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Diagnostic performance
of radiomics in predicting
axillary lymph node metastasis
in breast cancer: A systematic
review and meta-analysis

Xiuru Gong †, Yaxin Guo †, Tingting Zhu, Xiaolin Peng,
Dongwei Xing and Minguang Zhang*

Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, China
Background: This study aimed to perform a meta‐analysis to evaluate the

diagnostic performance of radiomics in predicting axillary lymph node

metastasis (ALNM) and sentinel lymph nodemetastasis (SLNM) in breast cancer.

Materials and methods: Multiple electronic databases were systematically

searched to identify relevant studies published before April 29, 2022:

PubMed, Embase, Web of Science, Cochrane Library, China National

Knowledge Infrastructure, and Wanfang Data. The quality of the included

studies was assessed using the Quality Assessment of Diagnostic Accuracy

Studies-2 tool. The overall diagnostic odds ratio (DOR), sensitivity, specificity,

and area under the curve (AUC) were calculated to evaluate the diagnostic

performance of radiomic features for lymph node metastasis (LNM) in patients

with breast cancer. Spearman’s correlation coefficient was determined to

assess the threshold effect, and meta-regression and subgroup analyses

were performed to explore the possible causes of heterogeneity.

Results: A total of 30 studies with 5611 patients were included in the meta-

analysis. Pooled estimates suggesting overall diagnostic accuracy of radiomics

in detecting LNM were determined: DOR, 23 (95% CI, 16-33); sensitivity, 0.86

(95% CI, 0.82-0.88); specificity, 0.79 (95% CI, 0.73-0.84); and AUC, 0.90 (95%

CI, 0.87-0.92). The meta-analysis showed significant heterogeneity between

sensitivity and specificity across the included studies, with no evidence for a

threshold effect. Meta-regression and subgroup analyses showed that

combined clinical factors, modeling method, region, and imaging modality

(magnetic resonance imaging [MRI], ultrasound, computed tomography [CT],

and X-ray mammography [MMG]) contributed to the heterogeneity in the

sensitivity analysis (P < 0.05). Furthermore, modeling methods, MRI, and

MMG contributed to the heterogeneity in the specificity analysis (P < 0.05).
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Conclusion:Our results show that radiomics has good diagnostic performance

in predicting ALNM and SLNM in breast cancer. Thus, we propose this approach

as a clinical method for the preoperative identification of LNM.
KEYWORDS
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Introduction

Female breast cancer has recently surpassed lung cancer to

become the most common cancer worldwide (1). Increasingly

young patients develop breast cancer, among which axillary lymph

node metastasis (ALNM) is the most common mode of metastasis.

Axillary lymph nodes (ALN) reside in the axillary region of the

upper limb and carry important information for the anatomic

staging of breast cancer. The presence and extent of axillary lymph

node metastasis reflect the risk of distant recurrence and death

after topical treatment. Moreover, the overall survival rate of node-

positive patients is 40% lower than node-negative (2, 3). Thus, the

lymph node status is crucial for treatment planning, surgical

procedures, and prognosis assessment of patients (4).Currently,

staging of the axilla in patients with breast cancer is evaluated with

sentinel lymph node biopsy and axillary lymph node dissection.

However, both involve invasive surgery and have a high incidence

of complications (5–7). Therefore, developing noninvasive ALN

staging methods for determining the clinical stage of breast cancer

and selecting individualized treatment options for patients

is paramount.

Radiomics is a novel noninvasive method that rapidly extracts

numerous quantitative features imperceptible to the naked eye

from traditional biomedical images through high-throughput

computation. It provides valuable diagnostic and prognostic

information by analyzing the correlation between image features

and clinical data, which is widely used in tumor grading,

therapeutic response, and prognostic assessment (8, 9).In breast

cancer, radiomics constructs predictive models for ALNM and

SLNM by extracting quantitative features from ultrasound,

computed tomography (CT), magnetic resonance imaging

(MRI), X-ray mammography (MMG), or positron emission

tomography (PET), with good potential (10–14). However, due

to differences in study methods and imaging modalities,

heterogeneity may arise among the studies. Moreover, in

patients with breast cancer, systematic research on the

performance of radiomics in predicting lymph node metastasis

(LNM) and the factors affecting it is lacking, necessitating further

verification of radiomics for clinical application.
02
Therefore, the objective of this systematic review with meta-

