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Targeting tumor metabolism for cancer therapy is an old strategy. In fact,

historically the first effective cancer therapeutics were directed at nucleotide

metabolism. The spectrum of metabolic drugs considered in cancer increases

rapidly – clinical trials are in progress for agents directed at glycolysis, oxidative

phosphorylation, glutaminolysis and several others. These pathways are

essential for cancer cell proliferation and redox homeostasis, but are also

required, to various degrees, in other cell types present in the tumor

microenvironment, including immune cells, endothelial cells and fibroblasts.

How metabolism-targeted treatments impact these tumor-associated cell

types is not fully understood, even though their response may co-determine

the overall effectivity of therapy. Indeed, the metabolic dependencies of

stromal cells have been overlooked for a long time. Therefore, it is important

that metabol ic therapy is considered in the context of tumor

microenvironment, as understanding the metabolic vulnerabilities of both

cancer and stromal cells can guide new treatment concepts and help better

understand treatment resistance. In this review we discuss recent findings

covering the impact of metabolic interventions on cellular components of the

tumor microenvironment and their implications for metabolic cancer therapy.

KEYWORDS

cancer, metabolism, tumor micro environment (TME), glycolysis, oxidative
phoshorylation, fatty acid metabolism, nucleotide metabolism, endothelial cells
Introduction

Metabolic anti-cancer drugs target pathways such as glycolysis, glutaminolysis or

oxidative phosphorylation that support proliferation and redox balance in cancer cells.

These pathways are fundamental to cellular metabolism in general, and while being

crucial for cancer cells, they are not strictly cancer specific. Non-transformed
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proliferating cells and to some degree also non-proliferating

somatic cells engage the very same pathways to perform a

number of essential functions (1). Metabolic drugs that target

these pathways will thus also impact cell types other than cancer

cells when applied in vivo. Indeed, besides cancer cells, tumors

comprise multiple other non-transformed cell types such as

fibroblasts, endothelial cells (ECs) and immune cells that

collectively form the tumor microenvironment (TME)

(Figure 1). Within the TME, cancer cells interact with and

alter metabolism of these tumor resident non-transformed

stromal cell types on multiple levels. For example, cancer

associated fibroblasts (CAFs) upregulate collagen synthesis for

extracellular matrix deposition (2, 3), tumor associated ECs

stimulate glycolysis to support angiogenesis, and various types

of the immune cells such as macrophages or T-cells are

modulated by the TME towards immunosuppression. Vice
Frontiers in Oncology 02
versa, stromal cells may supply cancer cells with metabolites,

and cancer cells can obtain nutrients externally from the blood

stream (4), which is facilitated by EC-driven angiogenesis.

Strategies to target metabolism of tumor cells do not routinely

consider the metabolism of non-cancer cells (e.g., immune cells,

ECs and CAFs) within the tumor. However, these additional

aspects might be essential when searching for a truly effective and

practicable metabolic treatment. Below we summarize how

pharmacological modulation of major metabolic pathways in

cancer affects individual stromal cell types.
Glycolysis

Increased glycolysis is the best known metabolic hallmark of

cancer (5, 6). It provides cancer cells with ATP and metabolic
FIGURE 1

Cell populations in the TME and their role in tumor progression. Composition of the TME varies between different tumor types, but usually
includes cancer cells, immune cells, cancer associated fibroblasts (CAFs) and endothelial cells (ECs). Multiple types of immune cells are present
in the TME, only those mentioned in following figures are depicted. Immune cells can either promote (red arrows) or suppress (black arrows)
tumor growth. ECs form the inner lining of blood vessels. Vessels are normally well ordered, covered by an intact basement membrane and a
layer of pericytes. In the TME vessels become disorganized due to excessive pro-angiogenic signaling. Such abnormal vessels are leaky and
become a gateway for tumor metastasis. Adapted from “Tumor Microenvironment 2”, by BioRender.com (2022). Retrieved from https://app.
biorender.com/biorender-templates.
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intermediates that are channeled into biosynthetic pathways to

form nucleotides, amino acids (AAs) and lipids, and to maintain

redox homeostasis (7, 8). Pyruvate produced by glycolysis is

converted to lactate to sustain high glycolytic flux (9). This

conversion is favored because pyruvate import into

mitochondria is suppressed by pyruvate dehydrogenase kinase

(Figure 2). Attenuation of glycolysis in cancer cells will therefore

compromise biosynthesis and alter the redox balance. Two main

approaches have been pursued to achieve these goals: (i) direct

inhibition/modulation of the glycolytic pathway and (ii)

interference with the excretion of lactate.

Intervention strategies that inhibit glycolysis are challenging

due to its systemic importance. First attempts to target glycolysis

by unmetabolizable glucose analog 2-deoxyglucose (2-DG) were

unsuccessful, as the treatment caused toxicity associated with

hypoglycemia (10). Despite the initial disappointment, other

glycolysis inhibitors have been intensively evaluated and several

of them were brought into clinical trials (11). The tested drugs

target various steps of the glycolytic pathway, such as glucose

transporters (GLUTs), hexokinase 2 (HK2), pyruvate

dehydrogenase kinase (PDK), lactate dehydrogenase A

(LDHA) and monocarboxylate transporters (MCTs).
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Besides cancer cells, glycolysis is crucial also in other cell

types of the TME. For example, CAFs, an abundant stromal

type in solid tumors, display increased expression of enzymes

involved in glycolysis and produce lactate (12). Interestingly,

redirection of glucose metabolism toward tricarboxylic acid

(TCA) cycle in CAFs by silencing PDK4 showed decreased

growth of co-injected cancer cells in xenograft models (13).

