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Claudins are a tetraspan membrane protein multigene family that plays a

structural and functional role in constructing tight junctions. Claudins

perform crucial roles in maintaining cell polarity in epithelial and endothelial

cell sheets and controlling paracellular permeability. In the last two decades,

increasing evidence indicates that claudin proteins play a major role in

controlling paracellular permeability and signaling inside cells. Several types

of claudins are dysregulated in various cancers. Depending on where the tumor

originated, claudin overexpression or underexpression has been shown to

regulate cell proliferation, cell growth, metabolism, metastasis and cell

stemness. Epithelial-to-mesenchymal transition is one of the most important

functions of claudin proteins in disease progression. However, the exact

molecular mechanisms and signaling pathways that explain why claudin

proteins are so important to tumorigenesis and progression have not been

determined. In addition, claudins are currently being investigated as possible

diagnostic and treatment targets. Here, we discuss how claudin-related

signaling pathways affect tumorigenesis, tumor progression, and

treatment sensitivity.
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Introduction

Claudins (CLDNs) are a group of indispensable membrane tight junction (TJ)

proteins that range in size from 17 to 27 kDa and include up to 27 members in

mammals that exhibit a high degree of sequence homology (1). CLDNs were first

identified in 1998 in a purified junctional fraction from chicken liver (2). According to

hydrophilicity studies, claudin proteins comprise four transmembrane helices, two

extracellular loops, an internal C-terminus, and a very short internal N-terminal

region (2). The C-terminus contacts cytoplasmic proteins via a PDZ motif. Here, the

first loop regulates paracellular charge selectivity, and the second loop of CLDN3 and
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CLDN4 is the receptor for a bacterial toxin (3–5). All known

epithelial tissues exhibit tissue- and/or cell-specific expression of

CLDNs. For instance, CLDN18.1 and CLDN18.2 are both

particularly expressed in the stomach and lung alveolar

epithelium, respectively (6, 7). CLDN3 is primarily expressed

in alveolar epithelial type II cells (8). CLDN2, CLDN3, CLDN7,

and CLDN15 are all found in high concentrations in intestinal

epithelial cells (9, 10). CLDNs are generally located in the cell

membrane and, under specific conditions, can be localized to the

cytoplasm in both normal and neoplastic tissues. This

cytoplasmic localization may be associated with CLDN

phosphorylation and vesicle trafficking (11–14). The

extracellular loops of CLDNs play an essential role in TJ

formation by interacting with each other to seal the cellular

sheet, thereby playing a role in regulating paracellular

permeability and maintaining cell polarity (15). Growing

evidence indicates that CLDNs are also involved in signal

transduction by interacting with multiple proteins, regulating

cell proliferation, cell growth, metabolism, metastasis and cell

stemness. In addition, mutation of some CLDNs has been

causally associated with human diseases, and CLDNs have

been found to be deregulated in various cancers. This review

aims to provide an overview of the potential signaling pathways

and mechanisms of CLDNs (Table 1) in the occurrence,

metastasis, and treatment of tumors.
CLDN1

CLDN1 is one of the most-studied CLDNs in cancer

(Figure 1). CLDN1 promotes the growth and progression of

various tumors, including breast cancer, melanoma, oral

squamous cell carcinoma, thyroid cancer, ovarian cancer,

colon cancer, gastric cancer, hepatocellular carcinoma, and

pancreatic cancer. CLDN1 is thought to be a tumor suppressor

in lung and prostate cancers (57). In breast cancer, CLDN1

expression levels vary in pathology subtypes (58). In most breast

cancers, downregulation of CLDN1 is more frequently

correlated with higher invasiveness and poor prognosis (59).

The basal-like subtype of breast cancer, which is typically

associated with a poor prognosis, is one subtype where

CLDN1 expression is elevated (60). At the molecular level,

CLDN1 is regulated by disintegrin and metalloproteinase-15

(ADAM15) via PI3K/Akt/mTOR signaling in breast cancer (16).

In addition, CLDN1 expression is also be upregulated through

the ERK signaling pathway in the MCF7 cell line (17).

The role of CLDN1 expression in colon cancer is debated.

While some studies link increasing CLDN1 expression to the

growth and spread of colon cancer, others believe that low

CLDN1 levels are a standalone predictor of a poor prognosis

(61, 62). This disparity could be caused by Resnick’s (62) work

mistakenly identifying nuclear translocation of CLDN1 as low

expression of CLDN1, when in fact CLDN1 expression was high
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in metastatic colon cancer. The migration ability of colon cancer

cells is enhanced by the upregulation and internalization of

CLDN1 via the EGFR/PKC/CLDN1 signaling pathway (13).

