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Introduction: Multiple myeloma (MM) is a heterogeneous disease where

cancer-driver mutations and aberrant signaling may lead to disease

progression and drug resistance. Drug responses vary greatly, and there is an

unmet need for biomarkers that can guide precision cancer medicine in this

disease.

Methods: To identify potential predictors of drug sensitivity, we applied

integrated data from drug sensitivity screening, mutational analysis and

functional signaling pathway profiling in 9 cell line models of MM. We studied

the sensitivity to 33 targeted drugs and their association with the mutational

status of cancer-driver genes and activity level of signaling proteins.

Results: We found that sensitivity to mitogen-activated protein kinase kinase 1

(MEK1) and phosphatidylinositol-3 kinase (PI3K) inhibitors correlated with

mutat ions in NRAS/KRAS , and PI3K fami ly genes, respect ively .

Phosphorylation status of MEK1 and protein kinase B (AKT) correlated with

sensitivity to MEK and PI3K inhibition, respectively. In addition, we found that

enhanced phosphorylation of proteins, including Tank-binding kinase 1 (TBK1),
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as well as high expression of B cell lymphoma 2 (Bcl-2), correlated with low

sensitivity to MEK inhibitors.

Discussion: Taken together, this study shows that mutational status and

signaling protein profiling might be used in further studies to predict drug

sensitivities and identify resistance markers in MM.
KEYWORDS

drug sensitivity screening, multiple myeloma, mutations, targeted therapy, MEK, PI3K,
drug response biomarkers, precision medicine
Introduction

MM is considered a treatable, but generally incurable

disease, with a heterogeneous clinical course as one of its

hallmarks. Several types of molecular alterations, such as

single-nucleotide variants and cytogenetic abnormalities, are

responsible for disease initiation, maintenance, and

progression (1). Advances in molecular profiling technologies

have enabled us to characterize the molecular landscape of

aberrations, which in turn improves our understanding of the

underlying cancer biology, and indicates potential molecular

treatment targets.

Many MM driver mutations occur in known cancer-

signaling pathways, such as the Rat sarcoma virus (RAS),

mitogen-activated protein kinase (MAPK), and PI3K/AKT

pathways, which are known to control proliferation and

survival of MM cells (2, 3). Sequencing analysis of MM patient

samples has shown that the Kirsten RAS (KRAS) oncogene is the

most commonly mutated gene (36%) in the disease, followed by

the neuroblastoma RAS (NRAS) (20%), with frequent co-

existence of one or more variants in both KRAS and NRAS

cancer-driver genes (4–6). Interestingly, refractory MM patients

with multi-drug resistance to standard myeloma therapies (e.g.

proteasome inhibitors and immunomodulatory drugs) showed a

significant increase (72%) in the mutation rate of RAS pathway

genes, as compared to newly diagnosed MM cases (7). This

suggests that RAS mutations play a role in acquired drug

resistance in refractory MM. Targeting the RAS signaling

pathway is therefore of potentially high therapeutic interest.

Studies in MM have shown that molecular features,

including mutations, translocations and copy-number

abnormalities, have both prognostic and predictive value and

may enable further improvement in patient outcomes if

employed to define personalized treatment strategies (8).

Inhibition of RAS effectors, such as MEK, has emerged as a

viable strategy for the treatment of KRAS/NRAS mutant MM

clones (9, 10). Specifically, treatment of RAS/RAF mutant MM
02
with the MEK inhibitor trametinib has shown good tolerability

and durable remission in some patients (9, 11).

Besides the RAS signaling pathway, the PI3K/AKT/mTOR

pathway is activated in a significant proportion of MM patients

(3). Increased levels of MM-promoting cytokines, including

interleukin-6 (IL6) and insulin-like growth factor-1 (IGF1),

have been reported to be involved in the activation of this

pathway as well as the aberrant up-regulation of other

pathways that feed into the PI3K/AKT activation complex

(12). Inhibition of PI3K/AKT/mTOR pathway induces

apoptosis in MM (13), and targeting this pathway may

therefore show therapeutic benefit.

MM mutational status is currently used to guide the use of

targeted agents in precision medicine trials, including the

MyDrug study (NCT03732703), the CAPTUR study

(NCT03297606) , and the MATCH screening tr ia l

(NCT02465060). Protein expression and phosphorylation

levels also impact drug responsiveness, arguing for integrating

both genetic and functional analyses in treatment selection

strategies (14–16).

Here, we used high-throughput DNA sequencing to

characterize the genetic make-up of nine MM cell lines. Based

on the spectrum of mutated targets and their druggability, we

designed a library of 33 targeted drugs, which was used on the

same MM cell lines. Associations between mutational status and

drug sensitivity were investigated. Next, we used a dataset of

signaling readouts (n=31) available on the same cell lines (16) to

study how drug sensitivity correlated with baseline protein

expression and phosphorylation levels of cancer-driving

signaling proteins.