analysis was to evaluate the diagnostic performance of radiomics

models in predicting ALNM and SLNM in patients with

breast cancer.
Materials and methods

The meta-analysis was conducted according to the Preferred

Reporting Items for Systematic Reviews and Meta-analysis

(PRISMA) Statement (15).
Literature search

Two observers independently searched various electronic

databases: PubMed, Embase, Web of Science, Cochrane Library,

China National Knowledge Infrastructure, and Wanfang Data to

identify eligible studies published before April 29, 2022. “Breast

Neoplasms,” “Lymphatic Metastasis,” “Radiomics,” and their

variations were used as search terms. Only English and

Chinese publications were sought, and EndNote 20 software

was used for reference management. Disagreement among the

observers, if any, was resolved with a consensus achieved

through discussion with the third observer.
Selection criteria

The inclusion criteria were as follows:
1. Original research studies

2. Studies on patients with breast cancer and ALNM or

SLNM, according to pathological criteria

3. Radiomics studies, including ultrasound, CT, MRI,

MMG, or PET–CT images applied for ALNM or

SLNM classification

4. Data sufficient to reconstruct the 2 × 2 contingency table

to estimate the sensitivity and specificity of the diagnosis
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https://doi.org/10.3389/fonc.2022.1046005
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gong et al. 10.3389/fonc.2022.1046005
The exclusion criteria were as follows:
Fron
1. Reviews, editorials, expert opinions, animal studies, and

conference presentations

2. Imaging analysis based on only non-radiomics methods

3. Unclear pathological diagnosis

4. Studies with smaller sample sizes, if involving

overlapping patients and data
Data extraction

Relevant data were extracted from the included studies: the

first author, publication year, study design, country, sample size,

the number of LNM and non-LNM in breast cancer, reference

standard, imaging modalities, radiomics algorithm, and clinical

factors. True-positive, false-positive, false-negative, and true-

negative values were extracted from the data, and the 2×2

contingency table was generated. When multiple models were

used for a patient group, the one with the highest diagnostic

accuracy was selected for the meta-analysis. Disagreement was

discussed until consensus was reached.
Data quality assessment

The risk of bias in the selected studies was assessed using the

4 areas of the Quality Assessment of Diagnostic Accuracy

Studies-2 (QUADAS-2) tool: patient selection, index test,

reference standard, and flow and timing, customized to a

particular study question (16).
Statistical analysis

Statistics were calculated using the Midas modules in the

Stata software (v 16.0) and Review Manager (v 5.3). The pooled

sensitivity, specificity, diagnostic odds ratio (DOR), positive and

negative likelihood ratios (LR), with corresponding 95%

confidence intervals (CIs), were determined to predict

diagnostic accuracy. The summary receiver operating

characteristic (SROC) curve and the area under the curve

(AUC) were also constructed using the random effects model

to evaluate the diagnostic value of combined studies (17). The

AUC values suggested the discriminatory power as follows: low,

0.5-0.7; moderate, 0.7-0.9; and high, > 0.9.

Heterogeneity between the included studies was assessed

with a Cochran Q test and the I2 statistics. A difference was

considered significant when P < 0.05, with I2 ≥ 50% indicating a

moderate-to-high heterogeneity among the studies. Pooling of

studies and effect size were evaluated using a random-effect

model, suggesting the distribution of true effects among the
tiers in Oncology 03
heterogenous studies (18). The causes of heterogeneity were

estimated with threshold effect and meta-regression analyses.

Spearman’s correlation coefficient was calculated to assess the

threshold heterogeneity, with P < 0.05 implying a threshold

effect (19). Univariable meta-regression analysis of several

relevant covariates: study design (retrospective or prospective),

combined clinical factors (yes or no), modeling method

(radiomic algorithm or machine/deep learning), region (China

or other), and imaging modality (MRI, ultrasound, CT, PET–CT

or MMG), was performed.