Additionally, CLDN1 can upregulate ZEB-1, which reduces

E-cadherin expression in colon cancer cells, increases their

invasive activity and decreases anoikis (19). Previous studies

demonstrated that the Wnt signaling pathway promoted

CLDN1 expression and enhanced colon cancer cell

proliferation, invasion and metastasis (63–67). By increasing

CLDN1 gene expression, the Wnt signaling pathway inhibitor

FH535 prevented colorectal cancer cells from proliferating and

migrating (18). In stomach adenocarcinoma, CLDN1 is an

oncogenic molecule. CLDN1’s malignant potential may be

attributed in part to its regulation of the Wnt signaling

pathway (21) with its knockdown significantly inhibiting cell

proliferation, migration, and invasion while increasing apoptosis

(68). CLDN1 is highly expressed in hepatocellular carcinoma

and acts as a promoter of epithelial-to-mesenchymal transition

(EMT) through the c-Abl-Ras-Raf-1-ERK1/2 signaling axis (22,

69, 70). It has been demonstrated that CLDN1 downregulation

in pancreatic cancer results in the phosphorylation of FAK and

paxillin, which further promotes cell invasion, migration, and

tumor metastasis (23). Given that CLDN1 is mostly found in the

nucleus of esophageal squamous cell carcinoma (ESCC) and has

been shown to be abnormally elevated, CLDN1 promotes ESCC

growth and metastasis by upregulating the expression of ULK1

via the AMPK/STAT1 signaling pathway (14). Low CLDN1

expression in response to TNF-a is regulated by the PKC/

iPLA2/PGE2/PPAR signaling cascade and is associated with

lung adenocarcinoma rather than lung squamous cell

carcinoma, whereas increased CLDN1 expression is associated

with a better prognosis and tumor suppressive activity (24, 71,

72). CLDN1 is involved in a variety of signaling pathways that

are particularly involved in invasion and migration. Numerous

CLDN1-targeting antibodies, including 3A2 and 6F6, have been

demonstrated to be tumor suppressive (73, 74). As a result, the

molecules in the pathway that interact with CLDN1 can be

investigated further as potential drug targets.
CLDN2

According to a growing body of evidence, dysregulated

CLDN2 expression affects processes underlying carcinogenesis

and metastasis formation, such as proliferation, migration, and

EMT (29, 75–80). Increased CLDN2 expression is mediated by

the EGF/Ras/Raf/MEK/ERK/c-Fos pathway and the PI3K/Akt/

NF-B pathway (25, 27, 75, 81–85). Loss of CLDN2 promotes the

dissociation of the CLDN2/ZO1/ZONAB complex, which then

induces ZONAB translocation to the nucleus and enrichment at

the NDRG1 promotor to activate its transcription, thereby

preventing the growth and spread of colorectal cancer (26, 86–

91). Through its PDZ binding motif, CLDN2 interacts with YAP
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TABLE 1 Role of claudins in cancers.

CLDNs
type

Tumor type CLDNs
expression

Described mechanism function references

CLDN1 Breast cancer ↑ PI3K/Akt/mTOR signaling upregulate CLDN1 expression (16)

ERK signaling promote invasiveness and metastasis (17)

Colon adenocarcinoma ↑ EGFR/PKC/claudin-1 signaling promote invasiveness and metastasis (13)

Wnt signaling promote proliferation, invasiveness and
metastasis; reduce anoikis

(18, 19)

Smad4 inhibition inhibit CLDN1 expression (20)

PI3K/Akt signaling promote invasiveness and metastasis; reduce
anoikis

(19)

Stomach adenocarcinoma ↑ Wnt and PI3K/Akt signaling promote proliferation, invasiveness and
metastasis

(21)

Hepatocellular carcinoma ↑ c-Abl-Ras-Raf-1-ERK1/2 signaling axis promote cell stemness (22)

Pancreatic adenocarcinoma ↓ phosphorylates FAK and paxillin promote invasiveness and metastasis (23)

Esophageal squamous cell
carcinoma

↑ AMPK signaling promote proliferation and metastasis (14)

Lung carcinoma ↑ PKCd/iPLA2/PGE2/PPARg signaling regulate CLDN1 expression (24)

CLDN2 Colorectal cancer ↑ MAPK signaling regulate differentiation (25)

CLDN2/ZO1/ZONAB complex promote proliferation and metastasis (26)

PI3K/Akt/NF-Kb signaling upregulate CLDN2 expression (27)

clear cell renal cell
carcinoma

↓ Hippo/Yap signaling inhibit invasion and metastasis (28)