Our findings showed that mutant NRAS/KRAS MM cells

were highly sensitive to MEK inhibition, as compared to wild-

type (WT) MM cells. Furthermore, a systematic correlation

analysis of drug sensitivities and signaling protein readouts

revealed several drug dependencies. Overall, both mutational

status and protein phosphorylation/expression status may help

elucidate drug-specific sensitivities in a small panel of MM cell
frontiersin.org
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lines, which could next guide future studies to predict

biomarkers of drug sensitivity in the context of MM.
Materials and methods

Cell lines

Myeloma cell lines used in this study were U266 (17), JJN3

(18), CAG (19), INA6 (20), OH2 (21, 22), IH1 (23), KJON,

VOLIN (24), URVIN, and FOLE. The FOLE MM cell line

(Misund et al., unpublished), has biallelically-inactive TP53,

and was used as a positive control for testing of the MDM2-

P53 interaction inhibitor nutlin-3A. The MM cell lines were

cultured in RPMI 1640 medium (ThermoFisher Scientific,

Waltham, MA, USA) supplemented with 2mM L-glutamine,

1% Penicillin-Streptomycin, 1x Sodium Pyruvate (NaPur), and

fetal bovine serum (FBS) at 10% (JJN3, CAG, INA6, VOLIN,

URVIN) or 15% FBS (U266), or 10% human serum (Sigma-

Aldrich, Saint-Louis, MO, USA) (IH1, OH2, KJON). The culture

medium was supplemented with 2 ng/mL IL6 (ThermoFisher

Scientific) for culturing of INA6, KJON, IH1, OH2, URVIN, and

VOLIN. The cells were expanded, aliquoted and cryopreserved

until experimental assays were performed. See Table 1 for MM

cell line characteristics.
Cell viability assay

Drugs (n=33) were selected based on mutated targets in the

cell lines (see Tables 2, 3 for drugs and their corresponding

mutated targets), and were added to 384-well TC-microplates

(Greiner #781080) using an acoustic dispenser (Echo 550,

Labcyte Inc., CA, USA). Each drug was tested at five

concentrations ranging from 1 to 10,000 nM. Experiments on
Frontiers in Oncology 03
cell lines were done on freshly thawed cells. MM cells (5000 cells

per well in 25 ul volume) were transferred into plates using an

automatic dispenser (Certus Flex, Fitz Gyger, Thun,

Switzerland), and incubated at 37°C for 72h. Cell viability was

assessed by the CellTiter-Glo luminescence assay (Promega, WI,

USA) according to the manufacturer ’s instructions.

Luminescence was recorded with an Envision Xcite plate

reader (Perkin Elmer, MA, USA). The raw concentration-

response data were analyzed using the KNIME software (AG,

Zurich, Switzerland) and Rstudio Team (Boston, MA) (25).

Normalization of the response readout was done to the

negative (0.1% DMSO) and positive (100 µM benzethonium

chloride) controls.
Phospho flow

Phospho flow assays were performed on freshly thawed

myeloma cells as described previously (26). Antibody-stained

samples were run on a BD LSR Fortessa and output data were

analyzed in Cytobank (https://cellmass.cytobank.org/cytobank/).

Raw data were transformed to an arcsinh ratio relative to the

signal of an isotype control, which was set to zero.
Data analysis and statistics

Curve-fits of normalized concentration-response data used

the function drm from the R package drc (https://www.r-project.

org/) with the four parameter log-logistic model, LL.4, or the

logistic model, L.4, where LL.4 failed to converge. To quantify

drug responses, a modified drug sensitivity score (DSS) was

calculated for each drug (27). In this modified function, area

under the curve was calculated using a response-window from

100% to 10%, and a concentration-window from the minimum
TABLE 1 Characteristics of the MM cell lines included in the study.

Cell line IL-6 dependent IgH translocations TP53 status Other features High-
risk

Ploidy

INA6 yes t (11, 14) TP53 MUT Up-regulation of Cyclin D1 yes NHRD

JJN3 no t (14, 16), t (8, 14) TP53 missing (1) yes NHRD

CAG no t (14, 16) TP53 MUT yes NHRD

U266 no t (11, 14) Up-regulation of Cyclin D1; Active
STAT3 (2)

no NHRD

URVIN yes t (4, 14) TP53 WT del(1p); gain(1q) yes NHRD

IH1 yes t (4, 14) TP53 WT yes NHRD

VOLIN (3) yes not detected (3) TP53 MUT (3) gain(1q) yes HRD

KJON (3) yes not detected (3) TP53 MUT (3) del(1p13); gain(1q) yes HRD

OH2 yes unknown TP53 WT yes HRD

FOLE
(unpublished)

no t (4, 14) TP53 MUT (p.P72R; p.C238W)
(unpublished)

del (17) yes NHRD
frontie
HRD, hyperdiploid; NHRD, non-hyperdiploid.
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concentration tested to the concentration where the viability

reached 10% (threshold %). DSS type 1 was used, without the

term for division by the logarithm of the upper limit. The DSS

scores were calculated on a scale of 0-100. A high DSS therefore

indicates that MM cells are drug-sensitive, while a low DSS

indicates drug-resistant MM cells.