ECs are glycolytic already at baseline, and their glycolytic

flux is further increased in response to tumor-produced vascular

endothelial growth factor (VEGF) and fibroblast growth factor

(FGF) (14). Both VEGF and FGF upregulate an activator of

glycolysis 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase

3 (PFKFB3) in tumor ECs (TECs), while FGF also activates a

glycolytic enzyme HK2 (15, 16). PFKFB3 is responsible for the

production of fructose-2,6-bisphosphate, an allosteric activator

of phosphofructokinase 1 (PFK-1). As heightened glycolysis in

ECs promotes angiogenesis, inhibition of PFKFB3 or HK2

genetically or pharmacologically, using 3-(3-pyridinyl)-1-(4-

pyridinyl)-2-propen-1-one (3PO) or 2-DG and lonidamine

(LND), respectively, impairs vessel formation in vitro and in

vivo (15–19). Interestingly, in the context of tumor angiogenesis

inhibition of PFKFB3 by 3PO can have different outcomes,
A B

FIGURE 2

Inhibitors of glycolysis and their effect on TME cell types. (A) Schematic representation of glycolysis and lactate exchange. Only inhibitors with a
reported effect in the TME are shown. Inhibitors tested in clinical trials for cancer are highlighted in dark violet, inhibitors tested in preclinical
studies are shown in light grey-blue (B) Effects of the inhibitors shown in (A) on cell populations in the TME.
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depending on the administered dose. Low dose 3PO, that does

not affect cancer cells, leads to normalization of tumor

vasculature and consequently to decreased cancer cell invasion

and metastasis (20). However, highest tolerable dose of 3PO,

used in clinical trials, disrupts TECs metabolism and induces

apoptosis, which in turn leads to vessel disintegration and

increased metastasis (21). Similar dose-dependence has been

observed for dichloroacetate (DCA). This compound, an

inhibitor of PDK, promotes shunting of pyruvate into

mitochondria, which attenuates aerobic glycolysis. At lower

doses DCA decrease proliferation and migration of ECs, but at

higher doses it drives ECs to apoptosis (22). It is thus important

to routinely evaluate dosing of new glycolytic inhibitors to avoid

adverse effects on vessel integrity that might be pro-metastatic.

Glucose is also critical for proliferation and activation of

immune cells, such as effector T cells (23), natural killer (NK)

cells (24) and M1 macrophages (25). 2-DG decreases

phagocytosis of elicited macrophages (26), proliferation of T

cells in vitro (27) and reduces IFNg secretion in splenocytes (28).

Depletion of glucose in tumor environment by cancer cells limits

effector function of metabolically restricted T cells and leads to

their functional exhaustion (29, 30). 2-DG treatment promoted

generation of regulatory T cells (Treg) cells in vitro and in vivo in

the context of autoimmune disease (31). However, in other

study, 2-DG and LND showed opposite results, where it

reversed suppressive activity of Treg cells (32). These

differences might be caused by different experimental settings

or metabolic state of Treg cells and need to be addressed further.

Additionally, inhibition of glycolysis with 2-DG promotes

formation of long-lived CD8+ T memory cells (33). Overall,

considering different metabolic dependencies of immune cell

types, it is not surprising that inhibition of glycolysis has

different effects on immune response.

The main product of aerobic glycolysis is lactate, an important

carbon source not only in the TME, but also during normal

physiology (4). Lactate exchange with the extracellular space is

maintained by MCT1 and 4 (34). MCT1 allows bi-directional

transport that depends on substrate gradient (35). Inhibition of

MCT1 is thus expected to interfere with lactate export in highly

glycolytic cancer cells, resulting in their elimination. At the same

time, this treatment would deprive other cell types of an important

carbon source (possibly also inducing cell death). Inhibition or a

decrease in expression of MCT1, MCT4 and LDHA in cancer cells

slowed down tumor growth (36, 37). Importantly, MCT1 and

MCT4 are expressed not only in cancer cells of various origin, but

also in stromal cells (35). MCT1 inhibitor AZD3965 underwent

Phase I clinical study (NCT01791595).

Several studies suggest a so-called reverse Warburg effect,

where CAFs feed cancer cells with lactate or pyruvate that cancer

cells oxidize in mitochondria (13, 38, 39). In this setting,

silencing of MCT4 in CAFs decreased lactate export from

CAFs and decreased growth of tumors in vivo (39). Such

reduction in CAF-exported lactate would not only deprive
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cancer cells of an alternative fuel, but also eliminate the

immunosuppressive effects of elevated lactate concentrations

(see below).

In ECs, lactate uptake through MCT1 activates hypoxia-

inducible factor 1 alpha (HIF-1a) and consequently promotes

angiogenesis through increased expression of basic fibroblast

growth factor and vascular endothelial growth factor receptor 2

(VEGFR2) (40). However, an inhibition of MCT1 showed

different outcomes with two different compounds: a-cyano-4-

hydroxycinnamate (CHC) decreased angiogenesis in tumors

(40), whereas AZD3965 showed no effect on tumor

vascularization in a murine model. These differences might be

caused by unspecific effects of CHC (41).

Lactate negatively affects function and survival of T cells and

NK cells in the TME, which leads to immune escape. In line with

this, lower lactate production in melanoma tumors with

downregulated LDHA expression increased infiltration of T

and NK cells, which slowed down tumor growth (42). Lactate

is also known to promote M2-like polarization of tumor-

associated macrophages (TAMs) that promote tumor

progression by production of immunosuppressive cytokines

(43, 44). Suppression of lactate production in cancer cells

lowered the lactate effect on M2 macrophage polarization (45,

46). Of note, in T cells MCT1 inhibition was considered as an

immunosuppressive therapy. While MCT1 inhibitors can block

T cell proliferation, this does not interfere with their effector

function and viability (47).

In summary, while complete inhibition of glycolysis will

reduce viability/proliferative potential of tumor cells, it will also

suppress anti-tumor immune responses and lead to tumor vessel

disintegration that promotes metastasis, rendering treatment

ineffective. Partial inhibition of glycolysis might thus result in

a more favorable outcome in vivo. On the other hand, inhibition

of lactate transporters seems to have less negative effect on the

vasculature and immune responses within the TME.
Oxidative phosphorylation

Oxidative phosphorylation (OXPHOS) is a system of five

respiratory complexes at the inner membrane of mitochondria

that is best known for ATP production (Figure 3). However, in

proliferating cancer cells ATP generation by OXPHOS is

dispensable, and OXPHOS maintains intracellular redox

balance to enable synthesis of AAs aspartate and asparagine as

well as de novo synthesis of nucleotides (48–51). OXPHOS

activity is often but not always reduced in cancer cell lines and

tumors, as an outcome of lower mitochondrial DNA (mtDNA)

content or presence of mtDNA mutations (52). Still, even low

levels of OXPHOS activity can support biosynthesis and

promote primary tumors (53). Interestingly, elevated

OXPHOS activity marks drug-resistant and persistent

populations of cancer cells (54), and some cancer types
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upregulate OXPHOS (52, 55), such as those localized in well

perfused and oxygenated areas (56, 57). Thus, OXPHOS

inhibitors are considered for cancer therapy as they interfere

with biosynthesis and upregulate reactive oxygen species (ROS)

production from the respiratory chain (58, 59).

