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The alignment of images through deformable image registration is vital to

clinical applications (e.g., atlas creation, image fusion, and tumor targeting in

image-guided navigation systems) and is still a challenging problem. Recent

progress in the field of deep learning has significantly advanced the

performance of medical image registration. In this review, we present a

comprehensive survey on deep learning-based deformable medical image

registration methods. These methods are classified into five categories: Deep

Iterative Methods, Supervised Methods, Unsupervised Methods, Weakly

Supervised Methods, and Latest Methods. A detailed review of each category

is provided with discussions about contributions, tasks, and inadequacies. We

also provide statistical analysis for the selected papers from the point of view of

image modality, the region of interest (ROI), evaluation metrics, and method

categories. In addition, we summarize 33 publicly available datasets that are

used for benchmarking the registration algorithms. Finally, the remaining

challenges, future directions, and potential trends are discussed in our review.

KEYWORDS

deformable image registration, medical imaging, clinical applications, deep learning,
computer assisted surgery
1 Introduction

Image registration, also called image alignment, is a process of establishing spatial

transformations between images (1). Image registration has wide applications in various

medical image analysis and computer-assisted intervention tasks. According to the type

of the transformation, it can be categorized as rigid, affine, and deformable registration

(2). A rigid transformation consists of rotation and translation; an affine transformation

includes translations, rotations, scaling, and sheering; the two kinds of transformations

are described as a 2D single matrix. Unlike rigid and affine transformation, deformable

transformation is a high-dimension problem that we need to formulate by a 3D matrix

(for 2D deformable registration) or a 4D matrix (for 3D registration), i.e., deformation

field. While rigid and affine registration algorithms have already achieved satisfactory
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performance in many applications, deformable registration is

still a challenging task due to its intrinsic complexity,

particularly when the deformation is large.

In clinical practice, however, deformable registration can

find much more applications than rigid and affine registration. It

is utilized to fuse the information that is acquired from different

modalities as medical images from different modalities keep

different characteristics; for example, magnetic resonance

imaging (MRI) provides better contrast for soft tissues, and

computed tomography (CT) has clear details of bone (3); fusing

these data helps to assure better diagnosis and treatment. Even

the images from one modality have distinctions when they are

collected at different time points, from different views, or from

various people. In this scenario, image registration is used to

monitor organ or lesion variation (4).

Additionally, deformable image registration has also been

utilized for various computer-assisted interventions in recent

years (5–9). For transrectal ultrasound-guided (TRUS) prostate

biopsy, it is the most effective way to diagnose prostate cancer, with

the advantages of real-time detection, simplicity, and low cost, but

for systematic sextant biopsies, its poor imaging quality and lack of

sharp contrast between cancer and normal tissue results in false-

negative rates of up to 30% (10). Magnetic resonance imaging

(MRI), different from TRUS, is the most effective imaging

technique for examining anatomical features and targeting

prostate tumors. Thus, the deformable registration of pre-

operative MR images and inter-operative TRUS images is utilized

to fuse their information for enhancing biopsy accuracy. Moreover,

registration is also of great significance in radiotherapy (11, 12); it is

performed to calculate the offset of the current target from the

planned position, and the offset determined from the registration is

used to adjust the patient position or the radiation beam.

Deformable image registration aims to calculate the voxel-

to-voxel correspondences between a moving image (i.e., source

image that needs to be transformed) and a fixed image (i.e.,

target image used as the template). During image registration,

The moving image is transformed to align with the fixed image

by minimizing the dissimilarity between the fixed image and the

transformed moving image.

Given the source and the target image: IS, lT∈RH×W×C , the

formula is as follows:

arg min 
f∈F

‘(IT ,T(IS jFf )) + lR Ff

� �
(1)

where F represents the function space of f,Ff denotesF with

f when the input is (IS, IT), and ℓ is the loss function to compute

the discrepancy between the target image IT and the registration

result T(IS|Ff). Additionally, R(Ff) is the regularization term and

the hyperparameter l is used to balance its importance on

the training.

Various traditional registration methods and toolboxes have

been devised over the last few decades, e.g., Elastix (13) and

ANTs (14). The traditional registration algorithms are
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constructed as continuous optimization problems (15, 16) or

discrete optimization problems (17). Their computational

performance, however, is hampered by the high dimension

and non-convex properties, and their capability to capture

complex deformations is limited (18). Recently, deep learning-

based deformable registration methods have greatly attracted

researchers’ attention, as data-driven methods benefit

significantly from a large number of paired/unpaired images

when compared with traditional methods.

Deep learning-based models are capable of improving the

deformable registration performance. Firstly, deep neural

networks can prompt the iterative optimization procedure to the

training stage and achieve fast inference in the test stage. Secondly,

neural networks are able to work as an approximator of the

similarity between the image pairs to help registration. Thirdly,

the deformation field can be predicted directly through an end-to-

end model without pre-defining a transformation model.

Though previous reviews about deep learning-based medical

image registration literature have been published (19–22), there

are still some deficiencies. On one hand, these reviews lack a

summary of the public dataset for benchmarking registration

algorithms. On the other hand, some details of the selected

literature were missing. This review will serve as a supplement to

them by adding more recent studies, by discussing the selected

literature with comprehensive details, by concluding the most

commonly used public dataset, and by providing some

suggestions about remaining problems and further research.

Specifically, our review aims to
1. Conclude the most commonly used public datasets with

details on modality, organ, dimension, quantity, disease,

release time, etc.

2. Summarize literatures on deep learning-based

deformable image registration, especially for recent

research, and list organ, modality, dimension, model,

evaluation metrics, publication source, etc. in tables.

3. Provide detailed statics on research interests

(Modalities, ROIs, Evaluation metrics, and Methods).

4. Discuss the remaining issues that need to be studied and

the directions for future research.
Other contents of this review are organized as follows: In

Section 2, we present detailed statistics on modalities, organs, etc.

Section 3 summarizes the frequently used dataset. We discuss

deep learning-based deformable medical registration methods

from five categories in Section 4. Then, we discuss the limitations

and future potential in Section 5. Section 6 concludes the review.
2 Statistical analysis

For the purpose of this review, as completely as possible, to

include relevant studies in the past decade and potentially
frontiersin.org
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advanced studies in the upcoming decade, this review mainly

includes “deep learning”, “medical image registration”,

“supervised”, “unsupervised”, “motion estimation”, “GAN”,

“deep similarity”, “Transformer”, “contrastive learning”, “meta

learning” and “knowledge distillation” as the search keywords.