In addition, to assess the relative contribution of a single

study to the overall estimate, sensitivity analyses were done by

sequential exclusion of one study from the meta-analysis

calculations. Publication bias was examined using Deek’s

funnel plots, where slope coefficients with P < 0.10 indicated

significant publication bias (20).
Clinical utility

The clinical utility of radiomics in predicting LNM was

evaluated with Fagan plot analysis by indicating the posttest

probability (P post) of LNM when pretest probabilities (P pre,

suspicion of LNM) were provided (21).
Results

Literature search

According to search strategies described in the methods

section, 723 records were initially retrieved from the electronic

databases. After removing 114 duplicates, 609 studies

remained. They were screened by title and abstract for

relevance, and 536 were excluded based on the inclusion and

exclusion criteria. Finally, the 2 independent observers

scrutinized 73 full-text articles and included 30 in the meta-

analysis. Figure 1 shows the flow chart that summarizes the

study selection process.
Data quality assessment

Overall, most studies exhibited very low risk of bias and few

applicability problems, suggesting high data quality. The details

of the risk of bias and applicability concerns of the included

studies are presented in Figure 2.
Characteristics of the included studies

Table 1 shows relevant characteristics and details of 30

studies included in the meta-analysis. The studies had 5611
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patients, 2337 with LNM and 3274 without, assessed using a

radiomics method. Seven studies (3, 22–27) reported diagnostic

performance based on radiological characteristics and clinical

factors. Only one (10) used prospectively collected data.

Furthermore, the studies applied radiomics based on different

imaging modalities: MRI, 17 (3, 11, 22, 23, 28–39); ultrasound, 7

(14, 24, 25, 27, 40–42); CT, 2 (12, 43); PET–CT, 2 (10, 44); and

MMG, 3 (13, 26, 45).
Data analysis

Pooled estimates reflecting the overall predictive value of

radiomic signatures for ALNM and SLNM in breast cancer

were calculated across the studies: sensitivity, 0.86 (95%

CI, 0.82-0.88); specificity, 0.79 (95% CI, 0.73-0.84); positive

LR, 4.2 (95% CI, 3.2-5.4); negative LR, 0.18 (95% CI,

0.15-0.22); and DOR, 23 (95% CI, 16-33). In addition, an

SROC curve was generated, and the AUC of the SROC

curve was 0.90 (95% CI, 0.87-0.92), indicating a high

overall diagnostic value. The forest plots for sensitivity and

specificity are illustrated in Figure 3, and the SROC curve is

presented in Figure 4.
Frontiers in Oncology 04
Heterogeneity estimation

The I2 statistic revealed significant heterogeneity between

sensitivity (I2 = 79.69%) and specificity (I2 = 93.75%) across the

studies. Spearman’s correlation coefficient of 0.185 (P = 0.328)

was calculated, implying the threshold effect does not exist.

Next, univariable meta-regression and subgroup analyses

were performed to identify the source of heterogeneity. Table 2

summarizes the univariable meta-regression and subgroup

analyses results, suggesting the influence of study design, clinical

factors, modeling methods, region, and specific imaging modality

on the pooled sensitivity and specificity estimates.

In terms of study design, retrospective studies (n = 29) had

higher sensitivity 0.86 (95% CI, 0.83-0.89) and specificity 0.80

(95% CI, 0.74-0.85) than the prospective (n = 1; sensitivity, 0.80

[95% CI, 0.61-0.99]; specificity, 0.69 [95% CI, 0.31-1.00.]). The

pooled sensitivity 0.87 (95% CI, 0.82-0.93) and specificity 0.84

(95% CI, 0.75-0.93) of radiomics combined with clinical factors

(n = 7) were slightly higher than those using only radiomic

features (n = 23; sensitivity, 0.85 [95% CI, 0.82-0.89]; specificity,

0.78 (95% CI, 0.71-0.84]). If a modeling method used radiomic

algorithm or machine/deep learning, either showed similar

sensitivity (0.85 [95% CI, 0.81-0.90] vs 0.86 [95% CI, 0.82-
FIGURE 1

Flow diagram of study selection for meta-analysis according to PRISMA. PRISMA, Preferred Reported Items for Systematic Reviews and Meta
analyses.
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0.90]) and specificity (0.79 [95% CI, 0.71-0.88] vs 0.80 [95% CI,

0.72-0.87]). Similarly, region (China or other countries) yielded

almost equivalent sensitivity (0.86 [95% CI, 0.83-0.89] vs 0.84

[95% CI, 0.75-0.94]) and specificity (0.79 [95% CI, 0.74-0.85] vs

0.79 [95% CI, 0.63-0.95]). In terms of different imaging

modalities, 7 studies that used ultrasound had a higher

sensitivity 0.87 (95% CI, 0.81-0.92) and specificity 0.82 (95%
Frontiers in Oncology 05
CI, 0.72-0.92) than MRI (n = 16; sensitivity, 0.85 [95% CI, 0.81-

