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Introduction: Pancreatic adenocarcinoma (PAAD) is a fatal disease

characterized by promoting connective tissue proliferation in the stroma.

Activated cancer-associated fibroblasts (CAFs) play a key role in fibrogenesis

in PAAD. CAF-based tumor typing of PAAD has not been explored.

Methods: We extracted single-cell sequence transcriptomic data from

GSE154778 and CRA001160 datasets from Gene Expression Omnibus or

Tumor Immune Single-cell Hub to collect CAFs in PAAD. On the basis of

Seurat packages and new algorithms in machine learning, CAF-related

subtypes and their top genes for PAAD were analyzed and visualized. We

used CellChat package to perform cell–cell communication analysis. In

addition, we carried out functional enrichment analysis based on

clusterProfi ler package. Finally, we explored the prognostic and

immunotherapeutic value of these CAF-related subtypes for PAAD.

Results: CAFs were divided into five new subclusters (CAF-C0, CAF-C1, CAF-

C2, CAF-C3, and CAF-C4) based on their marker genes. The five CAF

subclusters exhibited distinct signaling patterns, immune status, metabolism

features, and enrichment pathways and validated in the pan-cancer datasets. In

addition, we found that both CAF-C2 and CAF-C4 subgroups were negatively

correlated with prognosis. With their top genes of each subclusters, the sub-

CAF2 had significantly relations to immunotherapy response in the patients

with pan-cancer and immunotherapy.

Discussion:We explored the heterogeneity of five subclusters based on CAF in

signaling patterns, immune status, metabolism features, enrichment pathways,

and prognosis for PAAD.

KEYWORDS

pancreatic adenocarcinoma, immune features, machining learning, prognosis,
immunotherapy, subclusters
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Introduction

Pancreatic adenocarcinoma (PAAD) is a serious threat to

people’s life and health due to its high degree of malignancy and

poor prognosis. According to the latest epidemiological data,

pancreatic cancer is the 12th most common tumor in the world

but the fourth most deadly cancer worldwide (1, 2). Pancreatic

ductal adenocarcinoma (PDAC) is the most common histologic

type of PAAD. PDAC has low resection rate, insensitive radio

chemotherapy, and poor prognosis, and the 5-year survival rate

is less than 7% (1, 3). PAAD develops gradually from genetic

abnormality to abnormal cell proliferation and precancerous

lesions and then to minimal early carcinoma, which takes a very

long time, about 5–20 years. However, it only takes 6 to 20

months to develop from a small tumor to a significant mass and

then to the advanced stage. In addition, because of the painless

and insidious growth of pancreatic masses, most patients with

pancreatic cancer are already diagnosed in advanced stages.

Therefore, the study of the pathogenesis and progression of

PAAD and the search for suitable bimolecular targets are of great

significance to enrich the treatment strategies of pancreatic

cancer and improve the prognosis of patients.

The occurrence and development of tumors are closely related

to their living environment, and the internal environment

composed of tumor cells, mesenchymal cells, immune cells,

vascular endothelial cells, and extracellular matrix (ECM) is called

tumor microenvironment (TME) (4). During the development of

PAAD, a microenvironment is formed, which is favorable for the

survival, proliferation, and distant metastasis of PAAD cells (5). The

poor prognosis of pancreatic cancer may be associated with specific

biological characteristics, such as significant interstitial fibrosis (6).

In recent years, researchers have paid more and more attention to

the stroma of PAAD (7, 8). Dense fibrous tissue surrounding tumor

cells is an important histologic feature of PDAC (9–11). The main

components of interstitium include ECM, immune cells, endothelial

cells, and cancer-associated fibroblast (CAF) (12), and stroma

microenvironment cells interact with tumor cells in a complex

way (13). TME can determine the biological behavior of the tumor,

which, in turn, affects patient prognosis. Therefore, understanding

the biological characteristics of TME is crucial for understanding

the biological behavior of PAAD (14).
Abbreviations: PAAD, pancreatic adenocarcinoma; CAF, cancer-associated