Due to the fact that medical image registration and deep

learning-based methods could be involved in different

conferences and journeys focusing on various specializations,

the conference and journal sources of the selected papers were

from but were not limited to Computer Vision and Pattern

Recognition (CVPR), Medical Image Computing and Computer

Assisted Interventions (MICCAI), Social Science and

Management Innovation (SSMI), Medical Image Analysis

(MIA), Innovative Management, Information Production

(IMIP), Technology Modernization and Innovation (TMI),

International Symposium on Biomedical Imaging (ISBI),

Machine Learning Machine Intelligence (MLMI), and Medical

Imaging With Deep Learning (MIDL). Google Scholar, arXiv,

and PubMed were searched to find the targeted publications.

Papers that do not notify the details about the training datasets

such as not clarifying the name, the number of participants, and

implementation descriptions were excluded in this review. Other

papers that do not clearly state the methods and validations were

also excluded in this review. After the selection and screening, 91

studies related to learning-based medical image registration were

finally included. Figure 1 describes the statistical results of the

studies in this review.

Registration in mono-modality (MR-MR, CT-CT, etc.) and

multimodality (MR-CT, MR-US, etc.) can be seen in Figure 1A.

As shown in Figure 1A, MR-MR and CT-CT are the most

commonly studied modalities, and each accounts for 50% and

30% of the selected studies, which might indicate that

registration in mono-modality is relatively convenient and

simple to implement and registration in cross-modalities

encounter more challenges. Based on ROIs, we collected

methods for the brain, lung, prostate, heart, liver, knee, torso,

and abdomen in Figure 1B. The three most popular ROIs being

investigated are brain, lung, and the prostate, and each accounts

for 47%, 19%, and 14% of all the studies. The public datasets

normally contain scans within these three ROIs as common

diseases exist in these regions. Thus, studies utilizing public

datasets could be more inclined to investigate the brain, lung,

and prostate. With respect to evaluation metrics, cross-

correlation (CC), mean square error (MSE), Dice coefficient

(DSC), target registration error (TRE), Jacobian determinant

(Jaco.Det.), and other metrics are shown in Figure 1C. The

evaluation metrics such as the MSE measure the numerical

difference between warped images and reference images, and

other metrics such as the Jacobian determinant quantifies the

smoothness of the deformation field to keep the results of the

registration plausible. Based on Figure 1C, DSC is the most

popular metric and accounts for 46% of all the studies. DSC

would be used if the ground truth labels were provided, and this
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statistical analysis demonstrates the current trend for validating

the accuracy of the proposed registration model that commonly

requires the segmentation labels as the ground truth. This review

also demonstrates the ratio of similarity-based, supervised,

weakly supervised, unsupervised, and latest methods in

Figure 1D. Unsupervised and supervised methods are two

most popular methods and each accounts for 31% and 22% of

all the studies. Although the ratio of latest methods is the

smallest, this review tends to provide certain insights and

suggest potential trends in developing deep learning methods

of medical image registration.
3 Datasets

The absence of relevant data, as one of the main bottlenecks

in current learning-based medical image analysis, resulted

from several challenges including data collection with limited

but subtle equipment, label annotation with human expertise,

and data access under ethical considerations. Compared to

commonly used datasets such as the MINST (23), qualified

medical images cannot be collected from handwritten ones but

need to be acquired by strict protocols and expensive scanning

devices. Considering MRI method as the example, each session

generally lasts 2 h under the supervision and manipulation of

professional researchers, and during the scanning process, the

subjects are almost fully constrained in the specialized machine

in order to obtain accurate data (24). Other than sophisticated

protocols to collect data mentioned above, labels and the

annotation of the medical images have to be achieved by

specialized professionals. Unlike datasets such as the

autopilot that could be labeled by less professional

annotators, in order to keep the accuracy and possibly avoid

the bias of the ground truth, a single scan might be labeled by

multiple experts. Finally, accessing medical data is not allowed

for most researchers since the clinical data contain private

information and only researchers with authorization could

utilize the dataset (25).

Overall, based on the characteristics of the medical dataset

discussed above, prevalent and testified public databases are thus

normally chosen by research teams in deep learning-based

medical image analysis. Moreover, in addition to alleviating

the challenges mentioned, the training and assessment of DL

models on multiple public datasets could also better demonstrate

the generalizability of the proposed methods and clearly

compare the results on fair benchmarks, including

computational time and registration accuracy. Our review

summarized 30 public datasets from deep learning registration

studies in Table 1. Most of the datasets consist of brain MR and

lung CT images, and other modalities in different ROIs such as

the abdomen and knee were also included. The ADNI dataset as

one example in brain datasets contains MRI longitudinal image

scans in AD patients from 63 sites across the US and Canada.
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ADNI develops standardized protocols for multi-center

comparison and helps over 1,000 scientific publications

explore the prevention and treatment of AD since 2004 and

would be funded further in the future (26). COPDGene as one

example in lung datasets contains chest CT scans of more than

10,000 individuals for chronic obstructive pulmonary disease

(COPD). More than 375 publications have used COPDGene to

explore the assessment and identify the biomarkers of COPD

since 2009 (47). OAI as the example in the knee dataset contains

MRI and x-ray longitudinal measurements from 4,796 subjects,

and more than 400 research manuscripts have used the OAI to

explore the assessments and interventions of knee osteoarthritis

(48). PROMISE12 as the example in the prostate dataset is the

dataset made for MICCAI prostate segmentation challenge,
Frontiers in Oncology 04
which was used by 11 academic teams for various

segmentation algorithms and showed promising results (55).

In Table 1, the date of publication for each dataset was also

listed. Some datasets are still collecting data for further imaging

analysis support, such as the data collected for BraTs since 2012

(37). The quantity of each dataset demonstrates the size of each

dataset, and the remarks of each dataset illustrate the

significance of each dataset.
4 Methods

Figure 2 displays the chronological development of deep

learning-based deformable medical image registration. In this
A B

DC

FIGURE 1

The statistical analysis of our selected papers from the aspects of (A) modalities, (B) organs, (C) evaluation metrics, and (D) methods.
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review, deep learning-based registration methods are classified

into the following four categories by evolution: Deep Iterative

Methods, Supervised Methods, Unsupervised Methods, and

Weakly Supervised Methods.
Frontiers in Oncology 05
4.1 Deep iterative methods

Early research on deep learning-based registration directly

extended the traditional registration framework by using deep
TABLE 1 Public dataset for benchmarking medical image registration.