Osteosarcoma ↓ MAPK signaling inhibit invasion and metastasis (29)

Breast cancer ↑ CLDN2/Afadin complex promote metastasis (30)

Lung adenocarcinoma ↑ Decrease expression of resistance-
associated protein/ABCC2

promote chemoresistance (31)

CLDN3 Colorectal cancer ↑ ERK1/2 signaling promote proliferation and metastasis (32)

PI3K/Akt signaling promote proliferation and metastasis (32)

SCF/c-kit-JNK-AP-1 signaling axis increase CLDN3 expression (33)

↓ Wnt signaling induces de-differentiated; promote invasion
and metastasis

(34)

Lung adenocarcinoma ↑ EGF-activated MEK/ERK and PI3K-Akt
pathways

promote proliferation, invasion, metastasis
and chemoresistance

(35)

Lung squamous cell
carcinoma

↓ Wnt/b-catenin signaling promote invasion and metastasis (36)

Hepatocellular carcinoma ↓ Wnt/bWnt/b-catenin-EMT axis promote proliferation, invasion and
metastasis

(37)

CLDN4 stomach adenocarcinoma ↓ PI3K/Akt signaling promote proliferation and chemoresistance (38)

Renal cell carcinoma Nuclear
translocation

EphA2 and PKCϵ/CLDN4/hippo-Yap/
EMT

promote invasion and metastasis (39)

Hepatocellular carcinoma ↑ Wnt signaling promote proliferation (40)

Ovarian cancer ↑ Wnt signaling promote proliferation, metastasis and
chemoresistance

(41, 42)

Uterine corpus endometrial
carcinoma

↑ PI3K/Akt signaling promote metastasis (43)

CLDN6 Breast cancer ↓ p38 MAPK pathway promote metastasis and chemoresistance (42)

beclin1-dependent autophagic cascade inhibit invasion and metastasis (44)

stomach adenocarcinoma ↑ Hippo/Yap signaling promote proliferation and invasion (45)

Hepatocellular carcinoma ↑ EGFR/AKT/mTOR signaling promote proliferation, invasion and
metastasis

(46)

CLDN7 Lung cancer ↓ MAPK/ERK pathway promote invasion and metastasis (47)

Caspase pathway promote chemoresistance (48)

(Continued)
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in renal clear cell carcinoma and prevents YAP nuclear

localization and activation (28). Osteosarcoma tissue exhibits

reduced levels of CLDN2 expression, thereby inhibiting the Ras/

Raf/MEK/ERK signaling pathway via afadin and eventually

reducing the capacity of osteosarcoma cells to migrate (29).

However, the effective development of breast cancer metastases

is made possible by signaling downstream from a CLDN2/

Afadin complex (30). Notably, increased intracellular
Frontiers in Oncology 04
accumulation of anticancer agents and decreased expression of

ABCC2 were observed in CLDN2-downregulated lung

adenocarcinoma cells (31). Hence, inhibiting CLDN2-related

signaling pathways could represent a potential novel target for

therapeutic intervention. In fact, flavonoids, such as quercetin,

chrysin, kaempferol, and luteolin as well as inhibitors of

intracellular signaling reduce chemoresistance, invasion, and

proliferation in a variety of malignancies (82, 92). VPDSM
TABLE 1 Continued

CLDNs
type

Tumor type CLDNs
expression

Described mechanism function references

Salivary adenoid cystic
carcinoma

↓ Wnt signaling promote proliferation, invasion and
metastasis

(49)

Colorectal cancer ↓ Wnt signaling promote stemness (50)

CLDN10 Osteosarcoma ↑ JAK1/Stat1 signaling promote invasion and metastasis (51)

CLDN17 Hepatocellular carcinoma ↑ Tyk2/Stat3 signaling promote invasion and metastasis (52)

CLDN18.1 Lung cancer ↓ Hippo signaling inhibit progenitor cell proliferation and
tumorigenesis

(53)

IGF-1R/Akt signaling inhibit proliferation, invasion and metastasis (54)

CLDN18.2 stomach adenocarcinoma ↑↓ PKC/MAPK/AP-1 signaling axis upregulate CLDN18.2 expression (55)

Pancreatic adenocarcinoma ↑ PKC signaling upregulate CLDN18.2 expression (56)
FIGURE 1