Regarding potential cancer therapeutics, respiratory

complex I (CI) is the most frequent target. Multiple CI

inhibitors with anti-cancer properties have been developed

and/or tested, including IACS-010759, BAY 87-2243,

tamoxifen, deguelin and the anti-diabetics metformin and

phenformin (60–65). Complex II (LND, aTOS) (66, 67),

Complex III (atovaquone, adaphostin) (68, 69), complex IV

(arsenic trioxide) (70) or combined CI/CII inhibitor Mitotane

(71) have also been considered for therapy. OXPHOS-directed

compounds have been chemically modified for specific delivery

into mitochondria and increased efficacy, as demonstrated by

mitochondrial-targeted tamoxifen (MitoTam, CI inhibitor) (72),

mitochondria-targeted metformin (MitoMet) (73, 74) and

mitochondria-targeted aTOS (MitoVES) (75). Several

OXPHOS-directed compounds entered clinical trials in cancer.

The best developed of these is metformin, which is routinely

used for the treatment of diabetes. In addition, IACS-010759

(NCT02882321, NCT03291938) and MitoTam (MitoTam-01

trial; EudraCT 2017-004441-25) are in clinical trials, while a

trial with BAY 87-2243 (NCT01297530) has been terminated.
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Metformin is the most studied OXPHOS inhibitor in the

clinical settings and its effects on the TME are also the best

characterized. Metformin was associated with a reduced risk of

cancer (60), and a later prospective study (10 years, 1353

patients) showed that metformin in diabetic patients reduces

cancer mortality by 43% (76). The related but more potent CI

inhibitor phenformin has been withdrawn due to lactic acidosis

complications (77, 78). Metformin has pleiotropic effects (CI,

adenosine monophosphate-activated protein kinase (AMPK),

etc.), but its anti-tumor efficacy has been linked to CI

inhibition in cancer cells (79). Interestingly, by inhibiting CI,

metformin synergizes with MCT inhibitors to suppress

utilization of external lactate (80), which can be produced by

CAFs (44, 81).

CAFs promote migration and invasiveness of cancer cells,

including those of pheochromocytoma origin (82, 83).

Interestingly, metformin treatment of pheochromocytoma/

CAFs co-cultures reduced CAF-induced-migration and

invasiveness of succinate dehydrogenase subunit B (SDHB)-

deficient pheochromocytoma cells grown as spheroids. The

underlying mechanism is unclear at present, but likely involves

a direct action of metformin on CAFs, as CAFs with diminished

mitochondrial oxidative metabolism showed reduced ability to

stimulate migration of pheochromocytoma cells (84, 85).

Metformin was shown to upregulate AMPK signaling and thus
A B

FIGURE 3

Inhibitors of oxidative phosphorylation and their effects on TME cell types. (A) Schematic representation of the OXPHOS system. Only inhibitors
with a reported effect in the TME are shown. Inhibitors tested in clinical trials for cancer and in clinical practice are highlighted in dark violet,
those in preclinical studies are in light grey-blue. (B) Effects of the OXPHOS inhibitors shown in (A) on cell populations present in the TME.
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downregulate HIF-1a, transforming growth factor-b (TGF-b)
and interleukin 8 (IL-8) in co-culture of CAFs with human

breast cancer lines and thus preventing tumor-stroma crosstalk

(86). Metformin also decreased production of pro-tumorigenic

cytokine IL-6 via NFkB signaling in CAFs cultured with ovarian

cancer cell line and upregulated calmodulin−like protein 3

(Calml3) in cultured CAFs that inhibits gastric cancer cell

growth (87, 88). Accordingly, metformin may disrupt pro-

tumorigenic communication in the TME by hitting both

cancer cells and CAFs.

ECs require OXPHOS for angiogenesis and to provide stress

resistance in mature vessels (89–91). Multiple OXPHOS-

targeting compounds effective against cancer have an anti-

angiogenic activity. Complex II inhibitors aTOS and MitoVES

(92, 93), as well as arsenic trioxide derivative GSAO (94) inhibit

tumor angiogenesis by elevating intracellular ROS which

eliminates proliferating ECs. Inhibition of angiogenesis by

metformin has been linked to suppression of HIF-1a via

AMPK signaling (95, 96), or to inhibition of platelet-derived

growth factor b (PDGF-b) that lead to normalization of tumor

vasculature (97). Given the pleiotropy of metformin action, it

has not been conclusively demonstrated that its anti-angiogenic

effect is directly linked to CI inhibition. Still, unrelated, and

presumably more specific CI inhibitors BAY 87-2243 (63) and

deguelin (98) also inhibit angiogenesis, suggesting that CI

inhibition plays a causal role in this effect.

In the immune compartment, OXPHOS supports function

of pro-tumorigenic Tregs (99), suggesting that OXPHOS

inhibition could improve anti-tumor immune responses. In

line, metformin treatment suppresses Tregs in tumors (100)

and CI inhibitor MitoTam improves efficacy of immune

checkpoint therapy in a pre-clinical renal cancer model (101).

Metformin lowers macrophage infiltration in tumors and skews

TAM polarization from M2 to anti-tumor M1 phenotype (102,

103). Metformin also protects tumor infiltrating lymphocytes

(TILs) from immune exhaustion and apoptosis, supporting

tumor rejection in immunocompetent mice, but not in

immunodeficient SCID mice (104). Mechanistically,

metformin treatment has been shown to promote aberrant

glycosylation of programmed death ligand-1 (PD-L1) thus

reducing its levels on cancer cells and blocking the PD-L1/PD-

1 signaling (105).

Taken together, OXPHOS inhibition may be effective against

tumors via direct targeting of cancer cells, inhibition of CAFs,

suppression of angiogenesis and by boosting the immune

response. However, not all these aspects have been

conclusively demonstrated in in vivo tumor models.
Tricarboxylic acid cycle

The TCA cycle (Figure 4) connects cellular metabolism to

oxidative phosphorylation and contributes to both catabolism
Frontiers in Oncology 06
and anabolism. Multiple cancers harbor mutations or deletions

in TCA cycle enzymes isocitrate dehydrogenase (IDH), fumarate

hydratase (FH), succinate dehydrogenase (SDH) and succinyl-

CoA ligase (SUCL) (106–110). As the TCA produces metabolic

intermediates with inhibitory effects on enzymes that remove

epigenetic marks from the chromatin (6), these alterations affect

epigenetics and promote transformation and progression

of tumorigenesis.