Statistical analyses of output data from drug sensitivity

screens and phospho flow assays were performed in GraphPad

Prism v8 (San Diego, CA, USA). Welch’s t test [(*p < 0.05, ***p <

0.001, ns (not significant)] was used to compare two means, as

indicated in the respective figure legends. ClustVis (28) was used

for unsupervised clustering of the DSS values and column

annotations indicating genes with the presence of point

mutations. No scaling is applied to rows. Columns were

clustered using Euclidean distance and Ward linkage. The

significance of the correlation coefficients between DSS values

and phospho flow readouts was assessed by Pearson’s r test for

Figures 1B, C and Supplementary Figure 2, where the p-values

prior to multiple-testing correction are shown.

Predictive models for drug response (as defined by the DSS)

were constructed using either mutation or phospho flow data as

covariates. In each case, a type of multi-response penalized linear

regression model known as tree-lasso (29, 30) was used for

feature selection and to assess the predictive power of the

selected features for drug response. Regression coefficients for

all 33 drugs were penalized jointly in a hierarchical fashion, with
Frontiers in Oncology 04
penalties weighted by the strengths of the correlations among

drug responses, as defined by the height parameters in the

hierarchical tree structure of the DSS data (Supplementary

Figure 1). For optimal results, the tree height parameters were

cut-off at 0.7, on a scale where the root of the tree is at a height of

1 and the leaves are at a height of zero.

Both the mutation-dependent and protein-dependent

models were trained using leave-one-out cross validation to

compute the Mean Squared Error (MSE) as a function of the

tuning parameter. The tree-lasso cost function was optimized

using the sub-function tree.lasso from the R package

IPFStructPenalty, available at https://github.com/zhizuio/

IPFStructPenalty. In each model, the tuning parameter L was

set to a value at which the cross-validated MSE becomes

essentially flat and the smoothing parameter for Smoothing

Proximal Gradient descent (SPG) optimization was set to m =

10-4. For the mutation-dependent model, the tuning parameter

was set toL = 25 (with a cross-validated MSE of 175), and for the

protein-dependent model it was set to L = 24 (with a cross-

validated MSE of 530). The tree-lasso regression coefficients of

each model were then computed using the optimal values of the

tuning parameter L (Figures 2A, 1A, B).

The amount of variance explained by each model was also

assessed by the R squared value, which was computed for each

tuned model as R2 = 1 - RSS/TSS, where the Residual Sum of

Squares (RSS) and Total Sum of Squares (TSS) were both defined
TABLE 2 MM cell lines included in the study and amino acid changes detected in mutated genes.

Mutated gene MM cell lines with amino acid changes

EGFR KJON (V592I,R832C), OH2 (Q61K)

ABL1 IH1 (H929N)

FLT1 CAG (I178S), JJN3 (E910K)

FLT3 INA6 (T526M)

FLT4 OH2 (V750M),U266 (G1328V)

NRAS IH1 (G12V), INA6 (G12D), JJN3 (G13D), OH2 (Q61K)

KRAS KJON (Q61H)

ALK JJN3 (P1213S)

ROS1 U266 (S371P), URVIN (R1569W)

SYK IH1(D410Y)

ALK JJN3 (P1213S)

PIK3CA CAG (H1047R), JJN3 (W590C)

PIK3R3 URVIN (X462Y-stop lost)

MET KJON (V121I)

BRAF U266 (K601N)

RAF1 CAG (S259F)

CAMK KJON (Q128K, P342L,P363L), CAG (V436I,V459I,V445I,V480I,V468I,V497I)

CDK13 KJON (V736E), URVIN (G65R),

CLK1 JJN3 (N99S), URVIN (Q455E)

MTOR JJN3 (A2300D)

TP53 CAG (E285K), INA6 (K132M), VOLIN (L130V), U266 (A161T)
The table indicates the names of the “druggable” mutated target gene detected in the indicated MM cell lines (cell line names in bold), the corresponding amino acid substitutions, and for
which cell line the mutations occur.
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using all 9 cell lines at once. The R squared value was R2 = 0.39

for the mutation-dependent model, and R2 = 0.58 for the

protein-dependent model.

The covariates for the protein-dependent model were

defined as the standardized phospho flow data, i.e., for each

protein the phospho flow arcsinh ratios were centralized at their

mean value across samples and normalized by their standard

deviation prior to the tree-lasso model calculations. As a

consistency check, an overall matching between the signs of

the regression coefficients and those of the protein-drug Pearson

correlation coefficients was observed (Supplementary Figure 1B),

since the standardization of the phospho flow data allows

analogous interpretations for these two types of coefficients.
Frontiers in Oncology 05
Targeted high-throughput sequencing
analysis – variant calling

Targeted DNA sequencing was performed using the SureSelect

Human Kinome kit (Agilent Technologies), with capture probes

targeting 3.2 Mb of the human genome, including exons and

untranslated regions (UTRs) of all known kinases and selected

cancer‐related genes (n = 612). Paired-end sequencing reads of 100-

bp length were aligned to the human reference genome (hg19) with

Novoalign (version 2.08.3), followed by filtering and realignment

with GATK tools and Picard. Single point mutations were identified

using MuTect (version 1.1.4). Variant consequence annotation was

performed with ANNOVAR, using RefSeq as the underlying
TABLE 3 Drugs included in the study and their associated target.