Regulatory mechanisms of CLDN1 expression in cancers. COAD, Colon adenocarcinoma; ESCC, esophageal squamous cell carcinoma; FAK,
focal adhesion kinase; HCC, hepatocellular carcinoma; iPLA2, calcium-independent phospholipase A2; LUAD, lung adenocarcinoma; PAAD,
pancreatic adenocarcinoma; PGE2, Prostaglandin E2; PI3K, phospatidylinositol-3 kinase; PKC, protein kinase C; PPAR-g, Peroxisome
proliferator-activated receptor-g; STAD, stomach adenocarcinoma; STAT1, signal transducer and activator of transcription 1; TNF a, tumor
necrosis factor a; ULK1, unc-51 like autophagy activating kinase 1; ZIP4, solute carrier family 39 member 4.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1051497
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1051497
and DSMKF, short peptides that mimic CLDN2’s second

extracellular loop (ECL2), may directly act on the CLDN2

protein and lead to CLDN2 internalization, whereas CLDN2

expression is reduced via the clathrin-dependent endocytosis

pathway (93, 94). In xenografted mice, CLDN2 ECL-targeting

antibody 1A2 suppresses tumor growth in a manner similar to

CLDN1-targeting antibody 3A2 (95). Inhibitors targeting

CLDN2-related intracellular signal transduction molecules

inhibit cancer development. The idea of reducing CLDN2

expression in cells by mimicking the short peptide of CLDN2’s

second extracellular loop (ECL2) to improve tumor cell

sensitivity to chemotherapy drugs provides us with new

inspiration. We consider whether this drug design concept can

be applied to other CLDNs.
CLDN3

Numerous human tumors and their subsequent metastasis

have been linked to the dysregulation of CLDN3. CLDN3

regulation involves a variety of signaling pathways. Studies

have revealed that SCF/c-kit signaling exclusively enhances

CLDN3 expression in colorectal cancer, mainly by activating

the JNK pathway, and that the SCF/c-kit-JNK-AP-1 signaling

axis is crucial for controlling CLDN3 expression (33). EGF-

induced CLDN3 upregulation via the ERK pathway and PI3K-

Akt pathway is associated with increased malignancy in HT-29

colon cancer cells (32). Another contentious finding, however,

demonstrated that CLDN3 is the most abundant cell-adhesion

protein in the normal colon and that its absence promotes Wnt

signaling, which is subsequently excessively triggered by IL-6/

gp130/STAT3 signaling (34). Contradictory findings from these

two studies on the involvement of CLDN3 in colorectal cancer

indicate that we still know very little about the role of CLDN3 in

colorectal cancer. In addition to what is already known, CLDN3

overexpression or silencing alter the structure and function of

TJs, hence disrupting intestinal homeostasis. CLDN3 expression

is increased in lung adenocarcinoma compared with lung

squamous cell carcinoma (96). Through Wnt/b-catenin
signaling pathway inhibition, CLDN3 prevents EMT in lung

squamous ce l l carc inoma (36) . However , CLDN3

overexpression in lung cancer can increase malignant potential

by activating the EGF-activated MEK/ERK and PI3K-Akt

pathways (35). The reasons for this discrepancy are unclear

but may be attributed to the different properties of

tumorigenicity. Type II alveolar epithelial cells are the primary

lung cells that express CLDN3 (97). Lung adenocarcinoma is

thought to develop from type II alveolar epithelial cells, whereas

lung adenosquamous carcinoma and lung squamous cell

carcinoma develop from different epithelial cell components

(98). For primary hepatocellular carcinoma patients,

downregulation of the CLDN3-Wnt/b-catenin-EMT axis is

significantly correlated with survival differences (37). CLDN3
Frontiers in Oncology 05
is associated with drug resistance and prognosis in a number of

