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Cancer-specific alternatively spliced events (ASE) play a role in cancer

pathogenesis and can be targeted by immunotherapy, oligonucleotide

therapy, and small molecule inhibition. However, identifying actionable ASE

targets remains challenging due to the uncertainty of its protein product,

structure impact, and proteoform (protein isoform) function. Here we argue

that an integrated multi-omics profiling strategy can overcome these

challenges, allowing us to mine this untapped source of targets for

therapeutic development. In this review, we will provide an overview of

current multi-omics strategies in characterizing ASEs by utilizing the

transcriptome, proteome, and state-of-art algorithms for protein structure

prediction. We will discuss limitations and knowledge gaps associated with

each technology and informatics analytics. Finally, we will discuss future

directions that will enable the full integration of multi-omics data for ASE

target discovery.
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Introduction

Alternative splicing is an integral transcriptional process that enables the

production of multiple isoforms from a single gene (1, 2). The process is guided by

the combinatorial inclusion and exclusion of exons or intron flanking regions

(Figure 1A). Several pan-cancer studies of splicing-associated variants have
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suggested that cancer-specific isoform switches are part of the

oncogenic process and contribute to the functional

transformation of cancer cells (3–6). In cancer, these

splicing-associated mutations can be either a trans-acting

variant, which results in broad splicing change, or a cis-

acting variant, which results in localized splicing change in

a single gene (7). Examples of trans-acting variants include

splicing factor (e.g., SF3B1, SRSF2, U2AF1, ZRSR2)

mutations in both blood cancers (8–11) and solid tumors

(12–15), and examples of the cis-acting splicing variants of

cancer drivers include genome rearrangement, such as

DUX4-ERG (16), point mutations in the splicing motifs of

TP53 (17). Together, this splicing-associated genetic evidence

suggests that alternative splicing events (ASEs) are important

actors of the cancer oncogenic process (18) and can influence

the cancer etiology in many situations.
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Cancer-specific isoforms are RNA transcript isoforms

exclusively expressed in cancer cells. Because they originate

from somatic events (or from genes regulated by a cancer-cell

epigenetic program), they are typically not expressed in normal

tissue (19, 20). While these cancer isoform switches can be

utilized as a biomarker for the clinical monitoring of adult

malignancies (21, 22), several therapeutic strategies are

available for targeting these alternative splicing events. Four

major strategies include:
1. Chemotherapeutic inhibition of splicing factors, such as

Sudemycin or other small molecules targeting SF3B1

(23–27).

2. Oligonucleotide therapy to activate or inhibit certain

splicing events. Whereas splice-switching oligonucleotides

(SSOs) can block access of the RNA splicingmachinery to a
B

C
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FIGURE 1

A holistic multi-omics approach to understanding therapeutic targets in cancer. (A) Central dogma of DNA-to-RNA followed by RNA splicing and
protein translation. (B) Multi-omics technologies can be applied to study alternative splicing events, including High-throughput sequencing to profile the
RNA transcript (Left-Most). Mass spectrometry technologies to profile the protein (Middle-Left). Protein structure can be predicted (Middle-Right).
Functional screening such as siRNA or CRISPR can be applied (Right-Most). (C) RNA sequencing technologies can reveal the alternative splicing pattern
(Left-Most). Mass spectrometry technologies can validate the protein product (Middle-Left). Structure prediction can identify the impact of alternative
splicing (Middle-Right). Functional screening with oligonucleotide or CRISPR to screen for the functional effect of the target (Right-Most). (D) Examples
of therapeutic strategies to target alternative splicing include splicing-derived neoantigens for immunotherapy, splicing-associated therapeutic
vulnerability, splicing factor inhibitors, and small molecular inhibition to overcome drug resistance. Created with BioRender.com.
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splice site (28), a decoy RNA binding sequence can be used

to inhibit the splicing factor activity by competing with its

capacity for RNA binding (29).

3. Identification of oncogene with splicing-associated

therapeutic vulnerability (See Figure 1D). Example of

th is inc ludes MYC-driven cancers , such as

neuroblastoma (30), lymphoma (31), and triple-

negative breast cancer (32).

4. Immunotherapy targeting of neoantigen derived from

cancer-specific ASEs (See Figure 1D). For example,

neoantigens derived from these splicing alterations (7)

can be used for mRNA vaccines (33), and surface

antigens derived from cancer-specific isoforms can be

targeted by CAR-T cell engineering, such as FN1 ED-B

variant (34).
Given their therapeutic potential, identifying novel ASEs by

high-throughput methods is critical to discovering new

therapeutic targets for treating cancer patients.