Drug name Matched mutated target Clinical Trials.gov ID*/Reference/Cancer

Afatinib EGFR NCT02465060 (lymphomas, MM)

AT9283 ABL1 (1)

Axitinib FLT1/3/4 NCT03297606 (lymphomas, MM)

binimetinib NRAS, KRAS NCT02465060 (lymphomas, MM)

Brigatinib ALK, ROS1 NCT02094573; NCT03535740

Cerdulatinib SYK NCT01994382, NCT04021082 (CLL, lymphomas)

Ceritinib ALK NCT02393625

Cobimetinib NRAS, KRAS NCT02465060 (lymphomas, MM)

Copanlisib PIK3CA, PIK3R3 NCT02465060 (lymphomas, MM)

Crizotinib ALK, ROS1, MET NCT02693535 (MM); NCT04439253; NCT01121588; NCT02465060 (lymphomas, MM)

Dabrafenib BRAF NCT02465060 (lymphomas, MM); NCT03091257

Dasatinib ABL1 NCT03595917 (leukemia); NCT03297606 (lymphomas, MM)

Entospletinib SYK NCT01799889 (CLL, lymphomas)

Entrectinib ALK, ROS1 NCT02693535 (lymphomas, MM)

Erlotinib EGFR NCT03297606 (lymphomas, MM)

GSK2636771 PIK3CA, PIK3R3 NCT02465060 (lymphomas, MM)

Idelalisib PIK3CA, PIK3R3 NCT01539512 (CLL)

KN-93 phosphate CAMK (2, 3)

lorlatinib ALK, ROS1 NCT03052608; NCT03909971; NCT01970865

ML167 CDK13, CLK1 (4)

Nutlin-3A Mdm2-TP53 (TP53 wild-type)

Osimertinib EGFR NCT02465060 (lymphomas, MM)

palbociclib CDK13 NCT02465060; NCT02693535; NCT03297606 (lymphomas, MM)

pictilisib PIK3CA, PIK3R3 (5)

regorafenib FLT1,3,4 NCT02693535 (lymphomas, MM)

ruxolitinib JAK/STAT (6)

sunitinib FLT3 (VGFR) NCT02693535; NCT02465060; NCT03297606 (lymphomas, MM)

TAK-659 SYK (7)

Taselisib PIK3CA, PIK3R3 NCT02465060; NCT04439175 (lymphomas, MM)

Temsirolimus MTOR, PIK3CA, PIK3R3 NCT03297606 (MM), NCT00398515 (MM), NCT00079456 (MM), NCT02693535 (MM)

Trametinib NRAS, KRAS NCT02642042, NCT03091257 (MM), NCT04487106 (leukemia)

U0126 NRAS, KRAS

Vemurafenib BRAF NCT03297606; NCT02693535 (lymphomas, MM)
The table contains information about the drugs (n=33) selected in this study, including their target, clinical trial, and if the drug is being tested in MM or related B-cell malignancies.
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transcript model. Details of the complete variant calling pipeline

that was applied on the MM cell lines have been described

previously (31). The mean sequencing coverage of the kinome

was 477x, and we obtained a minimum coverage of 150x for 87.6%

(VOLIN) and 90.0% (KJON-1) of the kinome targeted regions.

Variant calling performed on cancer cell lines without utilizing

matched normal samples is bound to generate a mix of germline

variants and somatic variants. We therefore set up a set of filtering

procedures to both i) exclude known germline variants, and ii)

enrich for coding, cancer-associated variants. Specifically, we

excluded all variants that overlapped with germline variants

found in the 1000 Genomes Project phase 3 (minor allele

frequency > 1% in any population), and NHLBI Exome

Sequencing Project (minor allele frequency > 0.1% in any

population) (32, 33). In addition, we excluded variants present in

the single nucleotide polymorphism database (dbSNP) (build 138)

(34) that had no clinical associations (as given from ClinVar cross-

references). Finally, we restricted the variant set to coding variants

(missense, stop-gain/stop-loss, frameshift/non-frameshift, splice site

donor/acceptor) in known cancer census genes (COSMIC version

68) (35). All variants were subjected to a functional annotation

workflow that included UniProt KB (functional protein properties)

and Polymorphism Phenotyping v2 (PolyPhen-2) web server

(computational predictions of effect of coding variants) (http://

genetics.bwh.harvard.edu/pph2/) (36).
Results

Identification of mutations in MM
cell lines

In order to identify functionally relevant and actionable

mutations in MM, nine MM cell lines (Table 1) were subjected

to targeted high-throughput DNA sequencing. Short sequencing

reads were processed with a variant calling pipeline and

subsequent variant filtering procedure, from which we

detected a total of 136 mutated genes in the cell lines

(Supplementary Table 1). Mutated genes included NRAS/

KRAS, BRAF, RAF-1, TP53, PIK3CA, PIK3R3, MTOR, FLT1,

FLT3, FLT4, EGFR, and SYK, which are known to be frequently

mutated in MM and other related blood malignancies (37–39),

as well as to have a therapeutic potential in MM (39)

(Tables 2, 3).

