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In-depth analysis of the
expression and functions of
signal transducers and
activators of transcription in
human ovarian cancer

Xiaodi Gong* and Xiaojun Liu*

Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University,
Shanghai, China
Background: Signal transducers and activators of transcription (STAT)

transcription factors, a family of genes encoding transcription factors, have

been linked to the development of numerous types of tumors. However, there

is a relative paucity of a comprehensive investigation of the expression and

functional analysis of STATs in ovarian cancer (OV).

Method: Gene expression profile interaction analysis (GEPI2A), Metascape, The

Cancer Genome Atlas (TCGA), Kaplan-Meier Plotter, Linkedomics, and

CancerSEA databases were used for expression analysis and functional

enrichment of STATs in ovarian cancer patients. We screened potential

predictive genes and evaluated their prognostic value by constructing the

minor absolute shrinkage and selection operator (LASSO) Cox proportional risk

regression model. We explored STAT5A expression and its effects on cell

invasion using ovarian cancer cells and a tissue microarray.

Results: The expression level of STAT1 was higher, but that of STAT2-6 was

lower in cancerous ovarian tissues compared to normal tissues, which were

closely associated with the clinicopathological features. Low STAT1, high

STAT4, and 6 mRNA levels indicated high overall survival. STAT1, 3, 4, and 5A

were collectively constructed as prognostic risk models. STAT3, and 5A, up-

regulating in the high-risk group, were regarded as risk genes. In subsequent

validation, OV patients with a low level of P-STAT5A but not low STAT5A had a

longer survival time (P=0.0042). Besides, a negative correlation was found

between the expression of STAT5A and invasion of ovarian cancer cells (R=

-0.38, p < 0.01), as well as DNA repair function (R= -0.36, p < 0.01).

Furthermore, transient overexpression of STAT5A inhibited wound healing

(21.8%, P<0.0001) and cell migration to the lower chamber of the Transwell

system (29.3%, P<0.0001), which may be achieved by regulating the expression

of MMP2.
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Conclusion: It is suggested that STAT1, STAT4, and STAT6 may be potential

targets for the proper treatment of ovarian cancer. STAT5A and P-STAT5A,

biomarkers identified in ovarian cancer, may offer new perspectives for

predicting prognosis and assessing therapeutic effects.
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Introduction

Among gynecological tumors, ovarian cancer is the leading

cause of death. About 19,880 new cases of ovarian cancer will be

diagnosed in the United States in 2022, the equivalent of about

54 new cases each day, and 12,810 deaths from ovarian cancer

are projected to occur, approximately 35 deaths per day (1).

Because ovarian cancer can be divided into at least five

histological subtypes, accompanied by unique risk factors,

origin cells, and genomic characteristics, it cannot be detected

early in population-based screening and is usually diagnosed late

(2). Upfront treatment mainly depends on cytoreductive surgery

without residual disease and platinum-based chemotherapy, and

anti-angiogenic agents are added in patients with stage IV and

recurrence (3). However, recurrent cancer is often resistant to

platinum chemotherapy, which leads to a lack of effective

treatment. Fortunately, adding poly (ADP- ribose) polymerase

(PARP) molecular inhibitors to recurrent patients with BRCA1/

BRCA2 mutations has made significant progress in maintenance

therapy (4). The combined treatment of multiple methods can

slowly increase the 5-year survival rate of ovarian cancer, but the

prognosis is still not significantly improved.

STAT transcription factors (STATs) were discovered in 1994

(5). Seven STATs family members are found in mammals with

similar structural and functional characteristics, all encoded by their

genes: STAT1 (chromosome position: 2q32.2), STAT2 (12q13.3),

STAT3 (17q21.2), STAT4 (2q32.2), STAT5A (17q21.2), STAT5B

(17q21.2) and STAT6 (12q13.3) (6). Each of them played unique

roles in signal transduction. The Janus kinase (JAK) and STAT

pathways are involved in the biological effects of more than 50

cytokines and growth factors (7). Activated JAK phosphorylates the

conserved c-terminal tyrosine residue in STATs, facilitating them to

form dimerization, which leads to the activation of STATs and then

translocation into the nucleus through Ran-GTP-dependent

mechanisms. Subsequently, STATs bind to specific target DNA

promoter sequences to control corresponding gene transcription

(5). In this way, the translocation of STATs from the cytoplasm to

the nucleus realizes the transmission of extracellular signals. It then

affects the expression of target genes to regulate cell proliferation,

differentiation, apoptosis, and angiogenesis (8).
02
The activation of STATs in normal signal transduction is

rapid and transient, and the sustained activation of STATs is

closely related to the process of malignant transformation.