Currently, the mining of therapeutic targets is often limited

to short-read RNA sequencing analysis of gene-level data

without isoform considerations. This can limit the discovery

process to a small number of targets, not considering either the

protein isoform or its functional consequences. Thus, we posit

that integrative multi-omics profiling will be necessary for the

effective prioritization of ASE events as therapeutic targets as

well as to understand their role in reprogramming the molecular

network for cancer drug resistance (Figures 1B, C). These

technologies include:
1. Short-and-long-read RNA sequencing for discovery and

validation of novel transcript.

2. Mass spectrometry technologies to validate the protein

isoform product.

3. Structure prediction of the protein isoform to identify

small molecular binding sites.

4. Functional prediction of proteoform alterations and

target validation by functional screening.
Through these technologies we will be able to prioritize and

discover effective therapeutic strategies to target ASEs (Figure 1D).

In this review, we will provide an overview of the different multi-

omics technologies, bioinformatics algorithms, and existing

knowledge gaps in the field of ASE therapeutic discovery.
RNA-based technologies

Bulk RNA sequencing profiling is now a routine part of

consortium projects and many clinical trials with ample

opportunities for data mining. There are two library

preparation protocols for RNA sequencing: 1) The
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polyadenylated (poly-A) protocol and 2) the Ribosome-

depleted protocol (Total RNAseq). The poly-A method selects

RNA transcripts with oligo (dT) primers (35), which effectively

enriches mature RNA transcripts while eliminating transcripts

lacking the poly-A RNA track added to the 3’ end, such as rRNA

and most noncoding RNAs. Alternatively, the total RNAseq

protocol performs ribosome depletion followed by sequencing,

which retains both mature and immature transcripts without

significant bias to the transcript direction.

There are several bioinformatics methods for analyzing

short-read RNA sequencing data. For transcript-level

bioinformatics analysis, the relative proportion of the full-

length mRNA isoform can be estimated by RNAseq reads

aligned to a given reference genome. The analysis can be

divided into alignment-based algorithms and pseudo-

alignment algorithms. Alignment-based algorithms include

RSEM (36) and HISAT (37). RSEM aligns the reads directly

onto the transcript sequence by considering the uncertainty of

read mapping and then calculates a maximum likelihood

abundance using the expectation-maximization algorithm (36).

HISAT optimizes the indexing scheme by the Burrows-Wheeler

transform algorithm and the Ferragina-Manzini index (37).

More recently, pseudo alignment tools, such as Kallisto (38)

and salmon (39), have gained in popularity. These algorithms

perform alignment-free isoform quantification, providing orders

of magnitude faster processing without sacrificing accuracy (40).

However, these strategies assume a complete reference of

transcript isoform annotation, and missing transcripts may

impact the final estimation (41). Another significant problem

with transcript-level estimation is that RNA sequencing coverage

bias can also impact the algorithmic performance (42). Therefore,

alternative approaches are needed to complement the transcription

estimation by examining local splicing changes in junction reads.

Junctions are sequencing reads mapped to the genome reference

that spans between two or more exons. Junction reads are critical in

determining the exon usage pattern, and derived statistics can be

applied to infer cancer-specific splicing events. One typical statistic

for inferring these junction-associated changes is the percent spliced

in (Y) score (43), which represents the exon inclusion percentage.

Tools utilizing this strategy includes MISO (44), rMATS (45),

MAJIQ (46), and SplAdder (47). Other algorithms for

determining alternative splicing include LeafCutter (48) and

Splicing Deficiency (49), which leverage the intron coverage to

infer transcript usage and splicing dysregulation. These tools

provide an additional alternative for detecting unannotated

splicing events. Nonetheless, there are limitations to this type of

approach. Ambiguity in the RNA mapping (such as repetitive

regions) can impact junction coverage and result in a missed

opportunity for identifying novel targetable isoforms. To

overcome this junction coverage problem, long-read RNA

sequencing or single-module RNA sequencing (50, 51) can be

applied to capture the complete assembly of the transcript

isoform and their alternative splice sites. There are two
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approaches for long-read sequencing: Pacific Biosciences’ single-

molecular real-time sequencing and Oxford Nanopore

Technologies’ nanopore sequencing. These technologies enable an

average read length of > 30kb and can go up to 50kb in many

situations. However, long-read sequencing technologies are largely

limited with low sequencing depth (52). Fragmentation and pore-

blocking may also occur in transcripts with high RNA

modifications, resulting in a truncated transcript biased to the 3’