To prioritize the identified gene variants for functional

impact, all protein-coding alterations were subjected to

analysis with PolyPhen2 (see Materials and Methods), a tool

that provides computational predictions for the functional

impact of amino acid changes. We identified 31 amino acid

changes with predicted damaging effects which were druggable

(39), including the most oncogenic RAS mutated isoform, G12

and Q61, as well as PIK3CA catalytic subunit mutations,
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p.H1047R and p.W590C (40, 41) (Tables 2, 3 and

Supplementary Table 1).
Targeting the mutational status in MM
cell lines

Based on the mutation analysis, we designed a drug library

consisting of 33 clinically relevant drugs targeting identified

druggable gene products (Table 3). Drug sensitivity screens were

then performed on the 9 MM cell lines.

An unsupervised clustering of the cell lines by their DSS

profiles showed that MM cell lines with PI3K and NRAS/KRAS

mutations displayed high sensitivity to MEK and PI3K

inhibitors, respectively (Figure 1A). Concentration-response

effects on the MM cell viability to individual inhibitors with

and without associated targets are shown in Figures 1B, C. These

findings support our hypothesis that the presence of RAS and

PI3K mutations may increase MM cell sensitivity to MEK and

PI3K inhibitors.

We observed variability in efficacy among drugs targeting the

PI3K signaling pathway. The most effective drugs were

temsirolimus (mean DSS ± SD = 51.96 ± 13.66), taselisib (mean

DSS ± SD = 41.82 ± 17.10), pictilisib (mean DSS ± SD = 32.50 ±

13.66), and copanlisib (mean DSS = 19.83 ± 18.65), while treatment

with idelalisib and GSK2636771 resulted in markedly low DSS

(mean DSS = 2.29 ± 2.5, mean DSS = 0.26 ± 0.46, respectively)

(Figure 2A). Among the MEK inhibitors, trametinib induced the

highest response (mean DSS ± SD = 47.20 ± 27.46), followed by

binimetinib (mean DSS ± SD = 21.88 ± 21.54), cobimetinib (mean

DSS ± SD = 21.11 ± 23.80), and U0126 (mean DSS ± SD = 11.83 ±

13.85) (Figure 2A).

Interestingly, the MM cell lines CAG and URVIN, harboring

PIK3CA and PIK3R3 mutations, respectively, exhibited the

highest sensitivity to taselisib and temsirolimus treatment,

while JJN3, harboring mutations in PIK3CA and mTOR genes,

showed less sensitivity to taselisib compared to CAG and

URVIN cell lines. On the other hand, JJN3 gained sensitivity

to temsirolimus that also targetmTOR (Figure 2B). The MM cell

lines IH1, OH2, and KJON, with NRAS/KRAS mutations, were

found highly sensitive to trametinib (Figure 2B). These results

indicate that sensitivity to kinase inhibitors may be associated

with corresponding pathway mutations.
Mutational status as a predictor for in
vitro drug responsiveness

To study whether the mutational status could predict drug

sensitivity, we compared treatment responses to PI3K and MEK

inhibitors between cell lines with and without selected

mutations. We found that cell lines with PI3K pathway
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mutations (i.e. PIK3CA, PIK3R3, and mTOR) or RAS gene

mutations (i.e. p.G12V, p.G12D, p.G13D, p.Q61K, and

p.Q61H) (Table 2) exhibited significantly higher DSS relative

to cell lines with WT forms of the listed genes when comparing

aggregated data for each class of drugs tested (Figures 3A, B, left

panels). The three PI3K inhibitors, taselisib, copanlisib, and

pictilisib, each showed a trend towards association with PI3K

mutational status, but this was not statistically significant

(Figure 3A, right panels). Of the four MEK inhibitors tested, a
Frontiers in Oncology 07
statistically significant association was found between the

response to binimetinib and RAS mutational status whereas

trends towards statistical significance were observed for

trametinib, cobimetinib, and U0126 (Figure 3B, right panels).

