight or

volume (214). Although some of these studies are controversial

and suggest potential detrimental effects in certain oncologic

conditions [and the human data is currently scarce (215)],

preliminary studies suggest that prolonged fasting in some

patients who have cancer is safe and potentially capable of

decreasing chemotherapy-related toxicity and tumor

growth (216).

Cancer dependency on certain aminoacids may also be

utilized for therapeutic purposes. A recent review described

different diets that can impact cancer development (217). In a

mouse model of breast cancer, asparagine restriction reduced the

metastasis of breast cancer without affecting the growth of the

primary tumour (218). However, asparagine restriction is

difficult to implement in human patients. Other amino acid

depleted diet approaches may by more feasible for patients.

Serine depletion for example, either by removing it from the diet,

or by enzymatic inhibition may have a therapeutic benefit

especially in tumors with TP53 mutations (219). Recently, the

therapeutic benefit of combining serine synthesis inhibition with

dietary restriction of serine and glycine was demonstrated in an

animal model (220).

Interesting, several in vitro studies suggested that water with

a low deuterium concentration (<65 ppm) may inhibit cancer

growth (221–229) and augments the inhibitory effect of

paclitaxel (230). Anecdotal reports and clinical data from

Europe suggest that lowering the levels of deuterium in the

body by drinking deuterium depleted water (10-20 ppm) may
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improve quality of life and possibly survival of cancer patients

(231–233).

5.2.1.2 Climate reconstitution though microbiota
manipulation

Recently, microbiota has drawn a lot of attention as

probiotics, prebiotics and synbiotics (a mixture of prebiotics

and probiotics) have demonstrated putative beneficial effects in

the treatment of cancer (234). Enrichment in some species has

been associated with response to PD-1 and CTLA-4 blockade in

humans, while other species have been negatively associated

with response to anti-PD-1 and anti-CTLA-4 therapy (235). As

pointed out by Gong et al. (235), at present, these results are

inconsistent between different research groups and they are not

yet ready for clinical use. Studies using fecal transplant for

improving response to immunotherapy are currently in

development (236).

5.2.1.3 Biorhythm modulation and chrono-
immunotherapy can slow cancer progression

In several mouse models, circadian disruption was shown to

accelerate cancer progression, whereas circadian reinforcement/

reprogramming slows it down. The reinforcement of the host

circadian timing system with fixed meal times induced 24-hour

rhythmic expression of critical genes in clock-deficient tumors,

which translated into cancer growth inhibition (237). A decade

later, a similar experiment confirmed these earlier findings (238).

The circadian rhythm of the immune cells has been described in

several studies, with the number of circulating CD4T and CD8T

cells near doubling in the evening compared with morning (239–

242). Lately, it has been demonstrated that more frequent

morning or early afternoon administration of immunotherapy

nearly doubled overall survival as compared to more frequent late

afternoon or early evening treatment administration (243). More

recently, the finding that key circadian rhythm hormones such as

melatonin, testosterone and glucocorticoids influence CTC

generation dynamics (with most spontaneous CTC intravasation

events occurring during sleep) provides a new rationale for time-

controlled treatment of metastasis-prone cancers (244).

5.2.1.4 Internal body pressure manipulation can
improve survival of cancer patients

An easy way to manipulate whole body pressure is by

adjusting blood pressure. Beta-blockers, for example, like

propranolol, that decrease blood pressure alter the metastatic

potential of cancer cells (245). Melanoma patients who received

immunotherapy while taking pan b-blockers lived longer than

patients who received immunotherapy alone or patients that

received immunotherapy and b1-selective blockers (246).

Bisoprolol is another selective b1-blocker commonly used to

treat hypertension, cardiac ischemia, and congestive heart

failure. Bisoprolol improved survival, increased total heart
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mass, and other heart parameters and, importantly, improved

food intake and activity levels in an AH-130 tumor-bearing rat

models (247).

5.2.1.5 Increasing whole body temperature has a
benefic anti-cancer effect

In human patients, regional and whole-body hyperthermia

in combination with radiotherapy and/or chemotherapy, has

been shown to significantly improve therapeutic outcomes in

more than sixty clinical trials (248). Increasing regional and

whole-body temperature has been acknowledged by the

American Cancer Society as a potential cancer treatment

modality. Cancer regression associated with fever has been

reported for more than 150 years (249). Pre-clinical studies

showed a benefic effect of hyperthermia on immune cells, and,

recently hyperthermia showed benefit in combination with

check-point inhibitors in two dozen animal models (250, 251).