So far only IDH1/2-mutated enzymes have been targeted

pharmacologically in cancer, while no direct inhibitors are

available for FH, SDH or SUCL loss-of-function malignancies.

Gain-of-function mutations in isoforms IDH1 and IDH2 (but

not in the main TCA isoform IDH3) leading to production of

oncometabolite (R)-2-hydroxygultarate (2HG) instead of

physiologically produced a-ketoglutarate (aKG) have been

found in hematological and solid tumors (111). Increased

levels of 2HG inhibit aKG dependent oxygenases which

through epigenetic dysregulation promote oncogenesis (112).

Small molecule inhibitors of mutant IDH2 and IDH1 are in

clinical use in acute myeloid leukemia, including enasidenib

(AG-221) and ivosidenib (AG-120). Showing potency both in

vitro and in vivo, enasidenib has been in clinical trials in several

other types of cancer with mutated IDH2 (NCT02273739,

NCT02577406, NCT01915498) (113, 114). With respect to the

TME, there are conflicting reports as to the effect of IDH1/2

mutation in cancer cells on the ECs, showing both increased

(115, 116) and reduced pro-angiogenic signaling (117). In

addition, in intrahepatic cholangiocarcinoma IDH mutations

were linked to reduced immune response (118, 119). Reductions

in chemokines and suppression of T cell accumulation were

reversed by IDH-C35, a specific inhibitor of mutant IDH1 (120).

As mutant IDH1/2 are restricted to cancer cells, this effect is very

likely secondary to reduction of the oncometabolite. Notably,

scRNA-seq analysis of two types of glioblastoma harboring the

same IDH1 mutation, astrocytoma and oligodendroglioma,

revealed shared developmental hierarchy and common

progenitors for all analyzed gliomas, while the TME

composition differed between the two tumor types, which is

most likely driven by the distinct genetic background (121).
Glutaminolysis

Glutamine, a non-essential AA, is utilized by cancer cells for

biomass synthesis and as a source of energy. To meet the

increased metabolic needs of rapid proliferation, glutamine is

supplied through blood at a concentration as high as 0.5 mM

(122). Exogenous glutamine is transported into the cell through

solute carrier family 1 member 5 (SLC1A5) but can also be

synthesized endogenously by glutamine synthase (GS) in some

cell types (Figure 4). Glutamine is further metabolized into

glutamate by glutaminases (GLS1/2). Glutamate can be

converted to aKG by glutamate dehydrogenase (GLUD) or
frontiersin.org
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serve as a nitrogen donor to produce other AAs as well as

glutathione for antioxidant defense (123, 124). Via aKG
glutamine provides TCA cycle intermediates in a process also

known as anaplerosis, which can support proliferation in

nutrient-restricted environments (123, 124).

Given the ubiquitous role of glutamine as a substrate, it is

not surprising that glutamine utilizing reactions are targeted for

anticancer treatment. Mimetic compounds, such as 6-diazo-5-

oxo-L-norleucine (DON), bind covalently to the active sites of

multiple glutamine-dependent enzymes. DON and other

glutamine mimetics, acivicin and azaserine, were explored as

potential anticancer treatment (125), but their success is limited

by high toxicity. To avoid this toxicity, prodrugs of DON were

synthetized to release the active payload at specific sites (126).

The prodrug DRP-104 (sirpiglenastat) is being tested in an

ongoing clinical trial in advanced stage solid tumors as a

single treatment and in combination with anti-PD-L1 antibody

(atezolizumab) (NCT04471415). Blocking of glutamine

metabolism using DON derived prodrug, JHU083, in the TME

has not only directly impacted cancer cells, but also acted on the

immune compartment. It inhibited recruitment of myeloid

derived suppressor cells (MDSCs) and increased generation of

antitumor inflammatory TAMs, leading to decreased metastatic

potential and improved anti-tumor immunity (127, 128).
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In glutamine deprived conditions within the TME, CAFs can

increase glutamine synthesis to provide glutamine to cancer cells

(129). Thus, targeting glutamine uptake into cancer cells by

inhibitors of SLC1A5, such as V-9302, would interrupt such

communicat ion. This approach has been explored

experimentally in preclinical studies with triple negative breast

cancer. Intriguingly, V-9302 suppressed glutamine uptake in

cancer cells but not in CD8+ T cells, as T cells were able to

upregulate an alternative glutamine transporter. Hence,

glutamine availability for T cells increased, stimulating

glutathione synthesis in T cells and improving their

antioxidant status and anti-tumor activity (130, 131).

As an alternative to glutamine mimetic compounds,

researchers have targeted the first enzyme of the glutaminolysis

pathway, GLS, which is frequently upregulated in cancer (132).

Several allosteric inhibitors have been designed to target isoforms

of GLS, such as CB-839 (telaglenastat) and bis-2-(5-

phenylacetamido-1,2,4-thiadiazol-2-yl)-ethyl sulfide (BPTES)

(133, 134). CB-839 has been tested both as a single treatment

and in combination with antimetabolites and immunotherapy

(azacytidine, nivolumab), in several types of cancer

(NCT02071927, NCT02771626). For example, a combination

with glutamine uptake inhibitor V-9302 overcame resistance of

hepatocellular carcinoma, a glutamine dependent cancer type
A B

FIGURE 4

Inhibitors of glutaminolysis or IDH1/2, and their effects on TME cell types. (A) Schematic representation of glutaminolysis and IDH1/2 reactions. Inhibitors
of glutamine metabolism with a reported effect in the TME and all inhibitors of IDH1 and IDH2 mentioned in the text are shown. Inhibitors tested in
clinical trials for cancer are highlighted in dark violet, while those tested in preclinical studies are shown in light grey-blue. (B) Effects of the glutamine
metabolism inhibitors and IDH-C35 shown in (A) on cell populations present in the TME.
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otherwise resistant to CB-839 alone (135). Besides the direct effect

on cancer cells, CB-839 improved the cytotoxic activity of TILs.

By altering glutamine metabolism in cancer cells, CB-839

increased extracellular glutamine levels available to T cells for

GLS independent activities such as antigen activation (136). On

the other hand, in lung adenocarcinoma CB-839 had an opposite

effect on CD8+ T cells, inhibiting their clonal expansion and

activation induced by immunotherapy (137). GLS may also be an

interesting target in ECs, where it supports proliferation that is

reduced by CB-839 treatment (138).