tumors, and its role involves multiple signaling pathways,

including the PI3K signaling pathway, ERK signaling pathway,

and Wnt signaling pathway. CLDN3 and CLDN4 have been

identified as useful biomarkers in the diagnosis of gynecological

malignancies and can be combined with other markers such as

CA125. CLDN3 and CLDN4 have been demonstrated to be

effective Clostridium perfringens enterotoxin (CPE) targets in

the treatment of gynecological malignancies (99).CPE’s

C-terminal domain(c-CPE) can bind to the second

extracellular loop of a variety of claudin proteins to form

hexameric pores at the membrane surface, resulting in calcium

influx and cell death (100).CLDN3, 4, 5, 6, 7, 8, 9 and 14 are

examples of claudin proteins that have been found to bind to

CPE. As a result, Claudius exhibit considerable potential as a

cancer therapy targets.
CLDN4

CLDN4 expression is dysregulated in multiple cancers,

including esophageal, gastric, breast, lung, biliary, ovarian,

endometrial, bladder, uterine, renal, nasopharyngeal, and

prostate cancers (101–112). EGF enhances the degradation of

CLDN4 at the posttranslational level via MEK/ERK signaling

and PI3K/Akt signaling (113). Furthermore, PI3K/Akt signaling

is activated by reduced CLDN4 expression (38, 114). TGF-b and

SMAD2/3/4 signaling regulate CLDN4 promoter activity, and

expression levels differ between cancers (115, 116). CLDN4,

which does not form TJs, participates in intracellular signaling

(117). EphA2 and PKC phosphorylation of CLDN4 may weaken

TJs, release CLDN4 from TJs, and boost CLDN4’s ability to bind

to YAP and ZO-1 to create a nuclear translocating complex,

which would activate YAP and EMT (39, 118). CLDN4

upregulation also activates Wnt/b-catenin signaling and

triggers the progression of hepatocellular carcinoma and

ovarian cancer (40–42). In uterine corpus endometrial

carcinoma, CLDN4 induces tumorigenesis by activating the

PI3K/AKT pathway (43). CLDN4 is commonly overexpressed

in many epithelial cancers. As previously stated, CLDN4 has

sparked considerable interest due to its role as a natural CPE

receptor. A C-terminal fragment containing only CPE (c-CPE)

can bind specifically to claudin protein and increase paracellular

permeability by disrupting TJs, improving drug delivery across

tissue membranes without disrupting plasma membrane

integrity and causing cytotoxicity (119). This finding indicates

that CPE represents an effective drug carrier and is less toxic

than natural CPE, making it more suitable for cancer treatment.

Currently, some drugs designed with c-CPE characteristics have

been used in clinical research with good results, such as

Doxorubicin-loaded C-SNPs (DOX-C-SNPs) and poly(lactic-

co-glycolic-acid) (PLGA) nanoparticles (NPs) modified with the

carboxy-terminal binding domain of CPE (c-CPE-NPs) (120,
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121) c-CPE 194 is a c-CPE mutant that only binds to Claudin-4

and improves the efficacy of anticancer agents (122).

Furthermore, many studies have shown that combining c-CPE

and chemotherapy drugs can increase tumor cell sensitivity to

chemotherapy drugs (123). A monoclonal antibody that

recognized the ECL1 of CLDN3 and CLDN4, KM3907

(IgG2a), induced antibody-dependent cellular cytotoxicity and

complement-dependent cytotoxicity in vitro and significantly

inhibited tumor formation in SCID mice (124). Finally, CLDN4

exhibits significant therapeutic and diagnostic utility.
CLDN6

CLDN6 is described as a tumor suppressor gene and helps

maintain cell stemness. CLDN6 expression levels are altered in

various types of cancer (Figure 2). CLDN6 is well studied in

breast cancer. Compared with adjacent normal tissues, CLDN6

expression levels are significantly reduced in breast cancer

tissues (125, 126). It has been proposed that CLDN6 silencing

is associated with DNA methyltransferase 1 (DNMT1)-induced

DNA methylation, which is controlled by the TGF-b/SMAD2

pathway (127). By bringing MeCP2 to the CLDN6 promoter,

deacetylating H3 and H4, and changing the chromatin structure,

DNA methylation inhibits the production of CLDN6 (128).

Silencing the CLDN6 gene causes increased growth and

migratory ability, as well as increased MMP-2 expression and
Frontiers in Oncology 06
activity, which may be mediated by the MAPK pathway (129).

CLDN6 expression is linked to apoptosis signal-regulating

kinase 1 (ASK1) expression, and restoring CLDN6 expression

in breast cancer cells reduces ASK1 phosphorylation, activates

the downstream target proteins JNK and p38 kinase, and induces

apoptosis (130–133). 17b-Estradiol (E2) enhances CLDN6

expression via estrogen receptor a (ERa) and estrogen

receptor b (ERb) (44, 134). In addition, CLDN6, which

triggers the beclin1-dependent autophagic cascade, is a

mediator of the inhibitory effect of ERb on breast cancer cells

migration and inveations (44). The results from studies on the

sensitivity of conventional therapeutic drugs have demonstrated

that the reinstatement of CLDN6 expression in breast cancer

cells increases chemoresistance to Adriamycin, an anticancer

medication that is frequently used to treat breast cancer by

activating the AF-6/ERK signaling pathway and upregulating

cancer stem cell properties (135, 136). CLDN6-induced

chemoresistance in breast cancer is mediated by glutathione

S-transferase-p1 (GSTP1), which is regulated by p53 (137).