Name Modality Organ Dimension Quantity Time Disease Remark

ADNI (26) MRI, fMRI Brain 3D 819 2004-
2021

AD/MCI Longitudinal changes in AD/MCI

OASIS (27) MRI, PET Brain 3D 1664 Since
2007

AD Longitudinal study in AD

ABIDE (28) MRI Brain 3D 1112 2014 ASD 20 samples from 17 sites

ADHD20 (29) MRI, RS-
fMRIn

Brain 3D 776 2012 ADHD An fMRI dataset for ADHD

MCIC (30) MRI, fMRI,
DWI

Brain 3D 161 2013 Schizophrenia Multimodal imaging for schizophrenia.

PPMI (31) MRI Brain 3D 423 2011 PD Identify biomarkers of PD progression

HABS (32) MRI, fMRI,
PET

Brain 3D 284 2015 Normal MRI and PET acquisitions

GSP (33) MRI, fMRI Brain 3D 1570 2015 Normal Rapid imaging protocol

LPBA40 (34) MRI Brain 3D 40 2007 Normal 56 labeled structures

IBSR18 (34) MRI Brain 3D 18 2009 Normal 84 labeled regions

CUMC12 (34) MRI Brain 3D 12 2009 Normal 128 labeled regions

MGH10 (34) MRI Brain 3D 10 2009 Normal 72 labeled regions

MindBoggle 101 (35) MRI Brain 3D 101 2012 Normal Labeled cortices with DKT protocol

Freesurfer buckner40
(36)

MRI Brain 3D 40 2012 Normal Dataset in Freesurfer software

BraTS (37) MRI Brain 3D More than 542 Since
2012

Tumor Tumor segmentation

ALBERTs (38) MRI Brain 3D 20 2012 Normal Cerebral MRIs of newborns

Simulated Brain (39) MRI Brain 3D 20 2006 Normal Simulated medical imaging

RESECT (40) MRI, US Brain 3D 23 2017 Glioma Registration for brain tumor resection.

IXI (41) MRI Brain 3D 662 2014 Normal Include T1, T2, PD, MRA and DTI images

DirLAB (42) CT Lung 3D 10 2009 Normal 300 landmarks

POPI (43) CBCT Lung 3D 6 2011 Normal 100 landmarks

SPREAD (44) CT Lung Unknown 144 2007 COPD Longitudinal design in 30 months

TCIA (45) CBCT, CT Lung 3D More than 2017 Lung Cancer Database for cancer research

EMPIRE10 (46) CBCT Lung 3D 30 2010 Normal Intra-patient registration

COPDgene (47) CT Lung 3D More than 10,000 2011 COPD Investigate COPD

OAI (48) MRI Knee 3D 4796 Since
2003

Osteoarthritis Osteoarthritis dataset

KiTS19 (49) CT Kidney 3D 300 2019 Kidney tumor Partial or radical nephrectomy patients

MSD (50) MRI, CT Whole
Body

3D 2,633 2019 Multiple
disease

Whole body

VISCERAL (51) CT, MRI Whole
Body

3D More than 120 Since
2016

Unknown Whole body

Pancreas-CT (52) CT Pancreas 3D 82 2015 Unknown Expert labeled CT volumes

SpineWeb (53) MRI, CT Spine 3D Multiple in 16
datasets

Since
2012

Spinal injury Detect vertebral body fractures

Prostate-3T (54) MRI Prostate 3D 64 2013 Unknown Segmentations of central gland and the
peripheral zone

PROMISE12 (55) MRI Prostate 3D 100 2013 Unknown Prostate MRI dataset
AD, Alzheimer disease; MCI, mild cognitive disease; ASD, autistic spectrum disorders; ADHD, attention deficit hyperactivity disorder; PD, Parkinson disease; COPD, chronic obstructive
pulmonary disease; DWI, diffusion-weighted imaging; MRI, magnetic resonance imaging; PET, positron emission tomography; CBCT, cone-beam computed tomography; DTI, diffusion
tensor imaging; fMRI, functional magnetic resonance imaging.
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neural networks as an approximator of the similarity or

dissimilarity between the source image and the target image.

Another early research direction is reinforcement learning. This

paradigm trained an agent to perform a sequence of actions and

iteratively improve image alignments by maximizing rewards.

These two kinds of paradigms both adopt iterative strategy.

4.1.1 Deep similarity metrics
For traditional image registration methods, the commonly

used similarity metrics are intensity-based, including mean square

distance (MSD), sum-of-square distance (SSD), (normalized)

mutual information (MI), and (normalized) cross-correlation

(CC). Generally, these intensity-based similarity measurements

work quite well for mono-modality image registration (e.g., CT-

CT and MRI-MRI image registration), in which the image pair

shares similar intensity distribution.

However, these metrics focus on intensity values; thus, they

are not capable of measuring multimodality registration due to

the diverse intensity distributions across modalities. To take

advantage of deep neural networks, researchers proposed to

replace the intensity-based similarity metrics with metrics that

have been learned through deep networks and that achieved
Frontiers in Oncology 06
promising registration performance. Figure 3 shows the general

pipeline of deep similarity-based registration methods.

Wu et al. (56) firstly proposed to adopt deep learning

technology to obtain the similarity metric for registration.

They adopted convolutional-stacked autoencoder (CAE) to

extract the discriminative features for 3D deformable brain

MRI registration. Then, the registration was performed by

optimizing the NCC of the two features and improved

registration accuracy was achieved. So et al. (57) proposed a

novel learning-based metric by using Bhattacharyya Distances.

The dissimilarity of the testing image pairs is calculated by

incorporating the expected intensity distributions learned from

the registered training image pairs. A list of research of this

category is presented in Table 2.

So far, a number of registration methods for medical image

based on deep similarity metrics have been studied and have

shown great potential in multimodality image registration.

However, a sufficient number of explicitly annotated ground

truths are required for deep similarity metric training, which

hinders the development of such approaches. Moreover, it is

difficult to interpret the learned deep similarity metrics, and the

iterative process still limits the use of these methods. Nowadays,
FIGURE 3

Illustration of deep similarity metric-based registration methods.
FIGURE 2

The evolution of deep learning-based methods on deformable medical registration from deep similarity methods to weakly supervised methods.
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the number of literatures for this category has decreased, and

this trend is projected to continue.