Interestingly, by applying a tree-lasso regression model as

described in Materials and Methods, a few mutations were found

to be associated in varying degrees with high sensitivity to

several drugs, as indicated by the positive values in the sparse

matrix of regression coefficients (Figure 3C). In particular, the
B

C

A

FIGURE 1

Targeting point mutations in cancer-driving genes in MM cell line models. A–C, Freshly thawed cells from the indicated MM cell lines were
dispensed in 384-well plates pre-coated with a customized drug library of 33 single drugs. At 72h, cell viability was assessed by CellTiter-Glo. A
drug sensitivity score (DSS) was calculated ranging from 0 to 100 for the entire drug library (see Materials and Methods). High DSS indicates high
drug sensitivity. (A), MM cell lines (n=9) were exposed to single drugs as described above. DSS (rows) was calculated for each drug and cell line
and plotted as a heatmap. Columns are clustered using Euclidean distance and the Ward linkage method. Column annotations (top) indicate
mutated genes, where blue means mutation present, while light blue absent. (B, C), Concentration-response curves for the effects of taselisib
and trametinib, on the viability of indicated MM cell lines (72h) treated as above. Graphs show mean viability ± standard deviation (SD, n=3). MM
cell lines with mutations in PI3K/mTOR and RAS target genes are indicated in red, whereas the MM cell lines in different colored lines are wild-
type and each line indicates cell viability effects in each individual cell line.
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mutational status of the PIK3CA and NRAS genes were selected

as predictors for drug sensitivity to PI3K and MEK

inhibitors (Figure 3C).

We also noticed that, while the prediction analyses

demonstrated that the mutational status may be useful to

predict drug sensitivity, the predictive impact of NRAS

mutations on the drug sensitivity to MEK inhibitors was

higher than the one observed for PIK3CA mutations on PI3K

inhibitors, as indicated by the color-intensity of the heatmap

in Figure 3C.

The inhibition of the MDM2-TP53 interaction by nutlin-3A

is an attractive strategy to stabilize the P53 mediated apoptosis in

various WT TP53 tumors, including MM (42–44), and therefore

worth investigating. Interestingly, we observed differing

sensitivities to the MDM2-TP53 inhibitor nutlin-3A between

the TP53 WT IH1 and the biallelically TP53 mutant MM cell

line FOLE. (Figure 3D). When stratifying nutlin-3A responses

on TP53 mutational status in all MM cell lines tested, we

observed a significantly higher drug sensitivity in the TP53

WT cell lines, in agreement with earlier reports (14, 15,

45) (Figure 3E).
Protein expression level affects
drug sensitivities

Having demonstrated that gene mutations in MM cell lines

are linked to drug sensitivities towards PI3K and MEK

inhibitors, we were then interested in studying how expression

levels of the pathway (phospho) proteins correlated with their

drug sensitivity.

In order to identify relevant signaling proteins whose

observed basal expression or phosphorylation levels across

different cell lines can explain corresponding DSS values for
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different drugs, our first approach was a correlation analysis

using Pearson correlation coefficients. Correlation coefficients

for all possible protein-drug pairs, including the 33 drugs in our

library, and the 31 relevant signaling proteins (16) selected for

our study, were computed using the phospho flow readouts and

DSS values from all the MM cell lines (Supplementary

Figure 1B). Multiple significance tests of the Pearson

correlation coefficients followed by a false discovery rate

controlling procedure revealed that this method is not

sufficiently robust to capture significant correlations. Our

solution was to model all the drugs jointly using the tree-lasso

regression approach described in Materials and Methods. By

penalizing regression coefficients jointly according to the

hierarchical clustering tree of the correlations among DSS

values of different drugs, we were able to achieve enough

sensitivity to capture protein-drug correlations that had been

lost in our previous, naïve approach (Figure 4A). We found that

PI3K and MEK inhibitors emerged as separate clusters, each

with a common set of predictive variables, as indicated by a few

non-zero tree-lasso regression coefficients (Figure 4A). We note

that since the covariates in our model were defined as the

standardized phospho flow readouts, the tree-lasso regression

coefficients have a similar interpretation to correlation

coefficients (i.e., positive or negative values for the coefficients

have similar meanings in both cases), and therefore can be

regarded as a special type of correlation.

Notably, using the tree-lasso regression model we found that

high levels of phospho-TBK1 inversely correlated with low drug

sensitivity to MEK inhibitors, including trametinib, binimetinib,

and cobimetinib (Figure 4A). Although these correlations seem

to be in agreement with individual Pearson correlation plots of

the TBK1 levels against DSS for trametinib and binimetinib

(upper plots in Figures 4B, C), we emphasize that their true

significance is only revealed by an integrated model that explores
BA

FIGURE 2

Drug sensitivity profile in MM cell lines. (A), Drug sensitivity to the indicated drugs across the 9 MM cell lines shown in Figure 1. The graph shows DSS for
the indicated drugs sorted from most to least effective as mean ± SD. Green and pink bars indicate PI3K/mTOR inhibitors (PI3K/mTORi) and MEK
inhibitors (MEKi), respectively. (B), DSS distribution for the three most effective drugs (target indicated): temsirolimus (mTOR, PI3K, AKT), trametinib
(MEK1/2), and taselisib (PI3K) inhibitors in the MM cell lines. MM cell lines with targeted mutations are indicated in different colors.
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B