CLDN6 binds to the transcriptional coactivator with a PDZ-

binding motif (TAZ) and reduces the amount of TAZ. This

activity inhibits the transcription of c-MYC, which slows the

growth of breast cancer cells (138). Under hypoxic conditions,

the accumulation of hypoxia-inducible factor 1 (HIF-1)

promotes CLDN6 transcription, and increased CLDN6

weakens HIF-1a protein stability by reducing SUMO-specific

protease 1 expression and preventing the deSUMOylation of
FIGURE 2

Regulatory mechanisms of CLDN6 expression in cancers. ASK1, apoptosis signal-regulating kinase 1; CLDN, claudin; DNMT1, DNA
methyltransferase 1; E2, 17b-estradiol; EGFR, epidermal growth factor receptor; ERb, estrogen receptor b; GSTP1, glutathione S-transferase-p1;
HIF-1, hypoxia-inducible factor 1; MMP, matrix metalloproteinase; SENP1, SUMO-specific protease 1; STAD, stomach adenocarcinoma; TAZ,
transcriptional coactivator with PDZ-binding motif.
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HIF-1a, ultimately leading to HIF-1a degradation and breast

cancer metastasis suppression (139).

Compared to histologically normal gastric tissues, CLDN6

expression is noticeably reduced in the majority of gastric cancer

tissues; however, some have remarkably greater expression levels

(140–143). Additionally, CLDN6 interacts with LATS1/2 to

reduce LATS1/2 and YAP1 phosphorylation, influence YAP1

entry into the nucleus, and enhance the invasive ability of gastric

cancer cells (45, 144). Through the expression of CLDN1 on the

membrane, CLDN6 can also cause MMP-2 activation, which

encourages cell migration and invasion (145). However, another

study found the converse to be true; specifically, CLDN6

overexpression caused differentiation in BGC-823 cells by

blocking the JNK pathway with no impact on in vitro

apoptosis, proliferation, invasiveness, or migration (143). The

different gastric cancer cell lines that were used might be the

cause of the inconsistent results. CLDN6 is highly expressed in

hepatocellular carcinoma, and can promote EMT in hepatoma

cells (146). In addition, CLDN6 overexpression may act as an

oncogene and enhance HepG2 cell migration, invasion, and

proliferation via EGFR/AKT/mTOR signaling in hepatocellular

carcinoma (46). Chimeric antigen receptor (CAR)-T/NK and

antibody−drug conjugates are two cutting-edge and effective

therapy options for cancer. CLDN6 was used as a promising

target in the development of treatments. AMG 794 for

nonsquamous non-small cell lung cancer or epithelial ovarian

cancer (NCT05317078) as well as DS-9606a for advanced solid

tumors are currently being assessed in two phase 1 studies

(NCT05394675) (147, 148). Additionally, research on CLDN6-

CAR-NK-cell treatment for advanced solid tumors

(NCT05410717) is ongoing (149). The results from the

aforementioned CLDN6 studies are anticipated.
CLDN7

CLDN7 is either downregulated or disrupted in a variety of

tumors. CLDN7 downregulation may lead to epithelial damage

and TJ structural changes, which are associated with the etiology

and progression of malignancies (150–154). However, CLDN7

was strongly expressed in benign bronchial epithelial cells but

substantially expressed or completely absent in lung cancer cells.

This finding suggests that CLDN7may act as a tumor suppressor

in lung cancers . CLDN7 transfect ion induces the

downregulation of ERK1/2 phosphorylation, leading to

MAPK/ERK pathway inhibition. MAPK/ERK pathway

inhibition causes the formation of shorter foot processes,

thereby decreasing cellular motility (47). CLDN7 is

phosphorylated by protein kinase C at serine 204, and CLDN7

phosphorylation increases chemosensitivity to cisplatin

treatment by activating the caspase pathway in lung cancer

cells (48). CLDN7 expression in salivary adenoid cystic

carcinoma was lower than that in paired normal tissues, and
Frontiers in Oncology 07
CLDN7 knockdown promotes cell proliferation and metastasis

through theWnt/b-catenin signaling pathway in SACC-LM cells

(49). CLDN7 expression is downregulated as colorectal cancer

tissue differentiation grade decreases, the invasion and migration

abilities of colorectal cancer cells are subsequently enhanced as a

result of modulation of CLDN7 expression (155, 156). The

stemness properties of colorectal cancer are enhanced by

CLDN7, which mediates Wnt/b-catenin pathway activation by

SOX-9 (50, 157, 158). CLDN7 expression is involved in a variety

of activities and is a crucial target for preventing tumor

proliferation and invasion. Early detection, treatment, and

prognosis of cancer may be improved through research

focusing on CLDN7.
CLDN10

Multiple groups have reported that the CLDN10 expression

level is associated with the progression of a variety of tumors and

may serve as a potential prognostic biomarker (159–164).