5.2.1.6 Restoration of internal pH may
inhibit metastasis

Although dietary acidosis alone is not sufficient to increase

cancer risk (252), various alkalinization methods of pHe have

been proposed as cancer treatment for more than six decades

(253) with limited success (254). Initial studies done in mouse

models showed that the administration of alkaline or buffering

agents did not decrease the growth of primary tumors (255) but

may inhibit metastasis (256). However, the effectiveness of

systemic manipulation of pHe through ingesting certain

alkaline products is controversial as blood pH buffering

systems are very robust in maintaining the pH at a physiologic

value of 7.35.to 7.45 (257). On the other hand, studies targeting

directly acid-base transporters and proton-sensing receptors that

permit cancer cells to sense and adapt to the acidic tumor

microenvironment are currently in development (133).

Therapeutic benefits of chemo- or targeted therapy in

combination with an alkaline diet – defined as more vegetables

and less meat, on the survival of patients with lung and

pancreatic cancer have also been reported (258–260).

Furthermore, drugs, like Veverimer, that effectively decrease

systemic acidosis are interesting candidates, but their benefit

has not yet tested in cancer patients (261).

5.2.1.7 Modulating bioelectricity to treat cancer

The idea of using electricity to treat cancer has led to some

interesting results. First, Tumor-Treating Fields (TTFields) are

low intensity, intermediate frequency, alternating electric fields

delivered externally through noninvasive transducers placed

locoregionally around the anatomic region of the tumor (262).

TTF have been FDA-approved for the treatment of brain cancer

(263) and mesothelioma (264). Also, a device using tumor-

specific amplitude-modulated radiofrequency electromagnetic

fields (AM RF EMF) has been also approved in Europe since
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2018 for the treatment of liver cancer (265). Several proposals

have been previously made to consider cancer a “channelopathy”

(266) and the modulation of the bioelectricity of cancer cells

using targeted agents directed to the membrane ion channels, as

suggested by Levin (267), may represent a novel way of cancer

treatment. Interestingly, both TTF and AM RF EMF treatments

work by activating specific calcium channels and result in

increased levels of cytosolic Ca2+ (265). Thus, it is plausible

that similar effects can be obtained by directly manipulating

cancer cell calcium membrane channels.

Targeting cancer’s ion channels is an attractive therapeutic

option (268), and, in a previous large cohort study of 66,806 men

and women observed longitudinally for 6 years, every 100 mg

per day decrement in magnesium intake was associated with a

24% increase in the incidence of pancreatic cancer (108). One of

the main functions of magnesium in the human body is the

maintenance of cellular ionic gradients, keeping intracellular

sodium and calcium low and potassium high.

5.2.1.8 Body weight loss can slowdown
cancer progression

There is clear evidence that obesity increases the risk and

worsens the prognosis of many common cancers. Thus, weight

management is crucial to patients with cancer and cancer

survivors (216). A recent study in both mouse models and

humans has shown that, although obesity boosts the

metastasis of breast cancer cells to the lung by recruiting

neutrophils to the lung pre-metastatic niche, weight loss is

sufficient to reverse this effect (269).

5.2.1.9 Manipulating oxygen levels might be beneficial

Although hypoxic microenvironments can promote tumor

growth, according to the U.S. Food and Drug Administration,

there is no evidence that hyperbaric oxygen treatment is effective

in treating cancer. In fact, quite the opposite has been noticed: a

decline in the oxygen pressure was associated with a decline in

the risk of cancer (270). Anecdotally, in the clinical experience of

one of us, we noted that oxygen supplementation given

intermittently under pressure at night may be associated with

a clinical benefit. Specifically, we have been following a patient

diagnosed with extra-skeletal chondrosarcoma with multiple

bilateral lung metastasis for more than 4 years (2012–2016).

At the time of presentation in 2012 the patient was also on a

Continuous Positive Airway Pressure CPAP machine that he has

been using to improve his symptoms of sleep apnea. Despite a

very high tumor burden present in both lungs, his performance

status remained unchanged for four years.

5.2.1.10 Increasing carbon monoxide levels can have
multiple anti-cancer effects

Intriguingly, recent data shows that low dose of carbon

monoxide administered systemically may inhibit cancer
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metastasis. It has been demonstrated in several pre-clinical

studies that carbon monoxide-releasing molecules have anti-

proliferative, pro-apoptotic, anti-angiogenic and anti-metastatic

properties and may be exploited in the near future as non-

conventional cancer treatment agents (271).