Tumors of various types exhibit abnormal activation of STAT

family members, including ovarian cancer (9), breast cancer

(10), prostate cancer, and (11) hematological and head and neck

cancer (12), of which have been confirmed to be involved in

angiogenesis, invasion, and metastasis of tumor cells, as well as

their escape from the immune system.

STAT1 played a dual role in ovarian cancer. For instance, a

positive effect of STAT1 in ovarian cancer was that it

upregulated the expression of inducible nitric oxide synthase

(iNOS) (13), resulting in the release of cytotoxic nitric oxide

(NO) (14) and accelerating the progression of the disease (15);

however, NO could also promote ovarian cell apoptosis by

increasing the expression of p53 (16). The contradictory role

of STAT1 in promoting and inhibiting cancer also existed in

invasion and metastasis (17, 18), angiogenesis (19),

immunologic responsiveness (20), and chemotherapeutic drug

reactivity of ovarian cancer (21).

The Fibrillin-1/VEGFR2/STAT2 signal axis modulated the

process of glycolysis and angiogenesis by activating STAT2,

which induced cisplatin resistance in ovarian cancer cells (22).

Activated STAT3 facilitated migration and invasion of ovarian

cancer by inducing the expression of MMP2 and MMP9 (23, 24),

and assisting in the epithelial-to-mesenchymal transition (EMT)

process of ovarian cancer (25). STAT3 regulated the expression of

HIF-1a (26), contributing to ovarian cancer angiogenesis. In

addition, ovarian cancer cells expressing STAT3 showed increased

resistance to chemotherapy (27) and with cancer stem cells (CSCs)

or CSC-like phenotypes (28). Likewise, STAT4 could induce

activation of tumor-associated fibroblasts (CAF) through tumor-

derived Wnt7a, which promoted peritoneal metastasis of ovarian

cancer through the EMT process (29). Overexpression of human

epidermal growth factor receptor 4 (HER4) in ovarian CSCs

mediated STAT5 activation to enhance the survival and growth

of ovarian CSCs (30). Upon oncoproteomic analysis, STAT5B was

overexpressed in ovarian cancer that recurred after chemotherapy.

Further research confirmed that STAT5B and RELA (NF-kappaB

p65) were responsible for carboplatin resistance in ovarian
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carcinoma (31). Moreover, the decreased STAT5B led to CD8+

effector memory T (TEM) cell dysfunction in ascites of high-grade

serous ovarian cancer patients, thus causing shortened relapse-free

survival (RFS) (32). Collagen triple helix repeat containing 1

(CTHRC1), secreted by epithelial ovarian Cancer (EOC) cells,

promoted M2-like polarization of tumor-associated macrophages

(TAMs) by activating STAT6. As a result, this facilitated EOC cell

invasion andmigration (33). Additionally, STAT6was also involved

in the stemness maintenance and function of ovarian CSCs (34).
SCHEME 1

Protocol for investigating the role of STATs in ovarian cancer.

Frontiers in Oncology 03
Although there are partial reports on the role of individual

STAT in the development and progression of ovarian cancer, the

role of the entire STATs family in ovarian cancer has not been

explored through bioinformatics. Here, a detailed analysis of

STAT transcription factor expression in ovarian cancer was

performed, and potential biomarkers were identified. We

sought to ascertain the pattern of expression, potential

biological function, and unique prognostic significance of

STATs in ovarian cancer (Scheme 1).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1054647
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gong and Liu 10.3389/fonc.2022.1054647
Results

The main functions of the STAT family

At present, researchers have identified seven STAT

transcription factors in mammalian cells. A comparison was

made between STAT transcription in cancers and normal tissues

based on the gene expression profiling interactive analysis

(GEPIA2) database (http://gepia2.cancer-pku.cn/#analysis).

Selecting “TCGA normal+ GTEx normal” as the matched

normal tissue data, Figure 1 shows the expression of STAT

family members in 31 different tumors (T) and paired normal

tissue (N), plotted using log2(TPM + 1) transformed expression

data. Subsequently, the Metascape database was used for

enrichment analysis of significant functions of 7 STAT family

genes including STAT1, STAT2, STAT3, STAT4, STAT5A,

STAT5B, and STAT6 (http://metascape.org/gp/index.html#/

main/step1). Enrichment standards were as follows: an

enrichment factor of >1.5, a minimum count of 3, and a p-

value of 0.01. We found that the STAT transcription factors

family played crucial roles in biological processes such as
Frontiers in Oncology 04
signaling, response to stimulus, immune system process,