4.1.2 Deep reinforcement learning
Since the initial publishing from Mnih et al. (68) and Silver

et al. (69), Reinforcement Learning (RL) has gained a lot of

attention and has been used for diverse applications including

robotics, video games, and healthcare. In RL, an intelligent agent

learns to map states to actions iteratively to maximize rewards

received from a designed environment. For RL-based

registration, the inputted image pairs are constructed in a

given environment, and an artificial agent learns to generate

the final transformation subsequently so that the rewards

received from that environment can be maximized. A general

pipeline of deep reinforcement learning-based deformable image

registration methods is illustrated in Figure 4.
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Liao et al. (70) firstly proposed to train an artificial agent for

the rigid registration of 3D CT images and cone-beam CT

(CBCT) images for cardiac and abdominal images. Ma et al.

(71) adopted deep reinforcement learning to extract the best

feature representation to minimize the discrepancy between CT

and MRI images for rigid registration. Instead, there are a few

studies about RL-based algorithms on deformable registration.

In 2017, Krebs et al. (72) applied RL to deformable prostate MRI

registration by training an agent to investigate the parametric

space of a statistical deformation model constructed with

training data.

Different from deep similarity metrics-based methods, the

similarity measures in these kinds of methods are routinely

provided in a traditional way, e.g., MSE, NMI, or LCC. Thus,

they have limited applications in multimodality registration.

Moreover, RL-based methods mainly focus on rigid
FIGURE 4

A general pipeline of deep reinforcement learning based deformable image registration methods.
TABLE 2 Medical image registration methods based on deep similarity metrics.

Reference Organ Modality Dimension Model Evaluation Source

(56) Brain MRI 3D SAE DSC MICCAI 2013

(58) Lung, Brain Synthetic 2D, 3D CNN Convergence time CMMM 2015

(59) Brain MRI 3D SAE DSC TBE 2015

(60) Brain T2–T1 3D CNN DSC MICCAI 2016

(61) Brain Pathological 2D SAE Deformation error SSMI 2016

(62) Brain MRI 3D CNN SSIM, PSNR PRL 2017

(57) Brain MRI 2D, 3D CNN TRE PR 2017

(63) Brain T1–T2, T1–PD 3D CNN TRE Sensors 2018

(64) Brain, Abdomen MRI, CT 3D CNN DSC JBHI 2018

(65) Lung CT 3D CNN TRE JMI 2018

(66) Brain MRI 3D CNN TRE MBEC 2019

(67) Brain MRI 3D CNN TRE, DSC MIA 2021
fr
MRI, magnetic resonance imaging; CT, computed tomography; SAE, stacked autoencoder; CNN, convolutional neural network; DSC, Dice coefficient; SSIM, structural similarity index
measure; PSNR, peak signal-to-noise ratio; TRE, target registration error.
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registration, as it is hard for agents to tackle the large state space

generated from deformable vector field.
4.2 Fully supervised methods

One disadvantage of deep iterative methods is that the

registration process is time-consuming and iterative. Fully

supervised methods help to predict transformations in one

shot by the supervision of real deformation vector fields or

synthetic deformation fields. The real deformation fields are

generated from traditional registration, and the synthetic

deformation fields are obtained from statistical models or

random transformations. Figure 5 illustrates the general

framework of the fully supervised methods.

At first, Yang et al. (73) proposed to register brain MRI

images using a U-Net-like structure in one step. The large

diffeomorphic metric mapping was utilized to generate a basis,

then the original momentum values of the pixels from the

images are inputted into the network, and the values are

refined to predict the deformation field. Fan et al. (74)

presented a Birnet for brain MRI image registration by

utilizing the deformation field estimated from the traditional

registration method. They also proposed gap-filling to learn

more high-level characteristics and designed multi-channel

inputs to learn more information. Recently, Fu et al. (75)

designed an MR-TRUS registration network for prostate

interventions; the supervision deformation field is generated

from population-based FE models from point clouds with

biomechanical constraints.

These methods have achieved notable results with real

deformation fields as supervision. However, supervision by

real deformation fields is limited by the size and the diversity

of the dataset. Then, synthetic deformation fields are developed

for the learning of deformation fields.

Rohe et al. (76) adopted a U-Net-like network to predict the

deformation field for 3D cardiac MRI volume registration. The

supervisions are transformations generated from mesh

segmentations, and SSD between the supervision and
Frontiers in Oncology 08
prediction is set as the loss function. Their results are

comparable with those from traditional registration. Sokooti

et al. (77) presented a multi-scale network to learn a

deformation field of intra-subject 3D chest CT registration.

They used random DVF as supervision. Uzunova et al. (78)

designed a network for the registration between 2D brain MRI

and 2D cardiac MRI. Their ground truth is generated utilizing

statistical appearance models (SAMs). They adapted FlowNet

(79) architecture and obtained outperforming results.

The spatial transformer networks (STNs) (80) introduced in

2015 is one significant advancement that is beneficial in this era.

STN is composed of three parts. The first is a localization network,

whose goal is to use the input features to regress the transformation

parameters. The second part is a grid generator, which generates a

sampling grid that will be used to sample the input feature map.

Another is a sampler that will produce the transformed feature map

from the sampling grid and the input feature map by sampling and

interpolation. STN can be inserted anywhere in various networks to

execute a spatial transform on an input feature map because it is a

completely differentiable module.

The fully supervised methods are widely studied and have

notable results. A list of works about these methods are

presented in Table 3. However, the generation of real or

synthetic deformation fields is hard, and these deformation

fields are different from the real ground truth, which will

confine the accuracy and efficiency of these kinds of methods.

In this situation, unsupervised methods are promising to tackle

the problems.
4.3 Unsupervised methods

Even though different data augmentation techniques and

data collection methods have been utilized in supervised

learning, the preparation of the required ground truth is

inconvenient and leads to the fact that the supervised

framework has limitations in generalizing results in different

domains and applying various registration tasks. Thus, the

unsupervised registration has a more convenient training
FIGURE 5

Illustration of fully supervised registration methods.
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process that usually only inputs paired images without

predefined DVF as the ground truth. The formulation in the

loss function of the learning network constrains the output DVF

to be accurate. Generally, the unsupervised learning framework

consists of the similarity-based methods and GAN-based

methods. Unsupervised methods are concluded in Table 4.