or 5’ end. Hence, a joint characterization of the short-read and long-

read RNA sequencing may be an optimal strategy for characterizing

novel transcripts. For example, long-read RNA sequencing data can

guide the transcript assembly of the short-read RNA sequencing

data. Moreover, this strategy can be enhanced by single-molecule

barcoding, which simplifies the transcript assembly, facilitating new

transcript identification and bulk RNA sequencing analyses (53,

54). Altogether, additional algorithm development to integrate both

datasets will be necessary.
Proteogenomic analysis

While the RNA-based sequencing approach can identify novel

transcripts, a significant portion (~2000) of the novel RNA isoforms

lack proof of generating a protein product (55, 56). Therefore,

proteogenomics, a strategy of integrating RNA sequencing with

mass spectrometry data, is needed to confirm these protein

products. There are several software workflows for the

preparation and analysis of proteogenomic data (57–59).

Generally, these tools are used to build custom protein databases

based on nucleotide sequences for use in proteomics experiments.

For example, RNAseq can identify alternative splicing events at the

transcript level that, when translated, do not appear in standard

protein databases (e.g., UniProt/SwissProt). Once assembled, these

custom databases can be appended to standard (canonical protein)

search databases, enabling the identification and quantification of

non-standard peptides and proteins (e.g., splice variants, single

nucleotide polymorphisms, gene fusions).

Numerous efforts have been made to resolve isoform-level

protein quantification in human tissues (60–63). For example,

Lau et al. (62) used an RNAseq-guided method to generate a

customized database of tissue-specific splicing junctions, which

was searched against ~80 million public mass spectra. Hundreds

of splicing events were identified for each tissue, including

alternative 3’ and 5’ splice sites, mutually exclusive exons,

intron retention, and skipped exons. In particular, the authors

revealed significantly higher usage of alternative splicing events

in the heart and testis. In another example, Kahles et al. describe

analyses of alternate splicing in 8,705 cancer patients across 32

cancer types from The Cancer Genome Atlas (7). Of note, they

focused on 63 patients from breast cancer and ovarian serous

cystadenocarcinoma with proteomics data from the Clinical

Proteomics Tumor Analysis Consortium (CPTAC) and

validated neojunctions using proteomics data multiplexed with
Frontiers in Oncology 04
tandem mass tag (TMT) technology. Although they were able to

validate the protein potential for over two-thirds (43/63) of the

junction, more than a third of the junctions remained

unvalidated. This is likely due to the limitation of the TMT-

library technology, which requires pooling of samples into a

single multiplexed experiment and leads to difficulties in

identifying low-abundance proteins (64).

Despite high splicing diversity reported by transcriptomic

studies (65, 66), in which >85% of genes have transcribed

multiple non-trivial isoforms, proteogenomic studies tend to

focus on a single protein isoform per gene or lack the resolution

to identify alternative proteoforms (60, 61). This discrepancy can

be partially explained by processes such as micro-RNA-based

degradation (67) or nonsense-mediated decay (68), but there are

also technical challenges that restrict the detectability of

isoforms. For example, trypsin is one of the most used

enzymes for digesting proteins into peptides prior to LC-MS/

MS. However, the ends of exons are enriched for trypsin

digestion sites (i.e., lysine and arginine) (69), and the use of

trypsin can digest peptides that would otherwise span the exon-

exon junction that ’s critical for making the splicing

determination. Combining chymotrypsin with trypsin has

partially alleviated this issue and resulted in increased junction

peptide detection by >30% (69). Alternatively, the mass

spectrometry machine can be programmed to monitor the

specific mass range of the peptide supporting the proteoform.

This targeted mass spectrometry strategy can enhance the

proteomics identification of splice variants (70, 71). Moreover,

a custom proteogenomic database built based on high-quality

long-read sequencing transcripts can provide an improved

custom database for mass spectrometry analysis (72, 73).
Function and structural
considerations of protein isoforms

A superior understanding of an exon’s structural properties

and functional features of the encoded protein segment will be

necessary to optimize therapeutic targets of alternatively spliced

exons. Here, we review several computational methods and

studies that attempted to perform functional characterization

of protein isoforms. ASEs are often enriched in intrinsically

disordered regions (IDRs) (74), regions lacking a well-defined

tertiary structure. These disordered regions contain linear motifs

and post-translational modification sites (PTMs), which are

highly conserved in protein-protein interactions (74). IDRs are

important in maintaining cellular functions (75), play a role in

several human diseases (76, 77), and have become promising

candidates for rational drug design efforts. Thus, the prediction

of IDR in these novel spliced isoforms is a critical component of

the effective drug design. The IDR prediction architectures are

divided into three categories:
frontiersin.org
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1. Sequence scoring functions, using the additive and

weighted functions to process the input protein

sequences and sequence-derived information, such as

FoldIndex (78) and IUPred3 (79).