BPTES has been used for targeting KRAS-mutated cancer

cells that are addicted to glutamine. Administration of BPTES

inhibited tumor growth in Burkitt lymphoma model, through

metabolic alteration of glutamate, aKG, succinate and fumarate

while additionally increasing ROS levels (139). Consistent with

GLS1 supporting pathological angiogenesis, impairment of

angiogenesis was observed in ECs treated with a combination

of BPTES and a PDK inhibitor DCA (22, 138). BPTES also

upregulated PD-L1 on cancer cells, which interfered with T cell

activity. This was mitigated by co-treatment with anti-PD-L1

antibody, which rescued T cell function (140). In recent years

there has been effort to utilize more specific approaches to

BPTES delivery using nanoparticles to avoid systemic and off

target effects (141).

GS has been shown as critical for EC motility and migration,

processes that underlie angiogenesis during development and in

pathological states, making GS an attractive target for inhibition

of pathological angiogenesis (142). Furthermore, genetic

deletion of GS in TAMs decreases glutamine in TME, which

results in tumor vessel normalization, reactivated T cells and

decreased cancer cell motility (143).

Overall, these results suggest that more specific targeting and

combination therapy might be necessary to overcome systemic

toxic effect of glutamine deprivation therapy as well as complex

metabolic crosstalk present in TME.
Amino acids

Metabolism of proliferating cancer cells may become

dependent also on other AAs that are normally non-essential,

providing therapeutic opportunities in reducing AA serum levels

(144). The first AA targeted in this manner was asparagine. An

enzyme called L-asparaginase (Ciderolase, Erwinase), originally

identified in guinea pig serum (145, 146), can degrade blood

asparagine and hereby limit its availability. L-asparaginase is

effective because the enzyme asparagine synthase (ASNS,

responsible for endogenous asparagine synthesis) is decreased

in some cancer cells, making them dependent on exogenous

asparagine for proliferation (147, 148). At present, L-

asparaginase is an approved therapy in ALL and non-Hodgkin

lymphoma, while in other leukemias and solid cancers it is in

clinical trials (NCT03665441, NCT01574274). Beside cancer
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cells, L-asparaginase treatment may also affect other cell types

in the TME. ECs utilize asparagine for sprouting and vessel

growth, particularly under glutamine deprivation (138), while

CD8+ T cells need extracellular asparagine for optimal immune

response (149), hinting at a possible complex response to

asparagine depletion in the TME.

Arginine is synthetized through subsequent reaction of

argininosuccinate synthase (ASS) and argininosuccinate lyase

(ASL). Interestingly, a subset of malignancies do not express

ASS, opening a potential therapeutic window for arginine

deprivation therapy using arginine-degrading enzymes

arginine deiminase (ADI) (150, 151) or arginase (152). ADI

has progressed into phase 3 trials in cancer, both as a single agent

and a combinatorial therapy (NCT02709512, NCT05317819). In

the TME arginine depletion impaired T cell responses. Chimeric

antigen T cells (CAR-T) proliferation was rescued by expression

of the ASS and ornithine transcarbamylase (OTC) without loss

of cytotoxicity of CAR-Ts, suggesting that reengineered cells

prevail in arginine depleted environment (153). In addition,

extracellular arginine shifts T cell metabolism from glycolysis to

oxidative phosphorylation, priming them for activation and

generation of memory cells (154). To locally increase arginine

availability to T cells, an E. Coli strain was engineered that

converts ammonia to arginine for enhanced efficacy of

immunotherapy. Arginine level in tumor homogenates was

increased following intratumoral injection of engineered E.

Coli, the number of TILs was elevated and there was a

synergistic effect with PD-L1 blocking therapy (155).

Methionine is an essential AA, still the dependence of cancer

cell on methionine is particularly pronounced (156). Unlike

normal cells, proliferating cancer cell are unable to utilize/recycle

methionine precursor homocysteine (157). Several approaches

were developed to decrease serum levels of methionine,

including the enzyme methionase and dietary restrictions

(158). While depleting methionine from serum proved

challenging to strike the balance between toxicity and benefits,

recently there was a reemergence of this approach (159, 160).

With respect to TME, in hepatocellular carcinoma patients

increased excretion of methionine metabolism intermediates

from cancer cells induced T cell exhaustion due to epigenetic

changes, suggesting that reducing methionine availability to

cancer cells could stimulate immune response (159). On the

other hand, low levels of methionine in the TME, due to

excessive consumption by cancer cells, also reduced anti-

tumor immunity via epigenetic changes in T cells (160). Thus,

selective inhibition of methionine uptake by cancer cells but not

immune cells, similarly as previously shown for glutamine (130),

might be the most effective way to preserve and boost anti-

tumor immunity.

Proline is a non-essential amino acid. Nevertheless, proline

synthesis enzymes are frequently upregulated in cancer (161,

162) and endogenous proline synthesis supports cancer cell

proliferation. While exogenous proline can be obtained from
frontiersin.org

https://doi.org/10.3389/fonc.2022.1046630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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the TME, de novo proline synthesis in cancer cells is required to

maintain cellular redox state via NADH recycling by 5-

carboxylate reductase 1 (PYCR1) (163). On the other hand,

proline degradation by proline dehydrogenase (PRODH)

sustains breast cancer metastases and promotes epithelial to

mesenchymal transition in lung cancer, effects sensitive to

PRODH inhibitor L-tetrahydro-2-furoic acid (L-THFA) (164,

165). Proline synthesis, both in cancer cells and in CAFs,

modulates the TME. PYCR1 in cancer cells in conjunction

with the mitochondria protease Lon elicits ROS-dependent

production of pro-inflammatory cytokines that promote M2

macrophage polarization and angiogenesis (165). Proline

synthesis in CAFs then enables production and deposition of

collagen, a major component of the extracellular matrix.

Suppression of PYCR1 in CAFs inhibits collagen deposition,

tumor growth and metastatic potential in breast cancer (3).

Consistently, autophagy deficiency in CAFs impedes proline

biosynthesis and collagen deposition (166). Inhibitors of

proline metabolism have not yet been evaluated in clinical

trials. However, PYCR1 expression in CAFs is epigenetically

regulated and depends on cytosolic acetyl-CoA (3). Besides

PYCR1 inhibitors that are under development (167), more

established agents that interfere with acetyl-CoA management

(inhibitors of histone acetyl transferase EP300 or ATP citrate

lyase) could be considered for therapy.
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Fatty acid metabolism

Fatty acid (FA) metabolism (Figure 5) is important for

proliferation and survival of cancer cells under conditions of

glucose limitation, where FA b-oxidation (FAO) serves as an

alternative energy source (168). Indeed, upregulation of a key

enzyme in FAO, carnitine O-palmitoyltransferase 1 (CPT1)

protects cancer cells in glucose-deprived conditions and CPT1

knockdown sensitizes cells to therapy (169). Conversely,

overexpression of lipogenic enzymes such as acetyl-CoA

carboxylase (ACC) and fatty acid synthase (FASN) is

commonly seen in tumors and linked to poor prognosis (168).