4.3.1 Similarity-based unsupervised methods
These kinds of methods update networks by minimizing the

dissimilarity between the fixed images and the transformed

moving image. An illustration of similarity-based unsupervised

methods is presented in Figure 6.

Balakrishnan et al. (94) designed a U-Net framework named

VoxelMorph to perform DIR of brain MR images. Unlike

conventional registration methods that calculate the DVF for

every pair of images, they formulate the DVF as a global function

that could be optimally parameterized with the trained

convolutional neural network. Given the only paired images as

the inputs, VoxelMorph rapidly predicts the relevant DVF and

uses it to get the wrapped image. The loss function includes an

unsupervised setting that minimizes the warped image and fixed

image based on image intensity metrics, and an auxiliary

supervised setting that minimizes the annotated segmentation

errors. The proposed method performed comparably to

conventional registration methods in terms of the Dice score.

Estienne et al. (125) used a shared encoder with a separate
Frontiers in Oncology 09
decoder named U-ResNet to compute the DVF. The network

inputs paired fixed and moving images and aims to output their

specific segmentation maps. The registration accuracy would be

optimized based on the Dice score in the segmentation results.

Not only applied in brain MR images, De et al. (126)

deployed a similar unsupervised framework in cardiac MRI

and chest CT. They combined the unsupervised affine and

deformable registration and downsampled the input images

into multiple stages, which better captures the small motions

and improves the registration results. Shao et al. (127)

implemented this similar coarse-to-fine registration strategy in

prostate MRI images named ProsRegNet. Shen et al. (98)

designed a three-phase unsupervised registration framework to

calculate a transformation map for knee MRI images in a

longitudinal study.

Recently, Chen et al. (105) extended this registration

framework to infant tasks. They proposed an unsupervised

age-conditional cerebellum atlas construction framework.

Given the age input and two temporally adjacent source

images, it would generate a longitudinally consistent 4D infant

brain atlas with the longitudinal constraint in the loss function.

Kim et al. (101) introduced the CycleMorph, which added the

cycle consistency in the loss function to preserve the topology of

the predicted DVF. Guo et al. (102) fused 2D TRUS image with

3D MRI volume with the frame-to-volume registration network

(FVR-NET). They performed the 2D TRUS image and 3D TRUS
TABLE 3 Fully supervised medical image registration methods.

Reference Supervision Organ Modality Dimension Model Evaluation Source

(73) Real DVF Brain MRI 2D, 3D CNN Deformation error, [J] DLMIA 2016

(81) Real DVF Brain T1–T2 3D CNN Deformation error, [J] ISBI 2017

(82) Real DVF Brain MRI 3D CNN Deformation error, [J] NeuroImage 2017

(83) Registered data Drosophila TEM 2D CAE DSC DLMIA 2017

(77) Synthetic DVF Lung CT 3D CNN MAE, TRE MICCAI 2017

(84) Synthetic DVF Brain MRI 3D CNN DSC, ASSD MICCAI 2017

(76) Synthetic DVF Cardiac MRI 3D CNN DSC, HD, [J] MICCAI 2017

(85) Synthetic DVF Craniofacial X-ray-CBCT 2D-3D CNN Intensity distance DLMIA 2017

(78) Synthetic DVF Brain MRI, Cardiac D CNN Jaccard MICCAI 2017

(86) Similarity Prostate CT-MRI 3D CNN DSC, ASD MLMI 2018

(87) Real DVF Lung CT 3D CNN TRE IAMO 2018

(88) Synthetic DVF Lung CT 3D CNN TRE TMI 2018

(89) Real DVF Abdomen MRI 3D CNN SNR BJR 2018

(74) Real DVF Brain MRI 3D FCN DSC MIA 2019

(90) Synthetic DVF Lung CT 3D CNN TRE, folding, [J] arXiv 2019

(91) Synthetic DVF Prostate MRI-US 3D CNN SRE CMIG 2020

(92) Real DVF Head MRI-CBCT 3D CNN DSC, MSD, HD MI 2020

(93) Real DVF Lung CT 3D CNN MSE, SSIM QIMS 2021

(75) Real DVF Prostate MRI-US 3D CNN DSC, MSD, HD MIA 2021
DVF, deformation vector field; MRI, magnetic resonance imaging; TEM, transmission electron microscope; CBCT, cone-beam computed tomography; US, ultrasound; FCN, fully
convolution network; [J], Jacobian determinant; ASSD, average symmetric surface distance; CAE, convolution autoencoder; TRE, target registration error; ASD, average surface distance;
SNR, signal-to-noise ratio; SRE, surface registration error; SSIM, structural similarity index measure; MSD, mean surface distance; MSE, mean square error; HD, Hausdorff distance.
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volume registration by adopting a dual branch feature extraction

module, and used the output transformation parameters to

combine with the registration of 3D TRUS and 3D MRI.

Many groups have proved that their proposed similarity-

based method could achieve SOTA performance compared to

conventional methods; however, they mainly focus on mono-

modality and the image intensity similarity metrics would be

inappropriate in multimodality registration tasks.

4.3.2 GAN-based unsupervised methods
Although similarity-based unsupervised methods are not

trained with existing registration transformations, analyzing
Frontiers in Oncology 10
transformations in terms of spatially corresponding patches

could be challenging in multimodal registration and can

negatively impact registration results. For overcoming issues

existing in multimodality translation, generative adversarial

network (GAN)-based unsupervised framework performs the

training process in an adversarial setting, in which a

discriminator predicts the probability that the generation of

new images will match the distribution of the input training

data. Figure 7 is a general framework of GAN-based deformable

image registration methods.

Mahapatra et al. (116) utilized both cycGAN and cGAN to

predict both warped images and DVF. cGANs are used for
TABLE 4 Unsupervised medical image registration methods.