fibroblast; PDAC, pancreatic ductal adenocarcinoma; TME, tumor

microenvironment; ECM, extracellular matrix; GEO, Gene Expression

Omnibus; TISCH, Tumor Immune Single-cell Hub; TCGA, The Cancer

Genome Atlas; ICB, immune checkpoint blockade; CCA, canonical correlation

analysis; DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes

and Genomes; GO, Gene Ontology; GSVA, gene set variation analysis; K-M,

Kaplan–Meier; OS, overall survival; RFS, relapse-free survival; ROC, receiver

operating characteristic.
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Tumor stroma cells are complex, and interstitial cells

interact with each other (7, 15). The relatively abundant cell

components in the stroma are CAFs, and CAFs are closely

related to the significant proliferation of connective tissue of

PAAD cells. CAFs are considered to be fibroblasts that produce

ECM, cytokines, chemokines, and growth factors, with the

primary function of promoting tumor progression (16).

However, some targeted therapy studies on CAFs suggested

that removal of CAFs can promote tumor progression or

metastasis (17, 18), suggesting significant heterogeneity of

CAFs within tumors (19), that is, some CAF subgroups may

play a role in inhibiting tumor progression. A large number of

single-cell transcriptome sequencing studies have further

clarified the significant heterogeneity of CAFs within and

between tumors, as well as the functional classification of

CAFs (20, 21). Currently, commonly accepted cancer-

associated fibroblast (CAF) are categorized as myofibroblastic

CAFs (myoCAFs) and inflammatory CAFs (iCAFs). myoCAFs

are mainly distributed around tumor cells and are mainly related

to the generation of ECM. Some reports suggested that some

subgroups of myoCAFs may be involved in immune regulation

(22). iCAFs mainly secrete cytokines and chemokines to act on

tumor cells. In addition, other small CAF subsets, such as apCAF

(20) and LRRC15 (+) myoCAFs (21), were identified. Of course,

different subsets of cells perform different functions, and as

single-cell sequencing technology continues to mature, more

functional subsets of CAFs may be discovered. At present,

single-cell sequencing studies suggested that representative

markers of myoCAFs were Alpha-smooth muscle actin (a-
SMA), periostin, and matrix metallopeptidase-11 (MMP-11);

representative markers of iCAFs were Interleukin-6 (IL-6), C-X-

C Motif Chemokine Ligand 12 (CXCL12) stromal cell-derived

factor-1 (SDF-1), and Platelet-derived growth factor receptors-

beta (PDGFR-b); and fibroblast activation protein-alpha (FAP-

a) was a co-expression marker of two types of CAFs (20).

However, the origin, function, and biological characteristics of

CAFs need to be further studied.

In the current study, we gained single-cell sequence

transcriptomic data from public databases. We carried out

comprehensive analysis to generate five CAF subclusters and

explore the differences among them. This will provide new

insights into the treatment of PAAD.
Materials and methods

Study design and data collection

The flowchart of present study is shown in Figure 1. Single-cell

sequence transcriptomic data from the GSE154778 and

CRA001160 datasets were collected to analyze the fibroblast cells

(23, 24). Full details can be downloaded from Gene Expression

Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo) and Tumor Immune
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Single-cell Hub (TISCH; http://tisch.comp-genomics.org/)

databases (25). Among them, we extracted CAF cells to analyze

the features. In addition, seven bulk-sequence data for PDAC—

TCGA (n = 146), ICGC-PACA-AU (n = 267), GSE71729 (n = 125),

GSE62452 (n = 66), GSE57495 (n = 63), ICGC-PACA-CA (n =

182), and E_MTAB_6134 (n = 50)—were enrolled from GEO and

The Cancer Genome Atlas (TCGA) databases based on previous

data (26). Pan-cancer dataset with 31 cancer types was also collected

to verify the features of the single-cell subsets. All data generated or

analyzed during this study are freely available in the previous

publications. Last, to get the immune features of the subset of

single-cells, 10 cohorts with different tumors before or after

immunotherapy [immune checkpoint blockade (ICB)] were

collected in Tumor Immune Dysfunction and Exclusion (TIDE)

database to further analysis (27).
Subset for fibroblast cells

The Seurat R package was used to visualize the CAF cells

from two cohorts (28), including the 1,656 CAFs in GSE154778

and 6,228 CAFs in CRA001160. Top 2,000 genes were integrated

by the method of canonical correlation analysis (CCA) to

integrate CAFs for dimensionality reduction cluster analysis

(Resolution = 0.1, N = 5) (29). We also performed ScaleData,

RunPCA, DimPlot, and t-SNE (t-distributed stochastic neighbor

embedding) based on R packages to analyze and visualize results.
Cell–cell communication analysis