CLDN10 is highly expressed in osteosarcoma cells compared

with fetal osteoblast cells, and CLDN10 overexpression in

osteosarcoma cells enhances the JAK1/STAT1 signaling

pathway to significantly promote proliferation and motility

(51). However, the underlying mechanisms have received little

attention, and more research is needed.
CLDN17

Tumor-related mechanisms in signaling events related to

CLDN17 have been less studied. CLDN17 overexpression is

strongly linked to cancer metastasis and survival rate in patients

with hepatocellular carcinoma and promotes cell migration and

invasion in the hepatocyte line HL7702. Tyk2/STAT3 signaling

may be one of the most important mechanisms (52). In contrast,

CLDN17 may serve as a negative regulator in oral cancer by

blocking invasion and migration via the EMT process (165).

More research is needed to determine how CLDN17 contributes

to the pathogenesis of cancer.
CLDN18

CLDN18 has received the most attention in recent years

(Figure 3). It has two tissue-specific isoforms, each with its own

promoter: exon 1 and common exons 2–5. CLDN18.1 is

exclusively expressed in lung epithelium, whereas CLDN18.2 is

only found in the stomach and bone. CLDN18.1 is aberrantly

localized in many cancers, especially pancreatic and gastric

cancers (7, 55, 166–170).
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CLDN18.1 knockout resulted in increases in lung size and

cellularity due to alveolar epithelial type II cell proliferation in mice.

Furthermore, most CLDN18 knockout mice develop lung

adenocarcinomas spontaneously between the ages of 18 and 20

months (53, 171–173). CLDN18.1 inhibits two oncogenic pathways,

Yap/Taz and IGF-1R signaling, resulting in the suppression of cell

motility and increased cell death in anoikis by inhibiting PDK1 and

subsequent inhibition of Akt phosphorylation (53, 54, 174).

CLDN18.2 represents a promising new therapeutic target for

pancreatic and stomach cancer. Downregulation of CLDN18.2 is

linked to the intestinal phenotype of gastric cancers, and

CLDN18.2 expression in gastric cells is upregulated via a PKC/

MAPK/AP-1-dependent pathway (55). CLDN18.2 is highly

expressed in gastric signet-ring cell carcinoma (175). According

to reports, genomically stable gastric cancers frequently have

chromosomal rearrangements of the CLDN18 and ARHGAP

genes, primarily CLDN18-ARHGAP26/6 fusions. Importantly,

after CLDN18-ARHGAP26 was introduced, considerable

resistance to 5-fluorouracil and oxaliplatin was observed in a

number of gastric cancer cell lines, which may account for the

poor drug response of patients harboring this fusion product

(176–180). The relationship between CLDN18.2 expression and

the prognosis of gastric cancers remains controversial. Past

research indicated that CLDN18.2 was a good marker of poor

survival in gastric cancer and that the downregulation of CLDN18

may represent an early event of gastric carcinogenesis with an

intestinal phenotype (181, 182). However, resent research revealed
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that CLDN18.2 expression was not related to prognosis among

patients with gastric cancer (183–186). The diverse ethnic makeup

of the cohort, intra-tumor variation and the limitations of a

limited sample size can all be used to explain this variation in

CLDN18 expression rate. The use of different CLDN18 expression

detection antibodies can also result in variations in CLDN18

expression rates. For the creation of comparable data in future

research, uniform immunostaining and grading methodologies

are therefore crucial. CLDN18.2 is ectopically highly expressed in

pancreatic cancer, and activation of the PKC pathway might be

involved (56, 187). CLDN18 has been considered a potential

marker and therapeutic target in gastric-type mucinous

carcinoma, esophageal adenocarcinoma, mucinous ovarian

cancer, ductal pancreatic adenocarcinoma, and intrahepatic

cholangiocarcinoma (170, 188–190). The creation of new

medications and cutting-edge therapies for CLDN18.2 has

recently become a popular area of study. Zolbetuximab

(IMAB362), a monoclonal antibody targeting CLDN18.2,

extends progression-free and overall survival in CLDN182-

prositive patients with gastric and gastroesophageal

adenocarcinoma (191–193). In addition, patients with advanced

gastric cancer also benefited from CLDN18.2-targeted CAR-T

cells (CT041) in a phase 1 trial (194). We are eagerly waiting for

the results of a number of ongoing prospective clinical studies

assessing CLDN18.2 in solid tumors. In conclusion, CLDN18 is a

very good target for determining what is wrong with a tumor and

treating it.
FIGURE 3

Regulatory mechanisms of CLDN18 expression in cancers. AP-1, AP1 transcription factor; IGF-1R, insulin-like growth factor 1 receptor; LUAD,
lung adenocarcinoma; PI3K, phospatidylinositol-3 kinase; PKC, protein kinase C; STAD, stomach adenocarcinoma.
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Conclusion