2. Machine learning-based models trained from

experimentally characterized IDRs, such as DisEMBL

(80), DISOPRED3 (81), SPOT-Disorder2 (82), and

flDPnn (83).

3. Meta-predictors, using multiple disorder predictions as

inputs to generate the new disorder prediction, such as

metaPrDOS (84), MobiDB-lite (85), and DisCoP (86).
Additionally, conserved binding motifs are often coded in

tissue-specific alternatively spliced exons, which results in the

tissue-specific rewiring of protein-protein interaction networks

(74, 87). More recent work has suggested the potential for these

protein-protein interactions to drive oncogenic transformation

(5). Consequently, understanding the protein-rewiring by

alternatively spliced membrane receptors, such as G protein-

coupled receptors (GPCRs) (88–90), a major class of druggable

receptors for cancer therapy (91), will be critical for future drug

design efforts. GPCRs are a superfamily of proteins affected by

various post-translational modifications (92) and alternative

splicing (93) and are recognized for their role in cancer

development, progression, and metastasis (94–96). Receptors,

such as GPCRs, undergo significant conformational

changes upon binding to their targets, which add to the

structural and functional heterogeneity of their disordered

regions, further intensified by cancer-related mutations

(96). For example, the unique isoforms and their IDRs

(detected mainly in the 3rd intracellular loop and the C-

terminal tail) are typically enriched in tissue-specific isoforms,

resulting in tissue-specific protein-protein interactions (90),

including the GPCRs (97). Notably, the IDRs in the C-terminal

of GPCRs are proposed to have a high potential for new target-

binding partners (98). The importance of the N-terminal for the

activation of two distinct GPCR isoforms was also highlighted

(99). Given the richness of the conformational rearrangements

and expression patterns across tissues, the GPCR isoforms

represent new targets for developing drugs with improved

tissue selectivity (93). Currently, there are a number of

computational algorithms for modeling GPCR structure and

ligand binding sites and their binding affinities, such as GPCR-I-

TASSER (100), Computational Profiling for GPCRs (CPG)

(101), GPCR_LigandClassify (102), and an unnamed method

by Seo et al. (103), and conformation-specific thermostabilizing

mutations predictive tool LiticonDesign (104). GPCR models

include PRECOG (105), a machine learning algorithm that can

model the coupling of GPCR isoforms and the G-protein, which

can be leveraged as a target by Designer Receptors Exclusively

Activated by Designer Drugs (106). Regardless, algorithms that

fully consider the GPCR proteoform diversity is limited and
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remains a major knowledge gap in the field of GPCR

drug discovery.

Another functional impact of alternative splicing is its effect on

post-translational modification (107). PTMs are widely distributed

in the protein universe, which include phosphorylation,

ubiquitination, SUMOylation, lipidation, and glycosylation. These

PTMs influence protein function by regulating protein cleavage,

linkage, and cross-linking. Understanding the splicing impact on

PTMs will enhance our ability to prioritize targetable protein

regions. For example, splice variants that result in drug resistance

include, BCL-ABL (108), FGFR (109), and HER2 (110). In recent

years, several computational methods have been developed to

predict PTMs in a whole protein sequence, such as MusiteDeep

(111), iAcet-Sumo (112), GPS 5.0 (113). Although several high-

throughput methods have been developed to identify the PTMs,

this remains challenging and experimental validation of the PTMs

by mass spectrometry is necessary to confirm the computational

predictions. Therefore, a joint multi-omics profiling of splicing

events and its post-translational signals will be critical in guiding

future directions in targeted therapy, especially oncogenic kinase

signaling. An alternative PTM modification is by glycolipid on

glycosylphosphatidylinositol (GPI) anchor proteins. GPI-anchor

proteins are membrane proteins and link to proteins to the outer

face of the plasmamembrane in eukaryotic cells, making them ideal

targets for therapeutic intervention, including CAR T cell

engineering. For example, GPI-anchor protein under

consideration by CAR T cell include CEA (114), GPC1 (115),

GPC2 (116), GPC3 (117), FOLR2 (118), and Mesothelin (119).