The CellChat R package with full of ligand–receptor

interactions can analyzed the intercellular communication
Frontiers in Oncology 03
networks between different cell clusters in the single-cell

dataset (30). To access the major signaling inputs and outputs

among subsets and other TME cells, the CellChatDB.human,

netVisual_circle and netVisual_bubble functions were used to

show the strength or weakness of cell–cell communication

networks from the CAF subclusters to other different cell

clusters in single-cell dataset.
Identification of the marker genes of CAF
cell subtypes

FindAllMarkers function was used to list the markers of

subclusters of CAF (31). The min.pct and logfc.threshold

functions were all set as 0.25. The AddModuleScore function

could obtain the signature scores based on differentially

expressed genes (DEGs) (32). The dot plot function was

performed to show the top highest gene expressions in

subcluster (33). The FeaturePlot function was used to show

the distribution of specific signatures of subcluster scores. The

volcano plot based on the marker genes among different subsets

of CAF was displayed.
Functional enrichment analysis for
CAF subsets

The significant Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways and Gene Ontology (GO) functions were

detected by the clusterProfiler R package (34) based on marker

genes among different subsets of CAF. To cluster the special

pathways, the Cytoscape enrichment map function was

performed in the Cytoscape software (35).
FIGURE 1

The workflow diagram depicting collection of data and processing of the analysis to show the framework of our study.
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Prognosis analysis and prediction
analysis of subsets

We first performed the gene set variation analysis (GSVA)

(36) based on the subset signatures of CAF subsets to get the

enrichment scores for these subclusters of CAF in the PDAC

bulk sequence. On the basis of their prognostic information, we

analyzed the prognosis features of subsets of CAF enrichment

score in the cohorts from TCGA and GEO. The cutoff values of

different NMF cell signatures in the different public datasets

were determined by the survminer R package (37) used to plot

Kaplan–Meier (K-M) curves. The prediction value of subsets of

CAF for immunotherapy also was performed by the receiver

operating characteristic (ROC) analysis. The ComplexHeatmap

(38) or pheatmap (39) packages in R visualize the pooled values

of CAF in these cohorts.
Gene expression detecting using
quantitative real-time PCR assays

The human pancreatic CAF-stellate cell named CAF118 was

supplied by Neuromics (Edina, USA) and was cultured using

Stem Cell Complete Low Serum Media (Neuromics, Edina,

USA). The human pancreatic cell HPC-Y5 was purchased

from National Collection of Authenticated Cell Cultures and

was cultured in 90% MEM Eagles with Earle’s Balanced Salts

(EME-EBSS) with 10% FBS (fetal bovine serum). The human

pancreatic cancer cell line SW1990 was purchased from Procell

(Wuhan, China) and cultured in 90% LEIBOVITZ (L-15) with

10% FBS. After extracting the total RNA of the cell lines by the

RNAsimple Total RNA Kit (Tiangen, China), we reverse-

transcribed RNA to acquire cDNA using the PrimeScript RT

reagent Kit (Takara, Otsu, Japan). Finally, on the basis of the

premixed system of 2 ml of cDNA with SYBR Premix Ex Taq

(Takara, Otsu, Japan) and primers, we detected the expression

values of related genes in cell lines by an Applied Biosystems

StepOne Plus Real-Time PCR system (Life Technologies, Grand

Island, NY, USA). The primers of the target gene were supplied

by Sangon Biotech (Shanghai, China). The sequences of the

primers used are listed in Table 1.
Statistical analysis

Routine statistical analyses of the present study were

performed in R 4.0 software. The relationships of sub-CAF

with other special genes were calculated by the Spearman’s

rank correlation. The K-M method, log-rank test, and Cox

regression analysis were performed to detect the prognosis of

subset of CAF in the OS (overall survival) and RFS (relapse-free

survival) in patients with Pancreatic ductal adenocarcinoma
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(PDAC) and other tumor. The area under the ROC curve was