0.90]; specificity, 0.81 [95% CI, 0.74-0.88]), PET–CT (n = 2;

sensitivity, 0.83 [95% CI; 0.69-0.98]; specificity, 0.70 [95% CI,

0.42-0.99]), and MMG (n = 3; sensitivity, 0.86 [95% CI, 0.78-

0.95]; specificity, 0.61 [95% CI, 0.37-0.84]). Although the pooled

sensitivity 0.84 (95% CI, 0.72-0.96) of the 2 CT studies was lower

than that of ultrasound, the pooled specificity 0.86 (95% CI,
B

A

FIGURE 2

Quality assessment of included studies according to Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria. (A) Individual
studies, (B) summary. Green, yellow, and red circles denote low, unclear, and high bias risks, respectively.
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TABLE 1 The baseline characteristics of included studies.

study study
design

region NO.patient BC
LNM

BC
non-
LNM

TP FP FN TN Reference
standard

Imaging
Modality

Radiomics
algorithm

Combine Clin-
ical Factors
(Yes/No)

Arefan, 2020 retrospective USA 154 80 74 58 16 22 58 pathology MRI machine
learning

NO

Bao LN,
2021

retrospective China 106 51 55 42 16 9 39 SLNB US Radiomic
algorithm

NO

Cattell,2022 retrospective USA 109 37 72 33 10 4 62 histopathology
and SLNB

MRI deep learning YES

Chen
JM,2021

retrospective China 99 31 68 28 2 3 66 pathology MRI Radiomic
algorithm

YES

Cheng
JY,2022

prospective China 203 109 94 87 29 22 65 histology PET-CT machine
learning

NO

Cui X,2019 retrospective China 115 52 63 49 13 3 50 SLNB or
ALND

MRI machine
learning

NO

Guo X,2020 retrospective China 542 180 362 175 152 5 210 SLNB or
ALND

US deep learning NO

Han L,2019 retrospective China 279 97 182 86 78 11 104 pathology MRI machine
learning

NO

Jin H, 2021 retrospective China 300 118 182 99 9 19 173 pathology US Radiomic
algorithm

YES

Liu CL,2019 retrospective China 109 37 72 28 13 9 59 histology MRI machine
learning

NO

Liu J, 2019 retrospective China 49 27 22 20 5 7 17 pathology MRI machine
learning

NO

Liu SH, 2021 retrospective China 100 55 45 49 5 6 40 pathology MRI Radiomic
algorithm

NO

Mao N,2020 retrospective China 270 143 127 136 95 7 32 histology MMG Radiomic
algorithm

YES

Qiu X,2022 retrospective China 71 39 32 38 10 1 22 pathology MRI Radiomic
algorithm

NO

Santucci,2021 retrospective Italy 99 72 27 62 7 10 20 histology MRI machine
learning

NO

Song D,2022 retrospective China 296 106 190 94 61 12 129 pathology MRI Radiomic
algorithm

NO

Song,2021 retrospective Korea 25 11 14 10 4 1 10 SLNB or
ALND

PET-CT machine
learning

NO

Sun Q,2020 retrospective China 359 101 258 94 19 7 239 histology US deep learning NO

Tan H,2020 retrospective China 269 96 173 81 48 15 125 SLNB or
ALND

MRI machine
learning

NO

Wang
CH,2021

retrospective China 186 93 93 68 26 25 67 pathology MRI Radiomic
algorithm

NO

Xia XD,2022 retrospective China 168 89 79 80 5 9 74 pathology MRI Radiomic
algorithm

YES

Yang
CM,2021

retrospective China 165 80 85 66 3 14 82 pathology CT machine
learning

NO

Yang JB,2019 retrospective China 110 61 49 51 8 10 41 pathology MMG machine
learning

NO

Yang XJ,2020 retrospective China 184 71 113 60 38 11 75 histology CT deep learning NO

Yu F, 2019 retrospective China 426 185 241 133 45 52 196 SLNB or
ALND

US Radiomic
algorithm

YES

Zha HL,
2021

retrospective China 318 92 226 78 57 14 169 pathology US Radiomic
algorithm

YES

Zhan CA,
2021

retrospective China 115 53 62 45 20 8 42 histology MRI machine
learning

NO

(Continued)
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0.71-1.00) was higher. The source of heterogeneity between

sensitivity and specificity across the studies varies depending

on the tested covariate.
Sensitivity analyses

No significant changes were observed in the overall

heterogeneity among the included studies when one study was

sequentially omitted from the analysis. Hence, these results agree

with those of the main analyses and are shown in Table 3.
Frontiers in Oncology 07
Publication bias