Since the discovery of the claudin protein, a great deal has

been learned regarding its structure and function. On the one

hand, the claudin family of membrane proteins interacts with the

zonula occludens (ZO) family, junctional adhesion molecules

(JAMs), and membrane lipids to play a central role in the

structure and function of tight junctions. In MDCK II cells,

Claudin-1/2/3/4/7 quintuple-KO (claudin quintuple-KO) cells

lack TJ chains, but the adjacent plasma membranes remain

tightly attached to each other, showing only disruption of the

permeability barrier to ions and small molecules. However, when

JAM-A was further removed from claudin quintuple-KO MDCK

II cells, the intercellular space was enlarged, and the

macromolecular permeability barrier was disrupted (195).These

phenomena indicate that claudin proteins play a decisive role in

the formation of TJs and affect the function of the permeability

barrier together with cell membrane molecules, such as JAMs.

When the expression of claudin protein is altered or translocated,

the structure or function of TJs is damaged, and barrier

permeability changes, resulting in homeostasis dysregulation. TJ

results and functional changes also weaken the cell anchor,

making tumor cells more prone to invasion and migration. On

the other hand, Claudin proteins are an important component of

cell signaling that is involved in several classic tumor-related

signaling pathways and affects every aspect of tumor biology

and all stages of tumor development. In addition, the tissue-

specific expression of CLDNs and the disruption of the tight

junction structure in malignant tissues suggest that CLDNs may

represent ideal diagnostic and therapeutic targets (e.g., CLDN18.2

for gastric cancer, c-CPE for breast cancer and pancreatic cancer).

As more research is conducted, we will learn more about their role

in tumorigenesis, which will lead to the development of novel

cancer treatments and prevention strategies.
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Glossary

ABCC2 multidrug resistance protein 2

AF-6 afadin 6

AP-1 AP1 transcription factor

ASK1 apoptosis signal-regulating kinase 1

COAD Colon adenocarcinoma

DNMT1 DNA methyltransferase 1

DNMT1 DNA methyltransferase 1

E2 17b-estradiol

ECL extracellular loop

EGFR epidermal growth factor receptor

EMT Epithelial-to-Mesenchymal Transition

EphA2 ephrinA2 receptor

ERa estrogen receptor a

ERb estrogen receptor b

FAK focal adhesion kinase

gp130 glycoprotein-130

GSTP1 glutathione S-transferase-p1

HCC hepatocellular carcinoma

HIF-1 hypoxia hypoxia-inducible factor 1

IGF-1R insulin-like growth factor 1 receptor

IL-6 interleukin-6

iPLA2 calcium-independent phospholipase A2

JNK c-Jun N-terminal kinase

LATS1/2 large tumor suppressor 1 and 2

LUAD lung adenocarcinoma

MAPK Mitogen-activated protein kinase

MeCP2 methyl-CpG-binding protein 2

MEK Mitogen-activated protein kinase

MMP-2 matrix metalloproteinase-2

mTOR mechanistic target of rapamycin

NDRG1 N-myc downstream regulated gene-1

NF-kB nuclear factor-kB

PAAD pancreatic adenocarcinoma

PDK1 3- phosphoinositide-dependent protein kinase 1

PGE2 Prostaglandin E2

PI3K phospatidylinositol-3 kinase

PKC protein kinase C

PKM2 pyruvate kinase M2

PPARg Peroxisome proliferator-activated receptor-g

SCF stem cell factor

SENP1 SUMO-specific protease 1

STAD stomach adenocarcinoma

STAT3 signal transducer and activator of transcription 3

SUMO small ubiquitin-related modifiers

TAZ transcriptional coactivator with PDZ-binding motif

TGF-b Transforming growth factor-b

TJ tight junction

TNF a tumor necrosis factor a
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Tyk2 tyrosine kinase 2

ULK1 unc-51 like autophagy activating kinase 1

YAP Yes-associated protein

ZEB1 zinc-finger E homeobox-binding protein 1

ZIP4 solute carrier family 39 member 4 ZO1, zona occludens 1

ZONAB (ZO-1)–associated nucleic acid binding protein
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