Inhibitors of enzymes of lipid metabolism (FASN, ACC,

CPT1) have been intensively studied and several compounds

have shown efficacy in experimental settings: (i) With respect to

FASN inhibitors, orlistat, a clinically used anti-obesity drug (a

pancreatic lipase blocker), shows anticancer effectivity in

multiple cancer models (170). Cerulenin and its synthetic

analogue C75 slowed down the growth of breast and ovarian

cancer xenografts (171, 172). Besides that, number of new-

generation FASN inhibitors have been developed recently

including TVB-2640, which is now in clinical trials in cancer

(NCT02223247). (ii) Regarding ACC inhibitors, 5−tetradecyloxy

−2−furoic acid (TOFA) inhibited the growth of ovarian tumor

xenograft via downregulation of cell-cycle regulating proteins
A B

FIGURE 5

Inhibitors of fatty acid metabolism and their effects on TME cell types. (A) Schematic representation of FA metabolism. Only inhibitors with a
reported effect in the TME are shown. Note that none of these inhibitors entered clinical trial in cancer. (B) Effect of the inhibitors shown in
(A) on cell populations present in the TME.
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(173). (iii) For CPT1 inhibitors, etomoxir decreased growth of

prostate cancer and leukemia xenografts in mice (174, 175).

However, the drug has been discontinued in phase II clinical trial

for treatment of heart failure due to hepatotoxicity (176).

Another CPT1 inhibitor, ST1326, prevented formation of B-

cell lymphoma in mice (177) and CPT1 inhibitor ranolazine

administered together with pyruvate dehydrogenase kinase

inhibitor DCA inhibited growth of glioblastoma in mice (178).

In the TME, CAFs often feature elevated lipid biosynthesis

and upregulation of FASN expression, which promotes lipid

transfer from CAFs to cancer cells and stimulates tumor growth

(179, 180). Silencing of FASN in CAFs reduced migration of

colorectal cancer cells grown in CAF-conditioned media (181).

Interestingly, CPT1 was downregulated in metastatic colorectal

cancer, but upregulated in the corresponding CAFs.

Consistently, in mice DLD1 colorectal cancer cells formed

bigger tumors when injected with CAFs overexpressing

CPT1A compared to normal CAFs. It appears that in this

arrangement the preferential use of FAs by CAFs saves glucose

for cancer cells. Pharmacological inhibition of overexpressed

CPT1A with etomoxir resulted in reduced tumor growth (182).

Vascular ECs consume FAs as a carbon source for DNA (but

not RNA) synthesis. Loss of CPT1 in vascular ECs impairs

angiogenesis (183) because of a proliferation (but not migration)

defect. CPT1 loss in lymphatic ECs alters epigenetics due to

reduced coenzyme A levels and impairs lymphangiogenesis

(184). In the adult vasculature, FAO supports vascular

integrity (185, 186). Similarly, disruption of FA synthesis (by

FASN deficiency) results in defects in angiogenesis and increased

vessel permeability linked to decreased palmitoylation, reduced

activity of endothelial nitric-oxide synthase, increased

malonylation and reduced activity of the mTORC complex 1

(mTORC1) (187). Pharmacological modulation of FA

metabolism in ECs recapitulated these effects. CPT1 blockade

with etomoxir inhibited lymphatic EC development and

differentiation (184). FASN inhibitors orlistat and cerulenin

inhibited angiogenesis and slowed down the growth of B16-

F10 melanoma tumors in mice (188, 189).

In the immune compartment, FA metabolism regulates

differentiation of TAMs. FAO is upregulated in alternatively-

activated macrophages that tend to be immunosuppressive

(190). FAs, and in particular polysaturated FAs, are abundant

in TME, and palmitate or oleate treatment stimulates transition

of macrophages towards the immunosuppressive M2 phenotype

(191–193). This effect is abolished by the CPT1 inhibitor

etomoxir (193), which also promotes the pro-inflammatory

M1 phenotype (194). Similarly, linoleic acid, via lipid-sensing

peroxisome proliferator–activated receptor (PPAR) b/d
signaling, imparts TAMs with pro-tumorigenic properties

(195). Interestingly, the FASN inhibitor C75 has inhibited lipid

droplet formation and stimulated M1 phenotype via MEK1/2

axis in Raw264.7 macrophage cell line (194). These results

indicate that the FAs of the TME shape TAM’s phenotype and
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promote anti-tumor immunity.

FA metabolism can also determine the fate of T cells and

change their repertoire. While CD8+ effector T cells restrict

tumorigenesis by attacking cancer cells, Tregs promote

tumorigenesis by suppressing the effector T cells (196). Free

FAs are toxic for effector T cells in high concentration, but they

promote Tregs whose metabolism favors FA oxidation (197).

Thus, while generally TME might accentuate Tregs over T

effectors, the inhibition of FA biosynthesis might have

opposing effects. Indeed, breast cancer cells release oleate

which compromises T effectors (198), and etomoxir treatment

resulted in slower growth of glioblastoma in mice and increasing

T effector to Treg ratio (199). Interestingly, inhibition of FAO

with etomoxir or perhexiline enhanced glycolysis in T effectors

in obesity-linked breast cancer, which resulted in reduced breast

mammary tumor growth in obese mice (200). These results are

further confirmed by a recent study of PPARg signaling in T

effectors, where PPARg agonist bezafibrate induced

mitochondrial respiration and FAO, which improved survival

of effector T cells in FA rich TME (201).