Deek’s funnel plot revealed a high slope coefficient (P = 0.88)

(Figure 5), suggesting the absence of publication bias among

the studies.
Clinical utility

Using radiomic features based on various imaging

modalities would increase the posttest probability to 51% from
TABLE 1 Continued

study study
design

region NO.patient BC
LNM

BC
non-
LNM

TP FP FN TN Reference
standard

Imaging
Modality

Radiomics
algorithm

Combine Clin-
ical Factors
(Yes/No)

Zhang
YJ,2022

retrospective China 130 58 72 42 21 16 51 pathology MMG Radiomic
algorithm

NO

Zhou WJ,
2021

retrospective China 132 57 75 45 17 12 58 pathology US Radiomic
algorithm

NO

Zhu YD,2021 retrospective China 123 56 67 40 4 16 63 histology MRI machine
learning

NO
N, number of patients; BC, breast cancer; LNM, lymph node metastasis; TP, true positive; FP, false positive; TN, true negative; FN, false negative; US, ultrasound; CT, computed
tomography; MRI, magnetic resonance imaging; MMG, mammography; PET-CT, positron emission tomography-computed tomography; SLNB, sentinel lymph node biopsy; ALND,
axillary lymph node dissection.
FIGURE 3

Forest plots of the sensitivity and specificity of radiomics in predicting ALNM in breast cancer. Numbers are pooled estimates, with 95% CIs
depicted with horizontal lines. Heterogeneity statistics are shown at bottom right. I2>50% indicates substantial heterogeneity in the diagnostic
parameters across studies.
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20% with a PLR of 4 when the pretest was positive and would

reduce the posttest probability to 4% with an NLR of 0.18 when

the pretest was negative (Figure 6).

Radiomic features based on various imaging modalities

increased the posttest probability to 51% from 20%, with a
Frontiers in Oncology 08
positive LR of 4 when the pretest was positive. Conversely, they

reduced the posttest probability to 4%, with a negative LR of 0.18

when the pretest was negative (Figure 6).
Discussion

In our systematic review with meta-analysis, we determined

pooled estimates of sensitivity 0.86 (95% CI, 0.82-0.88),

specificity 0.79 (95% CI, 0.73-0.84), and AUC 0.90 (95% CI,

0.87-0.92). These values indicate that radiomics is an effective

and accurate tool for predicting ALNM and SLNM in breast

cancer, which will help clinicians select safe and effective

treatments for patients and reduce postoperative complications.

Sensitivity analyses were performed on the 30 included

studies with a sequential exclusion approach. Despite omitting

a study with each step, pooled sensitivity and specificity were

unaffected, and radiomics continued to show good predictive

ability for ALNM and SLNM. Furthermore, Deek’s funnel plot

pointed to the absence of published bias, suggesting our results

are reliable. Likelihood ratios and posttest probabilities are

indexes of the diagnostic tests and provide crucial information

about the likelihood that a patient with a positive or negative test

has LNM. Radiomic features increased the posttest probability to

51% from 20%, with a positive LR of 4 when the pretest was

positive. By contrast, the signatures reduced the posttest

probability to 4%, with a negative LR of 0.18 when the pretest

was negative. These data demonstrate that radiomics has

important clinical value in improving the accuracy of

predicting LNM in patients with breast cancer.
FIGURE 4

The summary receiver operating characteristic (SROC) curve of
the diagnostic accuracy of radiomics in predicting ALNM in
breast cancer. Each circle indicates one included study. Values in
brackets are 95% CIs. AUC, area under the receiver operating
characteristic curve.
TABLE 2 Univariable meta-regression and subgroup analyses.

Parameter Category No. of Studies Sensitivity P1 Specificity P2

Study design retrospective 29 0.86 (0.83,0.89) 0.65 0.80 (0.74,0.85) 0.63

prospective 1 0.80 (0.61,0.99) 0.69 (0.31,1.00)

Combine clinical factors Yes 7 0.87 (0.82,0.93) <0.01 0.84 (0.75,0.93) 0.15

No 23 0.85 (0.82,0.89) 0.78 (0.71,0.84)

Modeling methods Radiomic algorithm 13 0.85 (0.81,0.90) <0.01 0.79 (0.71,0.88) 0.01

Machine/Deep learning 17 0.86 (0.82,0.90) 0.80 (0.72,0.87)