While several predictors have been designed specifically for GPI-

anchor predictions, such as GPI-SOM (120), FragAnchor (121),

and PredGPI (122), no studies have performed a systematic analysis

of cancer-specific protein isoform that may have gained a novel

GPI-anchor. Thus, this represents a tremendous opportunity to

uncover additional targets for therapeutic targeting.
Discussion

Alternative splicing is one of the major contributors to protein

variation and diversity, which provide cancer cells the cellular

plasticity to survive stress (123). With the availability of CPTAC

data, emerging studies are investigating a multi-omics approach

for integrated splice variants discovery but are limited to the

purpose of disease monitoring and prognosis determination (124,

125). Here, our scientific predicate (in this review) is that cancer-

specific alternative splicing event is an untapped source of targets

for therapeutic intervention, and a complete multi-omics

characterization will enable the discovery, validation, and

prioritization of the ASE targets. 1) we propose that the joint

analysis of long and short RNA sequencing will enable a

comprehensive search for novel splice variants in which long

RNA sequencing is more suited for identifying novel isoforms,
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and short-read RNA sequencing will be able to estimate transcript

abundance. Genotype-Tissue Expression (GTEx) project (60, 126,

127) can also be utilized as a normal tissue reference for the

therapeutic discovery process. Significant multi-omics data has

been generated by the GTEx community, which includes short-

read RNA sequencing (17364 samples), Oxford Nanopore Long-

read sequencing (88 samples), and TMT mass spectrometry

proteomics data (32 samples). Jointly these data will provide a

valuable normal control that enhances the therapeutic candidate

selection process of cancer-restricted isoform variant while

reducing unwanted adverse effects during therapy. 2) we

propose that proteogenomic integration of RNA seq and mass

spectrometry will enable the validation of the protein product

derived from the aberrant splicing event. 3) with tremendous

therapeutic interest in immunotherapy, kinase inhibition, and

GPCR drug response, we propose that a structural understanding

of gaining and losing PTM and IDR domains by alternative

splicing will be necessary to prioritize important proteoforms

with the spliced exon. Thus, protein structure annotation followed

by mass spectrometry validation will enable the joint prediction

and validation of new post-translational modification sites on the

novel proteoform. Together, the development of these new

technologies and integrative pipelines will enable us to leverage

multi-omics data for therapeutic discovery.

Several challenges in each omics need to be considered in

future development. 1) for both long read sequencing and mass

spectrometry analysis, obtaining deep coverage remains costly in

terms of time and money. Additionally, technical challenges

with coverage bias will also need to be addressed. To overcome

this issue, the harmonization of different datasets may enhance

our ability to discover novel targets. The assumption is a

recurring candidate, while suboptimal for detection in certain

settings, can then be rescreened by informatics processing or

through a targeted mass spectrometry or re-sequencing effort. 2)

algorithm prediction of proteoform function will need to be

validated by experiments. While we have proposed that mass

spectrometry data may be one mechanism to validate the PTMs,

the oncogenic role of the region remains to be validated. For

trans-acting variants in splicing factors, such as mutations in

SF3B1, a genetic mouse model will be necessary to evaluate its

effect on malignant transformation (128). For cis-acting variants

and therapeutic vulnerabilities, high-throughput functional

screening of alternative splicing events, such as CRISPR (129)

and shRNA (130), can be performed in different cancer cell lines.

These models will evaluate phenotypes associated with

proliferative gains or cancer-killing effects in the presence of

other oncogenic drivers. Of note, current high-throughput

genetic screening of adult cancers DepMap (131), Sanger

(132), as well as in pediatric cancer (133) are restricted to

gene-level knockouts. Thus, to fully comprehend the

functional role of splice variants in cancer, high throughput
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CRISPR and shRNA libraries that target junctions will need to be

developed in future studies.

Cancer-derived isoforms remains a dark matter in the context

of cancer therapy. New omics dataset and structure prediction

strategies will be critical for understanding the splicing function as

well as optimizing therapeutic development priorities. Additional

technologies, such as machine learning, will be essential to

automate the integrative discovery platform from RNA-to-

Protein-to-Structure-to-Function. In summary, the complete

integration of these omics technologies will surely be necessary

to facilitate the next generation of small molecule design,

immunotherapeutic development, and to overcome therapeutic

relapse and drug resistance.
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