used to estimate the diagnostic value of GSVA score of subset of

CAF. A two-sided p-value below 0.05 was considered

statistically significant.
Results

Identification of five CAF-related
subtypes for PDAC

Recent SCNA-SEQ studies of human PDAC have shown

that intra-tumor heterogeneity of PDAC is key to the analysis of

tumor-related mechanisms. Extensive fibrous proliferation

caused by CAFs is common in PDAC. In clinical practice, we

often encounter PDAC tumors with unique histological

characteristics. To characterize the CAF subpopulations in

PDAC, we performed unsupervised clustering analysis

(Figure 2A). The all-positive expressed markers (log2FC > 1)

are shown in Figure 2B and Supplementary Table S1. The results

showed that CAFs were divided into five subclusters based on

their marker genes (Figure 2C): CAF-C0 (by marker genes C7

and PTGDS), CAF-C1 (by marker genes COL11A1 and

COL10A1), and CAF-C2 (by marker genes EPB41L4A-AS1

and ENO2). Proportions of sub-CAF in each patient is

different, and that verifies the features for the single-cell

subsets (Figure 2D).
CAF subclusters exhibited distinct
signaling patterns

The major signaling inputs and outputs among subclusters

were different. The characteristics of signaling patterns within

each CAF subgroup were different. The results showed that
TABLE 1 The primer sequences in PCR analysis.

Symbol Sequences (5′-3′)

ADM-F CTGATGTACCTGGGTTCGCT

ADM-R ATGTCCTGGGGCCGAATAAG

Eno2-F CTCTGTGGTGGAGCAAGAGA

Eno2-R ATTGATCACGTTGAAGGCCG

ERO1A-F TTGGATCTGCTGGTGGTCAT

ERO1A-R TCCCTTGACCAGAAGCCAAA

BNIP3-F CGCAGACACCACAAGATACC

BNIP3-R GCGCTTCGGGTGTTTAAAGA

UPP1-F TTGACTGCCCAGGTAGAGAC

UPP1-R TGCCTGCTCTGTTATGACCA

Actin-F ACTTCGAGCAAGAGATGGCC

Actin-R GCTGATCCACATCTGCTGGA
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subcluster CAF-C0 was related to CD99, MK, PDGF, NEGR,

NCAM, BMP, and CD46; CAF-C1 was related to FN1, CD99,

MK, PDGF, NEGR, NCAM, BMP, and CD; CAF-C2 was related

to TGB2; whereas CAF-C4 was related to ITGB2 (Figure 3A).

The cross-linking between CAF and 14 kinds of main TME cells

in each subcluster was also different (Figures 3B, C). CAF-C0

was closely related to adenocyte, epithelial-to-mesenchymal

transition (EMT), endocrine, epithelial, and malignant,

whereas CAF-C1 was closely related to adenocyte, EMT,

endocrine, epithelial, and malignant. CAF-C2 was closely

related to adenocyte, EMT, endocrine, epithelial, and

malignant, whereas CAF-C3 was closely related to adenocyte,

EMT, endocrine, epithelial, and malignant. CAF-C4 was
Frontiers in Oncology 05
associated with adenocyte, EMT, endocrine, epithelial,

malignant, endothelial, and plasma.
CAF subclusters exhibited distinct
immune and metabolism features