Unlike for most other metabolic treatments, the effects of

inhibiting FA metabolism were described in dendritic cells

(DCs). DCs are important for establishing the immune

response as they present antigens to T cells. Lipid

accumulation resulted in dysfunction of DCs in antigen

presentation (196). Inhibiting FA biosynthesis with ACC

inhibitor TOFA suppressed melanoma tumor growth in mice

and improved ability of DCs to stimulate T cells (202). Complex

recent study showed that inhibition of FA biosynthesis with

FASN inhibitor orlistat also resulted in higher T effector and

reduced Treg tumor infiltration, increased DC maturation and

slowed down tumor growth (203). FAs could potentially also

dampen the innate anti-tumor immune response, namely its

most important effectors, the NK cells. In lipid rich TME, NK

cells tend to accumulate and store lipids to prevent lipid toxicity,

but when this intracellular lipid accumulation becomes

excessive, it can disrupt proper NK cell function (196).
Nucleotides

In highly proliferating cells, purine and pyrimidine

nucleotides are indispensable for nucleic acid synthesis. De novo

synthesis of nucleotides (Figure 6) requires input from pentose

phosphate pathway, TCA cycle, OXPHOS and one-carbon pool

(204). Energetically less demanding salvage pathways, that recycle

intracellular or extracellular nucleoside pools, are generally

preferred in differentiated cells (205), although preferential use

of salvage pathways has also been observed in breast cancer during

epithelial–mesenchymal transition (206).

The first drug to target de novo nucleotide synthesis,

aminopterin, was successful in patients with acute
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lymphoblastic leukemia. Aminopterin is a folate analog that

inhibits dihydrofolate reductase-dependent synthesis of

tetrahydrofolate (207). Tetrahydrofolate is essential in the

production of purines and pyrimidines, and its deficiency

results in lower DNA, RNA and protein synthesis .

Newer derivates of aminopterin, such as methotrexate,

trimetrexate and pemetrexed, are called by a common name

antifolates (208). The initial clinical success of antifolates led

to the development of a new class of drugs called

antimetabolites. Antimetabolites are analogues of purines

and pyrimidines that interfere with proliferation in two

different ways: by inhibition of enzymes involved in

nucleotide base synthesis and by incorporation into DNA

or RNA (209, 210). Several antimetabolites are currently

approved for cancer treatment. The purine analogs 6-

mercaptopurine (6-MP) and 6-thioguanine (6-TG) inhibit

phosphoribosyl pyrophosphate amidotransferase, the first

enzyme in de novo purine biosynthesis (209). The

pyrimidine analog 5-fluorouracil (5-FU) and its prodrug

capecitabine inhibit thymidylate synthase and therefore
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block synthesis of dTTP needed for DNA replication.

Cytarabine and gemcitabine are analogues of pyrimidine

deoxycytidine. Both incorporate into the DNA and stop

DNA replication (211).

Compounds that directly target de novo synthesis of

pyrimidine are also available. The most druggable enzyme of

pyrimidine synthesis is dihydroorotate dehydrogenase

(DHODH) (212), and multiple DHODH inhibitors have been

designed, including brequinar, leflunomide, teriflunomide,

ASLAN003, BAY2402234 and several others (213). While

effective in preclinical mouse models of small cell lung cancer

(214), breast cancer, pancreatic cancer and glioblastoma (215,

216), clinical trials in human cancer were less successful.

Possibly, cancer cells may overcome nucleotide shortage via

salvage pathway (217). However, dipyridamole, an inhibitor of

nucleoside transport via solute carrier family 29 member 1

(SLC29A1/ENT1), showed synergistic effect with brequinar in

vitro, but not in vivo (218). This might be due to rescue by

uridine in plasma that can rebound after the use of

brequinar (219).
A

B

FIGURE 6

Inhibitors of nucleotide metabolism and their effects on TME cell types. (A) Schematic representation of nucleotide de novo synthesis. Anti-
nucleotide therapy compounds with a reported effect in the TME are shown. These compounds are in clinical trials for cancer or in clinical use.
(B) Diverse effects of the nucleotide inhibitors shown in (A) on cell populations present in the TME.
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Nucleotide-based therapy has satisfactory outcomes, but its

general anti-proliferative effects lack selectivity. Consequently, it

also affects cells of bone marrow, intestine and hair follicles,

which leads to toxicity (220). Many cells of the TME also have a

proliferative character and depend on nucleotides for DNA/

RNA synthesis. TECs, for instance, enhance nucleotide synthesis

and upregulate several enzymes required for purine and

pyrimidine synthesis (20, 221). 5-FU and 6-TG decrease

migration and/or proliferation of primary ECs and in vivo

angiogenesis. Inhibition of pyrimidine synthesis by 5-FU

affects migration capacity of ECs stimulated by VEGF and

FGF-2, tube formation stimulated by VEGF (222) and

angiogenesis induced by murine renal cell carcinoma in dorsal

air sac assay (223). Similarly, purine analogue 6-TG inhibited

fetal bovine aortic EC proliferation upon VEGF and FGF-2

stimulation. Consistently, increased vascularization of bone

marrow in patients with AML was reverted under 6-TG

treatment (224) and inhibition of pathways feeding into

nucleotide synthesis in ECs such as FAO (183), glutaminolysis

(138) and glycolysis (20) diminished proliferation. These effects

on ECs might lead to decreased vascularization and

subsequently to slower tumor growth.

Compared to ECs, CAFs are less well studied regarding

consequences of nucleotide synthesis inhibition. Interestingly,

increased density of CAFs was observed following treatment with

maximum tolerated dose of 5-FU in vivo (225) and in patients with

combined treatment of 5-FU and radiotherapy (226).

In the immune compartment, a negative effect on patient

immune response is expected, as activated T and B cells

metabolically depend on nucleotide synthesis for their

proliferation (227–229). Leflunomide, the most clinically

developed inhibitor of pyrimidine de novo synthesis, blocks

proliferation of antibody producing B cells (229), malignant B

cells (230), T cells (231) and interferes with activation of CD4+ T

and CD8+ T cells in HIV-1 infected patients (232). In a murine

autoimmune disease model, leflunomide suppressed B and T

cells. Uridine supplementation was able to rescue activity of

suppressed cells with the exception of CD8+ T cells (233). As

supplementation with exogenous uridine normally compensates

for defects/inactivity of de novo pyrimidine synthesis, this points

to possible off target effects of leflunomide, such as inhibition of

MAPK or tyrosine kinases (234). Hence, newer, and more

specific inhibitors of DHODH might provide better outcomes.

Interestingly, one dose treatment 5-FU reduced the number of

MDSCs and therefore activated immune response by stimulating

CD8+ T cells (235). Additionally, 5-FU treatment elevated the

number of tumor-associated CD4+ and CD8+ T cells (236).

However, another study documented impaired anti-tumor

immune functions with more 5-FU treatment cycles (237).

Similar to pyrimidines, inhibitors of purine metabolism also

negatively impact immune cells. 6-TG and 6-MP decreased

proliferation of NK cells from peripheral blood (238). Elevated
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purine levels in proliferating cells increase expression of MHC

class I polypeptide-related sequence and in this way stimulate

NK group 2D effectors to recognize abnormal cells (239).