5.2.1.11 Improving the systemic immune function
through life-style changes

Immune function may be improved by life-style changes that

affect the internal climate, such as exercise, diet manipulation,

better sleep, relaxation techniques; most of which of also have a

preventative role (discussed above). For instance, exercise has

been long been associated with improvements in clinical,

functional, and, even, survival outcomes in patients with

breast, colorectal, and prostate cancers (130, 272, 273).

Exercise continues to have a positive effect on survival even in

terminal forms of cancer (274, 275). The immune function is

modulated by diet and the influence of various diet components

on cancer growth and response to immunotherapy has been

described but a detailed characterization of the impact of

different diet components on cancer development is presently

lacking (276, 277). Several studies demonstrated a positive

relationship between a restful sleep and the immune system

(278). A classical review failed to demonstrate a clear benefit of

meditation in improving the immune system function (279).

However, more recently, a carefully designed study done with

more than a hundred subjects demonstrated a robust activation

of the immune system following an intense 8-day meditation

retreat (280). Stress has long been shown in several studies to

negatively influence cancer survival. A new study identifies a

stress-induced response in dendritic cells – the activation of the

glucocorticoid-inducible transcriptional regulator TSC22D3 as a

potent, immunosuppressive effect of stress on cancer (281).

Studies in various cancers have shown that patients taking a

beta-blocker have higher survival and lower recurrence and

metastasis rates (282).
5.2.1.12 Rejuvenating the internal climate
through senolytics

80% of cancers occurs after age 55 (283). Older age is

associated with significant changes in both cancer,

microenvironemt and body climate (284). Interestingly,

colorectal cancer incidence increases with age whereas

metastatic spread declines (285), which points to the

possibility that different biological factors may induce cancer

growth and metastasis. The presence of senescent cells in the

tumoral microenvironment has been recently acknowledged as a

key hallmark of cancer (286); and it is likely that senescent cells

contribute to climate aging, a key risk factor for cancer

development. In the near future, cancer patients may benefit

from treatments targeting tumor-promoting senescent cells,

either by pharmacologic or immunologic ablation of these cells
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(287). Studies using senolytic combinations have been

completed in mice and are currently on-going in humans

(288, 289).

5.2.1.13 Reducing co-morbidities can increase
patient survival

Systemic co-morbidities have been found to be associated with

both cancer initiation and progression (290) in a significant

number of patients (>50% in some series) (291, 292). Co-

morbidities represent an unappreciated source of body climate

alterations and their appropriate management may improve the

survival of cancer patients. In one series, for example, the most

common co-morbidities associated with cancers of the lung,

colon, rectum and Hodgkin lymphoma were diabetes, COPD

and hypertension. The clinical course of these three co-

morbidities may be improved through a concerted management

of a multidisciplinary team of medical specialists (293). The

relevance of the body climate is also underscored by the

incidence of secondary malignancies that has been increasing

steadily over the last two decades and occurs now in

approximately one in five cancer patients (294).

5.2.1 Hypothalamus-related
targeted interventions

In the context of systemic inflammation, the hypothalamus

integrates signals from peripheral systems, translating them into

neuroendocrine perturbations, altered neuronal signaling, and

global metabolic derangements (295). Cancer is a homeostatic

challenge to the organism (296, 297), and, specifically, neural

circuitry is disrupted in cancer (298). Decline in the body`s

homeostatic mechanisms are associated with cancer progression,

and in turn, cancer progression affects body homeostatic

mechanisms. In the terminal phases of cancer, the hypothalamic

inability to maintain homeostasis at the organism level triggers the

cascade of systemic events associated with cachexia. Systemic

biomarkers that sense climate changes can be used both for

early detection and disease monitoring as well as potential

hypothalamus-related interventions.

For instance, serum from animals held in an enriched

environment (EE) defined as “a combination of complex

inanimate and social stimulation” (299) inhibited cancer

proliferation in vitro and was markedly lower in leptin (300).

Hypothalamic brain derived neurotrophic factor (BDNF) was

selectively upregulated by EE; its genetic overexpression reduced

tumor burden, whereas BDNF knockdown blocked the effect of

EE. The hypothalamic BDNF downregulated leptin production

in adipocytes via sympathoneural b-adrenergic signaling (300).