Region China 26 0.86 (0.83,0.89) 0.01 0.79 (0.74,0.85) 0.25

Other countries 4 0.84 (0.75,0.94) 0.79 (0.63,0.95)

MRI Yes 16 0.85 (0.81,0.90) <0.01 0.81 (0.74,0.88) 0.03

No 14 0.86 (0.82,0.90) 0.78 (0.69,0.86)

US Yes 7 0.87 (0.81,0.92) <0.01 0.82 (0.72,0.92) 0.08

No 23 0.85 (0.82,0.89) 0.79 (0.72,0.85)

CT Yes 2 0.84 (0.72,0.96) 0.03 0.86 (0.71,1.00) 0.98

No 28 0.86 (0.83,0.89) 0.79 (0.73,0.85)

PET-CT Yes 2 0.83 (0.69,0.98) 0.08 0.70 (0.42,0.99) 0.28

No 28 0.86 (0.83,0.89) 0.80 (0.74,0.85)

MMG Yes 3 0.86 (0.78,0.95) 0.01 0.61 (0.37,0.84) 0.02

No 27 0.86 (0.82,0.89) 0.81 (0.76,0.86)
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Heterogeneity is common in meta-analysis. In our study, we

observed significant heterogeneity between the studies, which

could have been caused by threshold effect, study design, or even

imaging modality. Spearman’s correlation coefficient value was

insignificant, eliminating the threshold effect as the potential

source of heterogeneity in our meta-analysis. Therefore, meta-

regression and subgroup analyses were performed to identify the

source of heterogeneity, but due to the limited number of

included studies, univariate meta-regression analyses were

performed instead of multivariate meta-regression analyses.

Differences in study design and region can provide different

information and research quality and cause heterogeneity.

Various clinical factors combined with radiomics confer high

diagnostic efficiency. However, they can also be a source of

heterogeneity. Furthermore, different modeling methods and

imaging modalities also create heterogeneity (10–14).
Frontiers in Oncology 09
Although previous studies considered different sources of

heterogeneity, a systematic study of the radiomics performance

in predicting ALNM and SLNM in breast cancer was lacking.

Therefore, we used 5 parameters for univariate meta-regression

and subgroup analysis to identify the probable sources of

heterogeneity to help address the gap.

Subgroup analysis revealed that although retrospective studies

were superior to the prospective, their results were insignificant.

Because most of the studies in this meta-analysis were retrospective

(29 out of 30), they are prone to selection bias. Prospective studies

result in better research quality due to their completeness. In

addition, since exposure is evaluated before the outcome, they are

less prone to bias. Therefore, future prospective studies should

improve the predictive performance of radiomics for the evaluation

of LNM in patients with breast cancer and its clinical efficiency. Our

meta-analysis also showed that studies using radiomics combined
TABLE 3 Sensitivity analysis based on radiomics in predicting ALNM in breast cancer.

Eliminate study Sensitivity Specificity PLR NLR DOR AUC

Arefan, 2020 0.86 (0.83,0.89) 0.79 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.14,0.22) 24 (16,35) 0.90 (0.87,0.92)

Bao LN, 2021 0.86 (0.82,0.89) 0.80 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.15,0.22) 24 (16,34) 0.90 (0.87,0.92)

Cattell,2022 0.86 (0.82,0.88) 0.79 (0.73,0.84) 4.1 (3.1,5.4) 0.18 (0.15,0.23) 22 (15,33) 0.90 (0.87,0.92)

Chen JM,2021 0.86 (0.82,0.88) 0.78 (0.72,0.83) 4.0 (3.1,5.1) 0.18 (0.15,0.23) 21 (15,30) 0.89 (0.86,0.92)

Cheng JY,2022 0.86 (0.83,0.89) 0.80 (0.73,0.85) 4.2 (3.2,5.6) 0.18 (0.14,0.22) 24 (16,35) 0.90 (0.87,0.92)

Cui X,2019 0.85 (0.82,0.88) 0.79 (0.73,0.85) 4.1 (3.2,5.4) 0.19 (0.15,0.23) 22 (15,33) 0.90 (0.87,0.92)

Guo X,2020 0.85 (0.82,0.87) 0.80 (0.74,0.85) 4.2 (3.2,5.6) 0.19 (0.16,0.23) 22 (15,32) 0.89 (0.86,0.92)