Notably, antimetabolites are also used as immunosuppressants

(240), underscoring their potential to dampen immune

response. Surprisingly therefore, they can also support

protective immunity. Similar to 5-FU, one-time treatment of

mice bearing large tumors with gemcitabine, an analog of

pyrimidine deoxycytidine, depleted MDSCs in the spleen (241,

242). However, repeated dose of gemcitabine promoted

immunosuppression in the TME (243). Additionally, in an in

vitro model of viral infection (243) and mouse embryonic

fibroblasts (244), inhibition of de novo pyrimidine synthesis

induced expression of interferon-stimulated genes (ISGs) that

are known to promote innate immune response. Current

evidence points to predominantly suppressed immune

response upon inhibition of nucleotide synthesis. However,

these negative effects on immune response can be exploited for

therapy. For example, pemetrexed promotes immune

checkpoint blockade through per se undesired transcriptional

activation of PD-L1 in cancer cells, and activation of T-

lymphocytes was observed in vitro when pemetrexed was

combined with the anti-PD-1/PD-L1 therapy (245).
Conclusion

Metabolic adaptations that promote proliferation and survival

of tumor cells represent an attractive target for cancer therapy.

However, such metabolic therapy is challenged by the intrinsic

flexibility and heterogeneity of cancer metabolism, the narrow

therapeutic window due to an overlap with the metabolism of

healthy cells (246), and by the complex interactions of metabolic

agents in the TME. The available information about how TME

responds to metabolic treatments is often limited, indirect and

derived from sub-optimal experimental models. The emerging

patterns nevertheless suggest that metabolic treatments could

substantially impact the TME both to enhance or reduce the

efficacy of the intended therapeutic interventions. Although we

consider it unlikely that unfavorable interactions in the TME would

lead to an outright acceleration of primary tumor growth, they

might reduce effectiveness, prevent a lasting remission, and perhaps

increase the risk of metastasis.

With respect to the major TME cell types, the immune

compartment seems to be the most affected, and is often

impacted in a negative manner. Immune cells, particularly

effector T cells, need to expand rapidly when immune

response is activated. Treatments that target rapidly

proliferating cancer cells can therefore reduce the numbers

and potency of anti-tumor effectors. Potential approaches to

inhibit glycolysis, nucleotide metabolism, glutamine or arginine

should thus be carefully evaluated for their impact on T cells. In
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contrast, therapies that limit Tregs (targeting OXPHOS and FA

metabolism mostly) have a very good potential to improve

outcomes of therapy.

Like immune cells, ECs also proliferate during tumor

angiogenesis and rely mostly on glycolysis. An outright

elimination of TECs is not warranted, as this impairs vessel

function, promotes tumor hypoxia and can potentially induce

metastases. On the other hand, partial inhibition of pro-

angiogenic metabolic pathways such as glycolysis that reduces

EC proliferation and angiogenic activity, leads to vessel

normalization, increased perfusion and better response to

combinatorial therapy.

Targeting CAFs with current metabolic treatment seem to

have the least negative effects, as there is little evidence that CAFs

would decrease effectiveness of existing metabolic drugs. Instead,

these drugs tend to reduce nutrients and the overall support that

CAFs provide to cancer cells. Proline synthesis seems to be a

particularly promising target in CAFs, yet at present there are only

limited options for pharmacological targeting of this pathway.

What is the best way forward? We see considerable

potential in combinatorial metabolic therapy. Agents

targeting OXPHOS and FA metabolism seem to show the

most benefits in the TME and may thus be good candidates

for such combinations. Furthermore, metabolic drugs often

target fundamental metabolic processes that are shared across

cell types. It might therefore be convenient to focus on

auxiliary components of these pathways such as plasma

membrane transporters that are more cell type specific,

allowing differentiation between cancer cells and for example

T cells. A prime example of such strategy is the glutamine

uptake inhibitor V-9302, in response to which effector T cells,

but not cancer cells, upregulate an alternative transporter

making them insensitive. In the long run, future treatments

would benefit from design of compounds that are less easily

taken up by certain TME cell types such as effector T cells.

Similarly, engineered CAR-T cells could in principle be

designed as resistant to metabolic inhibitors.

To sum up, when carefully considered, finetuning the effects

of metabolic treatments in the TME represents a promising

opportunity for new metabolic anti-cancer strategies.
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2-DG 2-deoxyglucose

2HG (R)-2-hydroxygultarate

3PO 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

5-FU 5-fluorouracil

6-MP 6-mercaptopurine

6-TG 6-thioguanine

AAs amino acids

ACC acetyl-CoA carboxylase

ADI arginine deiminase

aKG a-ketoglutarate

ASNS asparagine synthase

ASS argininosuccinate synthase

BPTES bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)-ethyl sulfide

CAFs cancer associated fibroblasts

CAR-T Chimeric antigen T cells

CHC a-cyano-4-hydroxycinnamate

CI respiratory complex I

CPT1 carnitine O-palmitoyltransferase 1

DCA dichloroacetate

DCs dendritic cells

DHODH dihydroorotate dehydrogenase

DON 6-diazo-5-oxo-L-norleucine

ECs endothelial cells

FAs fatty acid

FAO fatty acid b-oxidation

FGF fibroblast growth factor

FASN fatty acid synthase

FH fumarate hydratase

GLS glutaminases

GLUD glutamate dehydrogenase

GLUTs glucose transporters

GS glutamine synthase

HK2 hexokinase 2

IDH isocitrate dehydrogenase

LDHA lactate dehydrogenase A

MCT monocarboxylate transporters

NK natural killer cells

OXPHOS oxidative phosphorylation

PDK pyruvate dehydrogenase kinase

PFK-1 phosphofructokinase 1

PFKFB3 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3

PD-L1 programmed death ligand-1

PPAR peroxisome proliferator–activated receptor

PRAT 5-phosphoribosyl-1-pyro-phosphatase amidotransferase

SDH succinate dehydrogenase

SLC1A5 solute carrier family 1 member 5

SUCL succinyl-CoA ligase

TAMs tumor-associated macrophages
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TCA tricarboxylic acid

TECs tumor endothelial cells

TME tumor microenvironment

TOFA 5−tetradecyloxy−2−furoic acid

Treg regulatory T cells

VEGF vascular endothelial growth factor

VEFGR2 vascular endothelial growth factor receptor 2
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