In addition to the well-known association between aging and

cancer, an intriguing observation links hypothalamus to aging

(301). We can speculate that rejuvenation of hypothalamic

function through targeted approaches such as use of

microelements like chromium-picolinate (301) may also be

beneficial for cancer patients.
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6 Perspectives

As mentioned at the onset, the goal of our approach is to shift

the focus from exploring changes at the DNA, cell or tissue levels

to investigating changes that affect the entire body climate and use

our understanding of these changes to both prevent and predict

cancer development as well as slowdown cancer progression. To

do so, we need to (i) identify relevant ‘body climate factors and

components’ that affect and are affected by cancer, (ii) develop

‘body climate biomarkers’ that apply to either specific or more

general cancer types, (iii) use these biomarkers to define ‘body

generalized and personalized climate scores’ that would allow us to

predict the likelihood of cancer development and intervene, and

(iv) develop strategies to prevent ‘body climate changes’, stop or

slow the changes, or even revert the changes.

Here, we briefly overviewed the many factors that affect the

multitude of internal climate components and the interactions

among them, in the context of cancer promotion, prevention,

and treatment. Although we believe the available information

supports the role of the internal climate in promoting as well as

preventing and treating cancer, the current data is yet to be

systematically reviewed and analyzed. We hope that such

endeavors will prompt proper experimental studies to define

the main climate components that are most associated with

cancer. Such studies will also allow for the development of

systemic climate biomarkers. Once such biomarkers are

identified, thorough meta-analyses of parameter values and

other physiological aspects should allow the development of

cancer climate scores. This approach is similar to that used by

Akinyemiju et al. (302) to define the so-called “allostatic

load score”.

Allostasis has been defined by Romero et al. as the active

process of maintaining/re-establishing homeostasis (303). The

term allostatic load (AL) has been introduced in order to

describe the physiological burden of cumulative stress on

biological systems normally involved in acclimation to

environmental challenges. The allostatic load score (used to

quantify the allostatic load) was defined as the sum score of

the number of biomarkers above a set threshold (302). These

biomarkers include: serum albumin < 3.8 g/dL, C-reactive

protein (CRP) > 3 mg/L, high-density lipoprotein (HDL) < 40

mg/dL, total cholesterol >240 mg/dL, heart rate >90 beats/min,

systolic blood pressure > 140 mmHg, diastolic blood pressure

>90 mmHg, serum creatinine >1.3 mg/dL, and blood urea

nitrogen (BUN) >18 mg/dL, waist circumference (WC) >

88 cm in females and >102 cm in men (302). Interesting, for

cancer mortality, every unit increase in AL score increased the

risk by 17% among those with normal BMI and by 9% among

those who were overweight/obese. A separate mini meta-analysis

found that a one-unit increase in AL score was associated with a

9% increased risk of cancer-specific mortality (304).

Significant for the internal climate perspective introduced

here, the AL score biomarkers are all related to the climate
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components. In order to better quantify the impact of different

cancer types on the climate components, a general cancer climate

score can be designed that would include besides the 10 AL

biomarkers, other general biomarkers like Neutrophil/lymphocyte

ratio, plasma levels of ctDNA, insulin like growth factor (IGF1),

growth hormone (hGH) and methyl malonic acid (MMA), for

example. This general climate score can be further refined to

include specific biomarkers relevant for individual cancer types

type i.e. (specific metabolites, specific exosomes, etc). The general

and the personalized climate scores may guide different cancer

therapies and monitor recurrence and, also, be used as prognostic

tools. As an example, an increase in methylmalonic acid levels

may be indicative of increased risk of metastasis (305).

In a thought-provoking study, a machine-learning algorithm

that integrated blood parameters, dietary habits, anthropometrics,

physical activity, and gut microbiota measured from a cohort of

patients accurately predicted personalized postprandial glycemic

responses to real-life meals. A blinded randomized controlled

dietary intervention based on this algorithm resulted in

significantly lower postprandial responses and consistent

alterations to gut microbiota configuration (306). A similar

approach can be effective for cancer patients in whom

parameters like ctDNA, methylated DNA, glycoproteins,

metabolites, exosomes or other biomarkers obtained through

liquid biopsies can guide a nutritional intervention program.

Notably, Earth weather changes can be predicted only within

a limited time frame (two weeks or so) (307); and Earth climate

changes are grossly unpredictable. One of our central hypotheses

is that the climate factors favorable to malignant transformation

and progression follow a deterministic dynamic, such that

cancer can be predicted long before its clinical appearance.