C D

E

A

FIGURE 3

Associations between drug sensitivity and mutational profiles in MM cell lines. (A, B), Pharmacogenomic comparison between PI3K and RAS
mutation status and DSS to PI3K and MEK inhibitors. Aggregated (left) and individual drug (middle-left) effects are shown. The graph shows
mean DSS ± SD. (C), Heatmap of the tree-lasso regression coefficients for DSS as a function of mutations, where the rows are all the possible
selected features (i.e., genes whose regression coefficients are exactly zero for all drugs were excluded from the plot, as well as those
coefficients that, for every drug, are lower in absolute value than 5% of the sum of all coefficients for the given drug). Framed rectangles
highlight the predictive power of NRAS and PIK3CA for the responses to MEKi and PI3Ki, respectively. (D), Concentration-response curves of cell
viability for nutlin-3A in the IH1 and FOLE MM cell lines that differ in TP53 mutational status. The graph shows mean viability ± SD (n=3). (E),
Association of the TP53 mutation status with nutlin-3A sensitivity for all 10 MM cell lines. The graph shows mean DSS ± SD. Statistics were
performed using Welch’s test. Statistics were performed using Welch’s test. *p < 0.05, **p < 0.01, ***p < 0.001, ns (not significant).
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B C

A

FIGURE 4

Association between drug sensitivity and expression or activation profile of selected intracellular cancer-driven proteins. A–C, Freshly thawed
MM cell lines (n=9) were fixed, permeabilized and stained with antibodies against the indicated proteins or phosphoprotein epitopes (rows).
Signals were analyzed by flow cytometry (see Materials and Methods). (A), Heatmap of the tree-lasso regression coefficients for DSS as a linear
function of the standardized phospho flow data, with proteins as rows and drugs as columns. Positive and negative regression coefficients are
represented in shades of red and blue, respectively. B,C, Pearson correlation plots for DSS to the indicated MEK inhibitors trametinib (B) and
binimetinib (C) versus three signaling readouts inversely associated with drug response.
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the data structure of all the drugs to define a new, more robust,

type of correlation.

As also observed in our previous study (16), we found that

high levels of Bcl-2 and phospho-Bcl-2 predicted low sensitivity

to trametinib, binimetinib, and cobimetinib (Figures 4A-C

middle and lower plots). Once again, individual Pearson

correlation plots (Figures 4B, C middle and lower plots) are

not enough to identify these relationships, since their statistical

significance were only seen after using the more robust tree-lasso

regression approach for variable selection. Also, worth

mentioning is our finding that phospho-MEK1 (pS298) is

positively correlated (in the sense of positive tree-lasso

regression coefficients) with sensitivity to the same MEK

inhibitors (trametinib, binimetinib, and cobimetinib).

Moreover, we observed that high phosphorylation levels of

AKT (pS473) correlated with high responses to PI3K

inhibitors taselisib, pictilisib and copanlisib (Figure 4A). In

this case, Pearson correlation p-values are too high even before

multiple-testing correction (Supplementary Figures 2A-D),

however, tree-lasso regression was still sensitive enough to

capture a relatively weak correlation.

Taken together, our results indicate that the expression and

phosphorylation levels of signaling proteins can inform on drug

sensitivity, and therefore, can provide relevant information as

part of functional drug testing studies.
Discussion

Currently, the choice of therapy for MM patients is mostly

based on physician’s decision and patient’s clinical status,

including age and comorbidities (46, 47). Identification of

molecular drivers and biomarkers is therefore needed to

improve the outcome of individual patients. Mutated cancer-

driver genes are now employed as drug sensitivity biomarkers in

clinical trials for MM, leukemia and lymphomas (48–50)

(NCT04470947). Moving forward in this context, the EXALT

study (NCT03096821) has demonstrated that drug-response

testing in cancer cells combined with molecular profiling data

is feasible and can improve treatment outcome (51), providing

proof-of-concept data for this approach.

Here, we aimed to test 33 targeted drugs and to compare

their sensitivity and relationships to mutational status of selected

genes in a panel of MM cell lines. We also performed a

comprehensive analysis correlating drug sensitivities to basal

expression and phosphorylation levels of signaling proteins to

explore the impact of activated mitogenic pathways on

differential drug responses.

We found that RAS- and PI3K- related mutations supported

MM cell sensitivity to MEK and PI3K inhibitors, respectively.

We observed drug-class response differences in drugs with the

same target. The PI3K pathway inhibitors temsirolimus,

taselisib, pictilisib, and copanlisib were very active, whereas
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idelalisib and GSK2636771 showed little or no activity in this

study. This might be due to isoform-specific effects of the PI3K

inhibitors tested, as previously reviewed (52, 53). In addition, the

impact of PIK3CA mutations on the responses to PI3K

inhibitors was moderate compared to that observed for NRAS

mutations on the effect of MEK inhibitors. However, the

observations and prediction model might be impacted by the

lower frequency of MM cell lines harboring PIK3CA mutations

(2/9) compared to the corresponding frequency for NRAS

mutations (4/9). Nevertheless, our data are in agreement with

results from a meta-analysis case in breast cancer, where the

predictive role of PIK3CAmutation status on the clinical efficacy

of PI3K inhibitors remains controversial (54).