Reference Loss Organ Modality Dimension Model Evaluation Source

(86) NCC Prostate CT-MRI 3D CNN DSC MLMI 2018

(94) MSE, LNCC Brain MRI 3D CNN DSC CVPR 2018

(95) MSE, NCC Brain MRI 3D CNN DSC MICCAI 2019

(96) CC Brain MRI 3D CNN DSC SASHIMI 2019

(97) CC Lung CT 3D CNN TRE MICCAI 2019

(98) NCC Knee MRI 3D CNN TRE,RMSE CVPR 2019

(99) NCC Lung CT 4D CNN TRE PMB 2020

(100) MSE Prostate MR-Histology 4D CNN TRE, Dice MIA 2021

(101) CC Lung, Brain CT, MRI 3D CNN TRE, DSC, [J], Time MIA 2021

(102) MSE, NCC Prostate US-MRI 2D-3D CNN DSC, HD MICCAI 2021

(103) NCC Lung CT 3D CNN TRE MICCAI 2021

(104) Similarity loss Brain T1, T2, FLAIR 3D CNN DSC, RMSE MICCAI 2021

(105) Similarity loss Brain MRI 3D CNN DSC, RMSE MICCAI 2021

(106) MI Brain MRI 3D CNN DSC TMI 2021

(107) NLCC Hippocampus, Prostate MRI 3D CNN MSE, NLCC, DSC WACV 2022

(108) MSE Porcine Endoscopic 3D CNN MSE, NLCC, [J] IJCARS 2022

(109) MSE, LNCC Brain MRI 3D CNN Dice IPMI 2021

(110) MIND Abdominal CT-MR 3D CNN Dice, ASD ISBI 2021

(111) MSE, MIND Abdominal CT-MR 3D CNN Dice, ASD MICCAI 2022

(112) MIND Abdominal CT-MR 3D CNN Dice, ASD, [J] IJCARS 2021

(113) cycloss Brain MR-CT 2D cycGAN MAE, PSNR SASHIMI 2017

(114) cycloss Thorax, Abdomen MR-CT 3D cycGAN NMI, MIND CVPR 2018

(115) GAN-loss Prostate MR-TRUS 3D Wasserstein GAN TRE, D-score MLMI 2018

(116) NMI, SSIM, VGG Retina, Cardiac Fundus-FA, MRI 3D cGAN, cycGAN Dice, HD95, MSE CVPR 2019

(117) Local Gradient Loss Brain MRI 3D Deform-GAN MI, NGF, LCC CVPR 2020

(118) cycloss Cardiac CT-TEE 2D cycGAN DR, HD95, ASD CMMM 2020

(119) cycloss Kidney, Abdomen CT-MR 3D DS cycGAN SSIM, PSNR MICCAI 2020

(120) NCC Brain MRI 3D GAN DSC, HD, ASD, CC MICCAI 2021

(121) cycloss Brain, Aortic CT-MR 2D, 3D Dicyc-GAN MSE, PSNR, SSIM Info Fusion 2021

(122) LNCC Brain MRI 3D GAN Dice, [J] ICCV 2021

(123) NCC Head MRI-CT 3D cycGAN Dice, SD, HD, TRE, [J], Time MIA 2022

(124) NCC Lung CT 2D GAN Dice, HD, ASSD, [J] CMIG 2021
CT, computed tomography; MRI, magnetic resonance imaging; TEE, transesophageal echocardiography; FA, fluorescein angiography; CNN, convolutional neural network; FLAIR, fast
fluid attenuated inversion recovery; TRUS, transrectal ultrasound; DSC, Dice coefficient; GAN, generative adversarial network; ASSD, average symmetric surface distance; TRE, target
registration error; CC, cross-correlation; cGAN, conditional generative adversarial network; cycGAN, cycle generative adversarial network; cycloss, consistency loss; HD, Hausdorff
distance; ASD, average surface distance; STD, standard deviation; CC, Pearson’s correlation coefficient; RMSE, root mean square error; NMSE, normalized mean square error; SSIM,
structural similarity index measure; PSNR, peak signal-to-noise ratio; VGG, L2 distance between two images; MIND, modality independent neighborhood descriptor; NGF, nerve growth
factor; [J], Jacobian determinant; MI, mutual information; SD, surface distance; NLCC, normalized local cross-correlation; NLCC, localized normalized cross-correlation.
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multimodal registration so that the generated output image (the

moving image after transformation) is similar to the original

(based on intensity distribution) while having the same

landmark locations as the reference image (from a different

modality). The loss function for image generation is modified to

incorporate adversarial loss and cycle consistency loss to obtain

consistent and realistic deformation fields, which allow new

image pairs from the untraining set to be registered. This

method outperformed conventional retinal image registration

with MAD, MSE, and Hausdorff distance.

The GAN framework has shown promising results in cross-

modality medical image registration. Not only addressing

multimodal registration, currently, more papers implement

GAN in diverse registration tasks. Neel et al. claimed a GAN

approach to construct the conditional deformable template

across datasets from different populations. Despite GAN

showing great potential in its generative and discriminative

features, the validation of output warped image accuracy is

still required to be investigated, especially in unpaired images

with minor abnormality regions.
FIGURE 7

A general pipeline of GAN-based deformable image registration methods. T
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4.4 Weakly supervised methods

Neither using real or synthetic deformation vector field as

supervision nor directly predicting deformation field without

supervision, weakly supervised methods use labels as

supervision, for example, segmentations and key points; such

anatomical labels are feasible in practice and credible for

training. Figure 8 is a general framework of weakly supervised

deformable image registration methods. Generally, these

networks are trained by minimizing anatomical losses, which

ensures that the predicted segmentations match the anatomical

labels and provide anatomy consistency monitoring. Weakly

supervised methods naturally improve the performance of

registration by introducing the anatomical constraints. A

conclusion of weakly supervised methods is presented in Table 5.

Hu et al. (129) presented an end-to-end convolutional neural

network to inference deformation field for 3D MRI and US

image registration. Image pairs with multiple labeled

corresponding structures were used for the training, and only

unlabeled image pairs are used for testing. Xu et al. (135)
FIGURE 6

A general pipeline of similarity based deformable image registration methods. This network is optimized by optimizing a similarity loss function.
his network is optimized by optimizing the adversarial loss function.
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FIGURE 8

An illustration of weakly supervised deformable registration methods. The weak supervision is achieved by adding anatomical labels in the network.
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proposed DeepAtlas, a network for weakly supervised

registration and semi-supervised segmentation. The networks

were trained jointly through an anatomy similarity loss that

penalized the difference between the transformed segmentation
Frontiers in Oncology 12
of the moving image and the target image’s segmentation.

Estienne et al. (125) developed a registration network for

abdominal CT registration by applying spatial gradients and

noisy segmentation labels. Recently, Hering et al. (140) proposed
frontiersin.org
e

TABLE 5 Weakly supervised medical image registration methods.