Some subsets based on CAFs were significantly correlated

with immune gene sets, such as CAF-C2 and immune

modulators, other cytokines, C3 and co-inhibitors, immune

checkpoint, MHC class I, and C4 and MHC non-class

(Figures 4A–D). The expression of metabolism-related genes

of CAF in each subclusters was different (Figure 4E). The genes
A

C

B

D

FIGURE 2

(A) To characterize the CAF subpopulations in PDAC, we performed unsupervised clustering analysis and showed that CAFs, which were
categorized into five subclusters (C0, C1, C2, C3, and C4). (B) All-positive markers (log2FC > 1) heatmap of CAF cell subtypes. The colors of the
top bar represent the different subclusters. Yellow indicates higher expression, and purple indicates lower expression. (C) Dot plot of top 10
markers in each cluster. The color represents the average expression. The size of the circle represents the percent. (D) Proportions of sub-CAF
in each patient. The axis represents the ratio of different subclusters for each patient. The colors of the bar represent the different subclusters.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1045477
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2022.1045477
related to arachidonic acid metabolism (HSD11B1, PDK4,

ALDH1A1, GPX3, PTGDS, GGT5, RBP1, PNLIP, CYP1B1,

ADH1B, PTGIS, and INMT), arginine and proline metabolism

(PLA2G1B, AMY2A, PLA2G2A, ALDH2, MGST1, PLPP3,

CDO1, FMO1, and LTC4S), Cyclooxygenase arachidonic acid

metabolism (FMO3 and DHRS3), and drug metabolism by

cytochrome P450 (GLUL, LAP3, ALDH1A3, STRA6, CHST1,

and CH25H) were highly expressed in CAF-C0. The genes

related to purine metabolism (HSD17B6, ALDH1B1, PLOD1,

ALOX15B, and PYCR1) and pyrimidine metabolism (ENPP1

and SCD) were highly expressed in CAF-C1. Genes associated

with sugar synthesis and metabolism, such as N-glycan

biosynthesis (ENO1), oxidative phosphorylation (HMOX1),

primary bile acid biosynthesis (PKM), retinol metabolism

(ENO2, PTGES, UPP1, and CA12), starch and sucrose

metabolism (PSAT1), and steroid hormone biosynthesis

(PHGDH, GSTA1, and CA9), were highly expressed in CAF-

C2. The genes related to glycerolipid metabolism (CMPK2,

TYMS, and AKR1C1), sphingolipid metabolism (GK), taurine
Frontiers in Oncology 06
and hypotaurine metabolism (NDUFA4L2), and testosterone

biosynthesis (MGLL) were highly expressed in CAF-C3. The

metabolic genes related to lipid and amino acid [such as ether

lipid metabolism (GAPDH and GDA); fatty acid degradation

(CP and VNN2); gluconeogenesis (ENPP2, TPI1, NAMPT,

CA2, and ST6GALNAC5); glycine, serine, and threonine

metabol ism (SAT1 and UAP1); glycosaminoglycan

biosynthesis (RDH10 and CRABP2); hexosamine biosynthesis

(PTGS2), lysine degradation (B4GALT1 and NME1); and

nicotinate and nicotinamide metabolism (ODC1, ANXA1,

HSPA5, and SRM)] were highly expressed in CAF-C4.
CAF subclusters exhibited distinct
enrichment pathways

GO and KEGG analysis suggested differences in their

biological functions of the five subclusters (Figures 5A, B) and

Supplementary Table S2. Interestingly, all five subtypes were
A B

C

FIGURE 3

Cell–cell communication analysis. (A) The major signaling inputs and outputs among subsets. (B) Detailed view of the ligand–receptor
expressed by each cell type and the other cell types for each CAF subclusters. The thicker the lines, the greater the number/intensity of ligand
receptor. The size of the dots represents the number of cells in the subpopulation. (C) Bubble plot showing the ligand–receptor interactions
between CAF clusters and cells. P-values are indicated by circle size. Communication proportion is indicated by color. The redder the color, the
more important the interaction.
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enriched in four pathways: complement and coagulation

cascades, ECM–receptor interaction, proteoglycans in cancer,

and AGE-RAGE signaling pathway in diabetic complications

(Figure 5A). As for CAF-0, there were highly expressed genes

involved in T cell activation, ATP generation from ADP, tumor

necrosis factor production, vasoconstriction, cellular response to

ketone, biosynthesis of amino acids, and so on. For CAF-C1,

there were highly expressed genes involved in regulation of
Frontiers in Oncology 07
peptide secretion, positive regulation of apoptotic signaling