Han L,2019 0.86 (0.82,0.88) 0.80 (0.74,0.85) 4.3 (3.3,5.6) 0.18 (0.15,0.22) 24 (16,35) 0.90 (0.87,0.92)

Jin H, 2021 0.86 (0.82,0.89) 0.78 (0.72,0.83) 4.0 (3.1,5.1) 0.18 (0.15,0.23) 22 (15,31) 0.90 (0.87,0.92)

Liu CL,2019 0.86 (0.83,0.89) 0.79 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.14,0.22) 23 (16,34) 0.90 (0.87,0.92)

Liu J, 2019 0.86 (0.83,0.89) 0.79 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.14,0.22) 23 (16,34) 0.90 (0.87,0.92)

Liu SH, 2021 0.85 (0.82,0.88) 0.79 (0.73,0.84) 4.1 (3.1,5.3) 0.18 (0.15,0.23) 22 (15,32) 0.90 (0.87,0.92)

Mao N,2020 0.85 (0.82,0.88) 0.81 (0.76,0.85) 4.4 (3.4,5.6) 0.19 (0.15,0.23) 24 (16,34) 0.90 (0.87,0.92)

Qiu X,2022 0.85 (0.82,0.88) 0.80 (0.73,0.85) 4.2 (3.2,5.5) 0.19 (0.15,0.23) 22 (15,33) 0.90 (0.87,0.92)

Santucci,2021 0.86 (0.82,0.88) 0.80 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.15,0.22) 23 (16,34) 0.90 (0.87,0.92)

Song D,2022 0.86 (0.82,0.88) 0.80 (0.74,0.85) 4.2 (3.2,5.6) 0.18 (0.15,0.22) 23 (16,34) 0.90 (0.87,0.92)

Song,2021 0.86 (0.82,0.88) 0.80 (0.74,0.85) 4.2 (3.2,5.5) 0.18 (0.15,0.22) 23 (16,34) 0.90 (0.87,0.92)

Sun Q,2020 0.85 (0.82,0.88) 0.79 (0.72,0.84) 4.0 (3.1,5.1) 0.19 (0.15,0.23) 21 (15,30) 0.89 (0.86,0.92)

Tan H,2020 0.86 (0.82,0.89) 0.80 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.15,0.22) 23 (16,34) 0.90 (0.87,0.92)

Wang CH,2021 0.86 (0.83,0.89) 0.80 (0.73,0.85) 4.2 (3.2,5.6) 0.18 (0.14,0.22) 24 (17,35) 0.90 (0.87,0.92)

Xia XD,2022 0.85 (0.82,0.88) 0.79 (0.72,0.84) 4.0 (3.1,5.2) 0.19 (0.15,0.23) 22 (15,31) 0.89 (0.86,0.92)

Yang CM,2021 0.86 (0.82,0.89) 0.78 (0.72,0.83) 4.0 (3.1,5.1) 0.18 (0.15,0.22) 22 (15,31) 0.90 (0.87,0.92)

Yang JB,2019 0.86 (0.82,0.89) 0.79 (0.73,0.84) 4.1 (3.1,5.4) 0.18 (0.15,0.22) 23 (16,34) 0.90 (0.87,0.92)

Yang XJ,2020 0.86 (0.82,0.88) 0.80 (0.74,0.85) 4.2 (3.2,5.6) 0.18 (0.15,0.22) 24 (16,35) 0.90 (0.87,0.92)

Yu F, 2019 0.86 (0.83,0.89) 0.79 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.14,0.22) 24 (16,35) 0.90 (0.87,0.92)

Zha HL, 2021 0.86 (0.82,0.88) 0.80 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.15,0.22) 23 (16,34) 0.90 (0.87,0.92)

Zhan CA, 2021 0.86 (0.82,0.88) 0.80 (0.74,0.85) 4.2 (3.2,5.6) 0.18 (0.15,0.22) 24 (16,34) 0.90 (0.87,0.92)

Zhang YJ,2022 0.86 (0.83,0.89) 0.80 (0.73,0.85) 4.2 (3.2,5.6) 0.18 (0.14,0.22) 24 (17,35) 0.90 (0.87,0.92)

Zhou WJ, 2021 0.86 (0.83,0.89) 0.79 (0.73,0.85) 4.2 (3.2,5.5) 0.18 (0.14,0.22) 23 (16,34) 0.90 (0.87,0.92)

Zhu YD,2021 0.86 (0.83,0.89) 0.79 (0.72,0.84) 4.0 (3.1,5.2) 0.18 (0.14,0.22) 23 (15,33) 0.90 (0.87,0.92)

overall 0.86 (0.82,0.88) 0.79 (0.73,0.84) 4.2 (3.2,5.4) 0.18 (0.15,0.22) 23 (16,33) 0.90 (0.87,0.92)
f

SEN, sensitivity; SPE, specificity; PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; AUC, area under the curve.
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with clinical factors have higher diagnostic performance than those

relying only on radiomics, which is consistent with the previous

studies (3, 25, 26). Thus, adding clinical features to radiomic

imaging improves the accuracy of diagnosing LNM in breast cancer.