Reference Supervision Organ Modality Dimension Model Evaluation Source

(128) Segmentations Lung X-ray 2D GAN DSC, HD, TRE MLMI 2018

(129) Anatomical labels Prostate MRI-US 3D CNN DSC, TRE MIA 2018

(130) Anatomical labels Prostate MRI-US 3D CNN DSC ISBI 2018

(131) Biomechanical Simulations Prostate MRI-US 3D GAN DSC, TRE MICCAI 2018

(132) Anatomical labels Cardiac MRI 3D CNN DSC BFM 2019

(133) Anatomical labels Brain MRI 3D CNN DSC MLMI 2019

(134) Anatomical labels Brain MRI 3D CNN DSC MICCAI 2019

(135) Segmentations Brain, Knee MRI 3D CNN DSC MICCAI 2019

(136) Contours Lung CT 3D CNN DSC MICCAI 2019

(137) Key points Lung CT 3D CNN DSC MIDL 2019

(94) Segmentations Brain MRI 3D U-Net DSC TMI 2019

(138) Anatomical labels Brain MRI 3D CNN DSC, ASD MICCAI 2019

(125) Noisy labels Lung CT 3D U-Net DSC, HD, STD MICCAI 2020

(139) Segmentations Brain MRI 3D CNN DSC, HD, ASSD Med Phys 2021

(140) Lung masks and key points Lung CT 3D CNN TRE, DSC, ASD MIA 2021

(141) Key points Lung CT 3D MLP TRE MIDL 2021

(127) Cancer labels Prostate Histopathology, MRI 2D, 3D CNN Landmark error, DSC, HD MICCAI 2021

(142) Boundaries Cardiac MRI 3D CNN DSC, HD MICCAI 2021

(143) Boundaries Liver CT-Laparoscopic 3D-2D CNN TRE MICCAI 2021
CT, computed tomography; MRI, magnetic resonance imaging; CNN, convolutional neural network; MLP, multi-layer perceptron; GAN, generative adversarial network; DSC, Dic
coefficient; ASSD, average symmetric surface distance; TRE, target registration error; ASD, average surface distance; HD, Hausdorff distance; STD, standard deviation.
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a multi-level framework for lung CT image registration by

introducing the constraints of lung masks and key points to

make the airways and arteries more aligned.

Furthermore, image registration and image segmentation are

inextricably linked and can help one another. On one hand,

labeled atlas images can be utilized for segmentation through

image registration. On the other hand, segmentations are

capable of adding extra anatomical constraints for image

registration, and segmentations are also useful in evaluating

the registration algorithms. Therefore, this weakly supervised

paradigm is applicable in medical image segmentation, such as

the DeepAtlas described in (135) and the method (144).
4.5 Latest methods/recent directions

The latest deformable medical image registration algorithms

are listed in Table 6; these methods adopted recent deep learning

techniques, such as Transformer (160), contrastive learning

(161), meta learning (162), neural ODE (163), and the

diffusion model (164).

Transformer (160) is the most popular technique in medical

image registration. Chen et al. (149) designed a ViT-V-Net for

brain MRI image registration. They adopted a hybrid ConvNet-

and-Transformer architecture to apply ViT for high-level feature

learning. Their experimental results proved that simply

replacing the network backbone of VoxelMorph by Vit-V-Net

could improve the performance. They also extended the ViT-V-

Net and presented TransMorph (150), a hybrid Transformer-

ConvNet framework. In this framework, they employed the Swin
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Transformer (165) as the encoder to learn the spatial

transformation between the input images. Then, a decoder

constructed with ConvNet processed the features from the

Transformer encoder and exported the dense deformation

field. To provide a smooth and topology-preserving

deformation field, they also presented diffeomorphic variations

of TransMorph.

For contrastive learning (161), except for the application in

brain MRI registration, Jiang et al. (166) developed a network to

generate pseudo-CT fromMRI for brain radiotherapy based on a

contrastive unpaired translation network (CUT) (167).

Comparing to GAN-based generation methods, their network

can capture more structure and texture information that is useful

to generate more realistic CT images.

Neural ODE (163) is developed to depict more complex

dynamic systems. Compared to well-known deep learning

models like ResNet and U-Net, neural ODE models are more

efficient in terms of memory and parameters. Neural ODE

models have the advantage of adaptive computing, making

them potentially appropriate for application in medical

applications. Additionally, the dynamics of optimization are

naturally continuous. These benefits encourage researchers to

study how to use neural ODEs to optimize the registration of

medical images. Xu et al. (104) proposed to formulate the

traditional optimization strategy in registration methods as a

continuous mechanism and learn the optimizer through a multi-

scale neural ODE model. Wu et al. (156) presented a novel and

accurate diffeomorphic image registration framework using

Neural ODES and explored the potential of combining the

advantages of neural networks and flow formulations. In this
TABLE 6 Image registration with latest techniques.

Reference Technique Organ Modality Dimension Evaluation Source

(145) Transformer Brain MRI 3D DSC MICCAI 2021

(146) Attention Prostate MRI-US 3D SRE MICCAI 2021

(147) Uncoupled learning Brain MRI 3D DSC MICCAI 2021

(148) Meta learning Brain MRI 3D Distance, NCC arXiv 2021

(149) Transformer Brain MRI 3D DSC arXiv 2021

(150) Transformer Brain MRI 3D DSC, [J] MIA 2022

(151) Contrastive learning Brain MRI 3D DSC arXiv 2020

(152) Contrastive learning Brain MRI 3D Landmark error SSMI 2021

(153) Transformer Cardiac CT 3D DSC, ASD HD MIA 2022

(154) Transformer Torso PET-CT 2D-3D IOU, CPE IMIP 2022

(155) Knowledge distillation Liver, Brain CT, MRI 3D DSC, [J] TMI 2022

(104) Neural ODE Brain MRI 3D DSC, RMSE MICCAI 2021

(156) Neural ODE Brain MRI 3D DSC CVPR 2022

(157) Diffusion model Brain MRI 3D DSC arXiv 2021

(158) Transformer Brain MRI 3D Dice MICCAI 2022

(159) Transformer Heart CT 2D Dice, [J] MICCAI 2022
fr
CT, computed tomography; US, ultrasound; MRI, magnetic resonance imaging; PET, positron emission tomography; RMSE, root mean square error; SRE, surface registration error; NCC,
normalized cross-correlation; ASD, average surface distance; DSC, Dice coefficient; HD, Hausdorff distance; [J], Jacobian determinant; IOU, intersection over union; CPE, center position
error.
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work, every voxel was portrayed as a moving particle, and the

entire collection of voxels was regarded as a high-dimensional

dynamical system, with each voxel’s trajectory determining the

appropriate deformation field.
5 Discussion

From 2013, researchers began to apply deep learning

techniques to image registration, and the applications of deep

models for registration flourished from 2017. Deep learning-

based methods have shown high computational efficiency and

comparable accuracy compared with traditional methods. Deep

similarity-based models and reinforcement learning-based

methods adopt iterative strategy, which is time-consuming.