pathway, negative regulation of cell morphogenesis involved in

differentiation, Wnt signaling pathway, and signaling pathways

regulating pluripotency of stem cells. For CAF-C2, there were

highly expressed genes involved in cellular response to

extracellular stimulus, neutrophil activation involved in

immune response, negative regulation of cell activation, HIF-1

signaling pathway, and arachidonic acid metabolism. For CAF-
A E

B

DC

FIGURE 4

(A) GSVA enrichment results of immune gene sets in sub-CAFs. The z-score represents the rating. (B) Correlation test between sub-CAF and
immune gene sets score. The color of the lines indicates the Mantel’s p-value. The color of the box represents the correlation. (C) Positive
markers in immune genes in sub-CAFs. The redder the color, the higher the expression of the gene in the CAF cluster. The bluer the color, the
lower the expression of the gene in the CAF cluster. (D) TFs of positive markers in sub-CAFs. The bluer the color, the lower the expression of
the gene in the CAF cluster. (E) Positive markers in metabolic genes in sub-CAFs. The bluer the color, the lower the expression of the gene in
the CAF cluster.
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C3, there were highly expressed genes involved in monocyte

chemotaxis and regulation of insulin-like growth factor receptor

signaling pathway. For CAF-C4, there were highly expressed

genes involved in cellular response to decreased oxygen levels,

cellular response to metal ion, negative regulation of small

molecule metabolic process, mitogen-activated protein kinase

(MAPK) signaling pathway, tumor necrosis factor (TNF)

signaling pathway, and IL-17 signaling pathway. We

established networks to elaborate how related genes were

functionally enriched (Figures 5C–G).
Survival analysis of different
CAF subclusters

Volcanic maps of differential genes for comparison of CAF

between two groups were shown in Figure 6A. We can see the

distribution of hazard ratios (HRs) based on sub-CAFs for

tumors in TCGA database from Figure 6B. For ACC
Frontiers in Oncology 08
(adrenocortical carcinoma), GBM (glioblastoma multiforme),

LGG (brain lower-grade glioma), LUSC (lung squamous cell

carcinoma), and UVM (uveal melanoma), HRs predicted by

sub-CAFs were all statistically significant. We collected PAAD

data from seven databases and analyzed the correlation between

CAF subgroup marker genes and patient prognosis. We found

that both C2 and C4 subgroups were negatively correlated with

patient survival (Figures 6C–E).
CAF subclusters exhibited
distinct immunotherapy

To get the immune features of the subset of single-cells, 10

cohorts with different tumors before or after immunotherapy

(ICB) were collected in TIDE database to further analysis. The

results showed that each sub-CAF had different levels of

immunotherapy response (Figure 7). The expression of some

ICP gene HAVCR2 was positively correlated with the GSVA z-
A

B

DC

E

F G

FIGURE 5

Functional enrichment analysis for CAF subsets. (A) Compared clusters of KEGG results. The color represents the P-value, and the size of the
circle represents the ratio of genes. (B) Compared clusters of GO results. The color represents the P-value, and the size of the circle represents
the ratio of genes. (C–G) Networks of functional enrichment analysis elaborated by Cytoscape.
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score of these CAF subclusters (Figure 7A). We calculated the

cell subset score of each sample in the immune therapy dataset

for five CAF clusters and analyzed the correlation with prognosis

by univariate cox analysis (Figure 7B). From Figure 7B,

Nathanson2017_CTLA4 was found to have prognostic value in

the four CAF clusters (CAF-C0, CAF-C1, CAF-C2, and CAF-

C3). Therefore, we selected the Nathanson2017_CTLA4

immunotherapy dataset for CAF-C2 scoring, divided into high

and low groups, and drew the K-M curve, from which we
Frontiers in Oncology 09
observe the poor prognosis of the low group (Figure 7C). We