Trametinib induced the highest sensitivity across the MM

cell lines, and sensitivity to both binimetinib and trametinib

correlated with the presence of RAS mutations, in particular in

the NRAS isoform. In contrast, we observed that expression or

activation of survival members, such as Bcl-2 or phospho-Bcl-2

as well as phospho-TBK1, correlated with low responses to MEK

inhibitors (i.e. trametinib, bimetinib).

With respect to RAS mutations and prediction of MEK

inhibitor sensitivity, the cell line IH1 harboring a p.G12V

mutation in NRAS had the highest sensitivity to trametinib,

followed by the OH2 and KJON cell lines harboring NRAS

p.Q61K, and KRAS p.Q61H, respectively. The presence of RAS

mutations and RAS pathway activation in lung cancer was

previously shown to confer the highest sensitivity to MEK

inhibitors among a panel of 500 oncology drugs (55),

demonstrating that RAS mutations may be indicators of

sensitivity to MEK inhibitors.

Of the RAS WT cell lines, CAG and U266 show the lowest

sensitivity to MEK inhibition by trametinib, whereas URVIN

shows reduced sensitivity compared to RAS mutant cell lines. In

contrast, VOLIN has a sensitivity to trametinib in range with

mutant cell lines. This demonstrates that mutational analysis

alone is insufficient to predict drug sensitivity, which is in

agreement with previous reports (56, 57). Next, we found that

the MM cell lines CAG and URVIN with PIK3CA and PIK3R3

mutations were the most sensitive to taselisib-induced

inhibition. Taselisib is a selective PI3Ka isoform-specific PI3K

inhibitor. Similarly, a study in PIK3CA positive primary uterine

carcinomas cells, demonstrated a stronger growth inhibition by

taselisib, when compared with WT cells, as well as in vivo tumor

growth inhibition in mice with PIK3CA mutation (58). A phase

II study on taselisib is ongoing for patients with PIK3CA

mutation and advanced refractory solid tumors, lymphomas or

MM (NCT02465060). This may indicate that patients with

PIK3CA mutations may be more addicted to taselisib, and

further studies on this are warranted.

Since molecularly targeted therapies act on proteins,

measuring the expression and activation at this level is critical

to optimize the selection of targeted therapies. We therefore

looked at several relevant signaling proteins and their
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relationships with drug sensitivity. We found that low sensitivity

to the MEK inhibitors trametinib and binimetinib observed in

some MM cell lines, including CAG and U266 with RAF-1

(CRAF) and BRAF mutations (see Figure 1A), could possibly be

explained by high basal expression levels of phospho-TBK1 and

Bcl-2 proteins. It has been suggested that another effective

strategy to enhance the efficacy of MEK inhibitors involves

simultaneous targeting of proteins that are outside the RAS

pathway (40). An example is TBK1, an atypical I-kB kinase

family member that acts through the Ral guanine exchange

factor (RalGEF) cascade to promote tumor signaling, including

activation of AKT (59, 60) and NF-kB (61, 62). Targeting TBK1

pharmacologically or by mRNA knockdown induces apoptosis

and reduces cell viability in a subset of acute myeloid leukemia

(AML) cells with an activated MYC signaling pathway necessary

for survival (63). It has been shown that combined TBK1/MEK

inhibitors synergistically enhance apoptosis in several model

systems with mutated RAS, including lung cancer, melanoma

cells, as well as in BRAF mutant melanoma cells, resistant to

MEK (62, 64–66), warranting further investigation of combined

use of TBK1 and MEK inhibitors also in MM.

We found that high basal expression levels of Bcl-2 predict

low drug sensitivity to the MEK inhibitors trametinib,

binimetinib and cobimetinib. Several pre-clinical and clinical

studies have indicated cooperative activity between MEK and

Bcl-2 antagonists in solid tumors, MM, and leukemias (67, 68)

(NCT03312530), (NCT02670044), (NCT04487106). We have

previously also reported synergistic effects of trametinib and

venetoclax in vitro in chronic lymphocytic leukemia and MM

(16). This indicates that our approach can identify markers that

affect drug response phenotypes, which may have clinical utility.

In summary, we provide an integrated approach that uses

mutational status and profiling of intracellular (phospho)

proteins to test how these markers inform on drug sensitivity

of targeted treatments. However, the small sample size of the

cell lines in this study limited our ability to draw clear

conclusions on the predictive value of this approach. The

next step will be to improve the prediction significance by

including a larger cohort of samples, which will also

accommodate for more extensive multiple correlations

analyses. While our results suggest that MM cells are

sensitive to MEK and PI3K single agents, MM patients are

often treated with more than one drug at the same time. Hence

it would be of interest to test the efficacy of combined MEK/

PI3K inhibition in the future, and also to add conventional

agents, including proteasome inhibitors.
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