This would allow the implementation of changes that may

avoid cancer development. Such incipient climate disturbances

that promote oncogenic changes may involve the immune

system, the systemic metabolism, both cellular and whole-body

biorhythms, and neuro-endocrine disturbances. Specific climate

biomarkers can be used to predict the inception of different

cancer types in preclinical stages and also to monitor cancer

progression, treatment responses and the risk of metastases

before clinical metastases develop. Candidate biomarkers that

can identify cancer at a pre-clinical stage and monitor disease

progression include metabolites, exosomes and glycoproteins.

For instance, an increase in the serum level of branched chain

amino acids is thought to precede with several years the

development of pancreatic cancer (58, 59).
7 Conclusion

All four enabling characteristics of the hallmarks of cancers

(genome instability, tumor promoting inflammation, non-

mutational epigenetic reprogramming and polymorphic

microbiomes) described in three consecutive papers (56, 308)
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can be modulated by the internal climate of the body. Genome

instability is also considered one of the hallmarks of aging (309)

and most components of body’s internal climate are significantly

altered in elderly persons. Systemic inflammation has been

associated with obesity (310), changes in blood concentration of

different microelements (311), stress (312) and gut microbiome

composition (313). Both DNA methylation and histone

modifications are vulnerable to disruption by endocrine

disruptive compounds exposures (314). In terms of the

influence of internal body climate on microbiota, fever-

dependent shifts in the gut microbiota were recently

demonstrated (315), so fever may influence cancer progression

either directly by influencing cancer growth rates or indirectly by

stimulating the function of immune cells or by selecting for a

certain microbiota composition.

The internal body climate components are co-dependent

and, in individual patients, their collusion creates a perfect storm

that leads to a cancer-prone environment. Age is the key altering

factor of internal body climate and, given the causal relation

between aging and cancer, although the cancer incidence related

to external factors may be reduced through lifestyle changes, the

incidence of age-related cancers will likely continue to increase

in the near future alongside with the increase of the human

population life span. A recent report (316) described the shift to

cancer as the leading cause of death in the highest-income

counties in the United States of America, surpassing

cardiovascular diseases. This trend is also present in several

high income and high-middle income countries (317).

In this paper, we propose that the internal body climate can

directly or indirectly influence all cancer hallmarks and

represents an under-appreciated element in cancer prevention

and treatment. Importantly, the different climate components

and factors described here can be used to generate climate scores

and guide body climate-directed interventions. Integrating body

climate interventions with the existent therapeutic modalities

may represent the cancer treatment paradigm of the immediate

future that will impact on cancer patients’ quality of life

and survival.
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233. Boros LG, Somlyai I, Kovács BZ, Puskás LG, Nagy LI, Dux L, et al.
Deuterium depletion inhibits cell proliferation, RNA and nuclear membrane
turnover to enhance survival in pancreatic cancer. Cancer Control (2021)
28:1073274821999655. doi: 10.1177/1073274821999655

234. Goubet AG, Daillère R, Routy B, Derosa L, M Roberti P, Zitvogel L. The
impact of the intestinal microbiota in therapeutic responses against cancer. C R Biol
(2018) 341(5):284–9. doi: 10.1016/j.crvi.2018.03.004
Frontiers in Oncology 23
235. Gong J, Chehrazi-Raffle A, Placencio-Hickok V, Guan M, Hendifar A,
Salgia R. The gut microbiome and response to immune checkpoint inhibitors:
preclinical and clinical strategies. Clin Transl Med (2019) 8(1):9. doi: 10.1186/
s40169-019-0225-x

236. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The
influence of the gut microbiome on cancer, immunity, and cancer immunotherapy.
Cancer Cell (2018) 33(4):570–80. doi: 10.1016/j.ccell.2018.03.015

237. Li XM, Delaunay F, Dulong S, Claustrat B, Zampera S, Fujii Y, et al. Cancer
inhibition through circadian reprogramming of tumor transcriptome with meal
timing. Cancer Res (2010) 70(8):3351–60. doi: 10.1158/0008-5472.CAN-09-4235

238. Das M, Ellies LG, Kumar D, Sauceda C, Oberg A, Gross E, et al. Time-
restricted feeding normalizes hyperinsulinemia to inhibit breast cancer in obese
postmenopausal mouse models. Nat Commun (2021) 12(1):565. doi: 10.1038/
s41467-020-20743-7

239. Levi FA, Canon C, Touitou Y, Reinberg A, Mathé G. Seasonal modulation
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