also developed a diagnostic model for immunotherapy response,

as shown in Figure 7D.
Quantitative real-time PCR

We selected the marker genes (ADM, ERO1A, ENO2,

BNIP3, and UPP1) of CAF-C2 to detect their expression in
A

B

D

E

C

FIGURE 6

Prognosis analysis and Prediction analysis of subsets. (A) The volcano figure of differential expression analysis of five CAF-clusters. (B) HRs
predicted by subCAFs of TCCA datasets. The color represents the HR value. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Survival curve predicted for
CAF-C2. (D) Survival curve predicted for CAF-C4. (E) HRs predicted by subCAFs of PAAD datasets. The color represents the HR value. *P < 0.05;
**P < 0.01; ***P < 0.001.
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human pancreatic CAF-stellate cell (CAF118), human

pancreatic cell (HPC-Y5), and human pancreatic cancer cell

line (SW1990). Compared with HPC-Y5, ADM (Figure 8A),

ERO1A (Figure 8B), ENO2 (Figure 8C), BNIP3 (Figure 8D), and

UPP1 (Figure 8E) were significantly higher expressed in SW1990

and CAF118.
Frontiers in Oncology 10
Discussion

PAAD is an aggressive malignancy, of which 95% are PDAC.

In recent years, its morbidity and mortality rates have increased

by an average of 0.3% per year due to changes in lifestyle and

factors such as aging population and increased life expectancy
A B

DC

FIGURE 7

The correlation between CAF clusters and immune therapy. (A) Key ICP genes expression and GSVA z-score correlation test. Red means
positive correlation, and blue means negative correlation. *P < 0.05, **P < 0.01, and ***P < 0.001. (B) HRs predicted by sub-CAFs of immune
therapy datasets. The color represents the HR value. *P < 0.05 and **P < 0.01. (C) K-M curve for Nathanson2017_CTLA4 immunotherapy
dataset based on CAF-C2 scoring. (D) The diagnostic model for immunotherapy response based on CAF-C2.
A B D EC

FIGURE 8

Quantitative real-time PCR. (A–E) Quantitative real-time PCR assays using cell lines for ADM (A), ERO1A (B), ENO2 (C), BNIP3 (D), and UPP1 (E).
**P < 0.01; #P < 0.05; ##P < 0.01.
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(40). Because of the lack of specific symptoms and biological

markers, early diagnosis of PAAD is very difficult. PAAD

progresses rapidly and is inoperable by the time most patients

are diagnosed (41). At the same time, pancreatic cancer is not

sensitive to most treatments (42), so its prognosis is extremely

poor (43). Some studies have shown that the unique interaction

network and high heterogeneity of pancreatic cancer cells and

that their microenvironment may play an important role in the

origin, progression, and drug resistance of pancreatic cancer

cells, and elucidating the inherent complex mechanisms has

completed the common goal of scholars in this field (44, 45).

Despite a lot of work, the results have been poor, with PAAD

showing the lowest improvement in 5-year survival in recent

years compared with other cancers (46). One of the important

reasons lies in the limitations of traditional research methods in

exploring the heterogeneity of tumors. Single-cell sequencing

technology brings hope to break through this dilemma. It can

deeply analyze the distribution, status, and interaction of

different subgroups of cells, which makes up for some

shortcomings of traditional sequencing technology and

provides a new research method. At present, some studies

based on single-cell sequencing technology have gradually

achieved results and gradually gained a new understanding of

the occurrence and progress of PAAD, providing possible targets

for early diagnosis and effective treatment and promoting the

development of precision medicine in the field of PAAD.

Molecular subtyping of PAAD is still in its early stage. In the

clinical evaluation and prognostic analysis of PAAD, TNM stage

and other clinical features are commonly used. However,

because of individual differences in pancreatic cancer, there is

no widely used molecular classification of pancreatic cancer that

is associated with prognosis or has different sensitivity to

treatment (47). Therefore, it is necessary to develop better

methods for clinical diagnosis and prognosis assessment of

PAAD so that patients can early detect cancer and take

reasonable and effective treatment measures.

In recent years, with the continuous optimization and

progress of the second-generation sequencing technology, the

study of tumor bioinformatics has developed rapidly (48).