Supervised methods need ground truth supervision that is

impractical to obtain. In contrast, unsupervised methods and

weakly supervised methods are less reliant on ground truth

information and become hot topics for deep learning-based

registration algorithms. Recently, popular networks, such as

Transformer and contrastive learning, are explored for

deformable medical image registration and achieved

promising results.

Complexity is an important factor that needs to be

considered when designing the registration networks.

Parameters and floating point operations (FLOPs) are

common criteria used to measure the complexity of the model.

In view of the fact that the calculation of FLOPs involves the size

of input images, we here discuss the model complexity in terms

of parameters. Due to the large number of variants of network

architecture, we provide approximate model parameters of the

backbone networks that are commonly used for deformable

registration in Table 7. We can see that GAN has the smallest

model parameter and the parameter of Transformer expands

significantly. Expect the backbone parameters, additional

modules and branches also add the complexity of the

registration models.

In conjunction with the previous discussion about

complexity, here we discuss how to choose a registration

network for a specific task from different categories. Extra

label is the first factor that needs to be considered; if the label

is available, then the semi-supervised methods are preferable and

have the potential for high registration accuracy. The second

factor for choosing a network is the data size and GPU memory;

the Transformer is unavailable when the data size is large and

GPU memory is limited. For multimodality registration, GAN-

based methods are suitable as GAN can ensure that the
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generated registered image has the same characteristic

(intensity distribution) as the source image while being similar

to the target image in terms of structures. The supervised

methods are applicable when the ground truth deformation

vector fields are provided or they are easy to obtain. Lastly, the

unsupervised similarity-based methods have become more

popular in recent years, and they are appropriate in many

deformable registration tasks as they do not require

extra information.

Here, we discuss the remaining issues that need to be studied

and potential directions for future research on deformable

image registration:
1. Registration Models. CNNs, SAEs, GANs, DRLs, and deep

RNNsmake up themajority of the recently developed deep

learning algorithms used for medical image registration,

whereas other models also offer a significant potential for

advancement. In contrast to the medical image areas, we

think that the majority of future trends and contributions

will originate from other subjects, such as computer vision

and machine learning. Nowadays, the popular neural ODE

and diffusion models have also been explored for

deformable image registration. In the future, models in

other areas may also have the potential to be used for

deformable medical image registration.

2. Diffeomorphic Registration. Due to characteristics like

topology preservation and transformation invertibility,

diffeomorphic image registration using deep models has

caught the attention of researchers. In deep learning-based

deformable registration methods, two main strategies are

proposed to guarantee the diffeomorphism of the

deformation fields. The first strategy is to add an explicit

constraint (regularization) for the learned deformation

field. Usually, the constraints are performed by

penalizing the small and large values of the Jacobian

determinant. The other method is to introduce

diffeomorphic integration layers. The integration is

performed by scaling and squaring the stationary velocity

field. However, there are still some limitations, and the

guarantee for diffeomorphism in learning-based methods

remains a challenging problem. Therefore, developing

deformable registration networks that can guarantee the

diffeomorphism of the deformation field is a prospective

research topic.

3. Registration Efficiency. From the point of view of

registration efficiency, the training time and network

parameters still need promotion, especially for 3D image
TABLE 7 Parameters of the networks used for deformable image registration.

Network GAN CNN U-Net MLP Transformer

Parameters 11M 14M 19M 15M 46M
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registration. For example, when training 3D lung CT

registration network, a GPU card with a memory larger

than 12 G is necessary. Thus, a lightweight network for

3D image registration is also a potential research

direction. Considering the applications in computer-

assisted surgeries, a shorter training time is preferable,

so networks that can converge rapidly are appealing.

4. Large Deformation of Soft Tissues. The learning of large

and irregular deformation caused by organ movement

(e.g., lung respiratory motion) is still a challenging

problem and needs further research. In learning-based

registration methods, one strategy to address the large

deformation is to adopt multi-stage coarse-to-fine

architecture. This kind of method consumes large

GPU memory and the training is time-consuming as

the networks are trained separately. Another method for

learning large deformation is to construct cascaded

networks, in which each cascaded network learns an

intermediate deformation field, and the source image is

recursively and progressively warped by the field, finally

aligned to the target image. This kind of network is still

memory-consuming and is difficult to converge as all

cascaded networks are trained simultaneously.

Therefore, learning of large deformation remains an

outstanding issue and efforts are needed.

5. Registration Constraints. Predicting the deformation

field without constraints can lead to warped moving

image with distorted unrealistic organ appearances. The

most commonly used technique for tackling this issue is

to add the L2 norm on the gradient of the deformation

field to regularize the predicted deformation. The

magnitude of the field might be restricted by the

employment of such regularization terms. Considering

this, adding anatomical constraints to deep networks

can help to generate realistic deformations. More

importantly, applying appropriate constraints can help

the network learn a deformation field that keeps the

topology of the input image pairs so that the registration

is more reliable in clinical applications. Thus, exploring

constraints for particular tasks is another attractive

research point.
6 Conclusion

We provide a comprehensive survey for the development of

deep learning-based medical image registration methods in this

article. We also have a thorough analysis of publicly available

datasets as well as their details in order to assist algorithm
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benchmarking and future studies. The evolution of learning-

based image registration algorithms has followed a similar path

to that of the deep learning models. Image registration neural

networks are gradually moving from handling 2D images to 3D

or 4D (dynamic) volumes, and converting from supervised

methods to unsupervised methods and weakly supervised

methods. Recent advances are also reviewed, including those

methods that adopt Transformer, contrastive learning, and other

latest techniques. We also present the statistical analysis of our

selected papers from the aspects of modalities, organs, evaluation

metrics, and supervision. Future research challenges and

directions are also discussed, including how to speed up

registration in higher dimensions, reduce the requirement for

ground truth during training, and use anatomical constraints to

produce deformation fields that are more realistic while

retaining anatomical consistency.
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