Subgroup analysis also uncovered that studies conducted in

China had better diagnostic performance than those done

abroad. However, this meta-analysis included only 4 studies

from outside China, underscoring the need for more overseas

studies to confirm the above conclusion. Modeling methods

using radiomics algorithm and machine/deep learning had a

similar diagnostic performance. This result opposes previous

evidence that suggests that machine/deep learning is superior to

the traditional radiomics algorithm in predicting LNM in breast

cancer (3, 39, 42) and requires further verification.

Finally, we performed a subgroup analysis of the diagnostic

performance of radiomics with different imaging modalities.

Although ultrasound had the highest diagnostic performance, only

7 ultrasound studies were included, of which 5 combined with

clinical factors or deep learning algorithms. Therefore, the pooled

results do not entirely prove that ultrasound has the highest

diagnostic performance. Moreover, this modality is susceptible to

operator subjectivity (46). The radiomics model based on feature

extraction of preoperative MRI images also had a high predictive

performance. This result is similar to a previous study that used

dynamic contrast-enhanced–MRI (DCE–MRI) radiomic signatures

of patients with breast cancer to predict LNM with satisfactory

results (47). The pooled sensitivity of MMG was similar to that of

ultrasound and MRI, but pooled specificity was lower (only 0.61).

Only 4 included studies combined radiomics with CT or PET–CT.

Hence, the statistical differences calculated with the subgroup

analysis were insignificant, and more studies with these modalities

should verify their diagnostic performance. Although this meta-
Frontiers in Oncology 10
analysis addresses various sources of heterogeneity, other

unmentioned differences between the studies may have also

contributed to heterogeneity.

This study has several advantages. First, to our knowledge, it

is the first meta-analysis that comprehensively evaluates the

diagnostic test accuracy of radiomics models in predicting

ALNM and SLNM in breast cancer. Before it, a meta-analysis

(48) of DCE –MRI based on machine learning also had a good

diagnostic performance, with an AUC of 0.89, but it was only a

part of radiomics. Second, this study considers different imaging

modalities and modeling methods, providing novel ideas for

subsequent radiomics research.

We also acknowledge that our meta-analysis has certain

limitations. We mainly included retrospective studies and only 1

prospective, which makes our study prone to patient selection bias

and data loss. Therefore, more prospective trials are necessary to

validate our findings. In addition, we found significant heterogeneity

in the pooled sensitivity and specificity. This observation is similar to

that in published meta-analyses of diagnostic accuracy using

radiomics (49–52). Although radiomic models help predict the

diagnosis of LNM in breast cancer, they involve numerous

analysis methods. Thus, the choice of imaging modality and

modeling method may affect the predictive results of radiomics

analysis, causing heterogeneity. Furthermore, during data extraction,
FIGURE 5

Deeks’ funnel plot asymmetry test for publication bias. Deeks’
funnel plot shows no asymmetry and the presence of
publication bias. Each circle indicates one included study. ESS,
effective sample size.
FIGURE 6

Fagan plots for assessing the clinical utility. LR, likelihood ratio;
Prob, probability; Pos, positive; Neg, negative.
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we selected the model with the highest diagnostic performance

among multiple, which might have overestimated the pooled

sensitivity and specificity of radiomics for LNM in breast cancer.

Finally, most of the included studies were performed in China, which

might have affected the general applicability of the results in

clinical practice.
Conclusion

In conclusion, our meta-analysis demonstrates that radiomic

models based on preoperative imaging features have good diagnostic

performance in predicting ALNM and SLNM in patients with breast

cancer. Radiomics is a promising noninvasive method and is

expected to provide new quantitative diagnostic techniques for

clinical practice. Future well-designed radiomics experiments are

needed to verify its effectiveness and diagnostic performance, reduce

its heterogeneity, and enable its wide clinical application.
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