However, there are a lot of mesenchymal components in PAAD

tissue, which often leads to direct sequencing or inaccurate

sequencing results (49, 50). Genomics studies have revealed

common genomic pathway changes in PAAD, as well as more

common or targeted somatic mutations in addition to the four

major driver genes (51–53). Waddell et al. found that unstable

patients may be more suitable for treatment with drugs involved in

genomic damage repair pathways, such as Poly ADP-ribose

polymerase (PARP) inhibitors or platinum, compared with other

three types (53). More studies on PAAD typing have focused on

transcriptomics. Because of the high content and complex

composition of mesenchyma in PAAD tissues, there are some

differences in sequencing analysis results. Sequencing analysis of

samples with high or enriched tumor cells showed that PAAD
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tended to be divided into two types: classical and basal-like (54, 55).

Studies of samples with relatively low levels of tumor cells, however,

showed that pancreatic cancer types tended to be more diverse (55–

57). This may be mainly due to the complexity of interstitial

components, such as the differences in immune cell infiltration

and interstitial activation. Canonical and basal-like transcriptome

types are of great significance in predicting the prognosis of patients,

but they have not yet played a good role in the classification and

guidance of specific clinical treatment.

To further illuminate the subtyping of PAAD based on CAFs,

we used Seurat 1656 CAFs in GSE154778 and 6228 CAFs in

CRA001160. Our data discriminated five CAF subclusters and

corresponding marker genes. To explore the mechanism of these

CAF subclusters involved in the development of PAAD, we assess

the characteristics of signaling patterns for the five CAF subclusters

and found that these CAF subclusters were all closely related to EMT

and endocrine. RHIM et al. traced that PAAD cells could develop

EMT and obtain mesenchymal phenotype through in vivo pedigree,

some cells after EMT initiated stem cell program, and PAAD cells

with CD24+CD44+ stem cell phenotype weremore likely to enter the

blood circulation and survive (58). Breast cancer cells can also exhibit

fibroblast characteristics and have the ability to differentiate into

myofibroblasts (59). Our results further suggested that CAFs may be

derived from EMT. We found that the expression of metabolism-

related genes of CAF in each subclusters was different. Metabolic

changes are an important feature in the identification of cancer cells.

Many studies have found that CAFs are associated with energy

metabolism of cancer cells, and tumor cells can better adapt to their

rapid growth by modifying the TME. Sun et al. found that hypoxia

can improve the glycolysis activity of CAFs, and lactic acid in

hypoxia CAFs, as a metabolic coupling between CAFs and breast

cancer cells, can improve the mitochondrial activity of cancer cells

through relevant signaling pathways, thus promoting the invasion of

breast cancer cells (60). In addition, in autophagy-related paracrine

mode, CAFs provide substrates (such as lactic acid, pyruvate, and

ketone bodies) for adjacent cancer cells derived from their own

excess glycolysis activity (61). Research has shown that, in breast

cancer, prostate cancer, head and neck carcinoma and lymphoma,

and tumor, the catabolism of fibroblasts, the anabolic metabolism

coupling between cancer cells, and the metabolic coupling drive

fibroblasts of oxidative stress, glycolysis, autophagy, and aging; the

decomposition in the metabolic production of fibroblasts for tumor

growth provides a rich nutrition of microenvironment. The

formation of mitochondrial fuel (lactic acid, ketone bodies, fatty

acids, glutamine, and other amino acids) through a local matrix

promotes tumor growth (62). CAFs can play an important role in

the progression of cancer cells through a variety of metabolic

pathways, which may provide new strategies for the treatment

of PAAD.

In summary, we evaluated the heterogeneity of subclusters

based on CAF for PAAD. The signaling patterns, immune status,

metabolism features, and enrichment pathways of these subclusters

were estimated and determined. Nonetheless, some limitations of
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the current study should not be ignored. The number of cells from

the databases obtained in this study is limited, which varies from

patient to patient. Therefore, more sample size is needed to support

the conclusion. In addition, further high-throughput single-cell

sequencing analysis and in vivo studies should be used to confirm

the conclusions of this study.
Conclusions

We explored the heterogeneity of five subclusters based on

CAF in signaling patterns, immune status, metabolism features,

enrichment pathways, and prognosis for PAAD.
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