growth, developmental process, regulation of biological

processes, positive regulation of biological processes, and

cellular processes (Figure 2A). Moreover, Figure 2B and

Supplementary Material Table 1 showed the top-level

significantly enriched signal pathways, including receptor

signaling pathway via JAK-STAT, Interleukin-20 family,

Interleukin-21 signaling, Thymic stromal lymphopoietin

(TSLP) signaling pathway growth hormone receptor signaling

pathway via JAK-STAT, inflammatory bowel disease signaling,

and IL-10 anti-inflammatory signaling pathway. The above-

enriched signal pathways were shown in the form of a

network in Figure 2C to understand the relationship between

these GO terms. Edges were formed between terms with a

similarity > 0.3. Each node represents an enriched term and is

colored by its cluster ID, where nodes sharing the same cluster-

ID are usually close to each other. For clarity, only one term tag

was displayed per cluster in the lower right corner, and all node

tags can be checked by visualizing the network using Cytoscape

or a browser. Therefore, the ligand-dependent activated STAT

transcription factors family acted as a signaling hub via

modulating downstream target genes ’ expression and

participating in the tumor occurrence and development.
STAT transcription in ovarian
cancer patients

Our analysis included 374 OV patients and 32 normal tissues

filtered from the available data; an overview of their baseline data is

provided in Supplementary Material Table 2. First, we assessed the

expression of the STAT transcription factor by comparing ovarian

cancer with normal ovarian tissues. According to research, ovarian

cancer tissues exhibited higher STAT1 but lowered STAT2-6

expression than normal tissues (Figure 3A). Moreover, there was a

positive correlation between the gene expression of different STAT

family members in OV (Figure S1). Using the GEPIA2 database

(http://gepia2.cancer-pku.cn/#analysis), an analysis was also

performed of the association between the expression of STATs in

ovarian cancer andmajor tumor stages. The results indicated that, in

contrast to STAT6, the expression of other STATs family members

varied significantly (Figure 3B). Based on the above results, STAT

members exhibited different expression patterns in ovarian cancer

and seemed involved in various phases of ovarian development.
Expression distribution trend of STATs
for different clinical characteristics of
ovarian cancer patients

To further study the relationship between STAT family and

tumor stage and grade, a Sankey diagram was drawn (Figure 4),

which showed the distribution trend between different clinical
FIGURE 1

Expression matrix plots of STAT family members in various
cancers. Abbreviations for tumor names are annotated above the
plot. Their specific tumor names have been annotated one by
one as follows. STAT family members from tumor tissues (T) and
the normal counterpart (N) were enumerated on the left. The
color bar at right is presented in log2-scale and began at zero,
which is indicated the expression level of the STATs genes. ACC:
Adrenocortical carcinoma; BLCA: Bladder Urothelial Carcinoma;
BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell
carcinoma and endocervical adenocarcinoma; CHOL: Cholangio
carcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid
Neoplasm Diffuse Large B-cell Lymphoma; ESCA: Esophageal
carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and
Neck squamous cell carcinoma; KICH: Kidney Chromophobe;
KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal
papillary cell carcinoma: LAML: Acute Myeloid Leukemia; LGG:
Brain Lower Grade Glioma; LIHC: Liver hepatocellular
carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung
squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian
serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma;
PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate
adenocarcinoma; READ: Rectum adenocarcinoma; SARC:
Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach
adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA:
Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine Corpus
Endometrial Carcinoma; UCS: Uterine Carcinosarcoma; UVM:
Uveal Melanoma.
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characteristics, including age, tumor stage, grade, and the

expression of STAT gene family member, and the survival

status of ovarian cancer patients. There were five columns

representing age, pTNM_stage, Grade, STAT1-6 expression,

and survival Status in each figure, respectively. Different colors

represented different ages (<= 60 years and > 60 years),

pTNM_stages (I, II, III, IV), Grades (G1, G2, G3), expression

levels of STAT1-6 (High exp, Low exp), Status (Alive, Dead).

The above variables are connected by connecting lines to obtain

the distribution of the same ovarian cancer sample across

various characteristics. Through the plotting of these diagrams,

we can see that patients with advanced (III, IV) ovarian cancer

were more likely to have low expression of STAT family

members. Differentially, in high-grade (G3, G4) ovarian

cancer, STAT1, 2, 4, and 5A were highly expressed, while

STAT3 and STAT5B were mostly lowly expressed. In addition,

the low expression group of other STAT members except

STAT5B had more deaths. This reflected the complexity of the
Frontiers in Oncology 05
role of different STAT members in the occurrence and

development of ovarian cancer.
Association of the expression of STATs
with the prognosis of ovarian
cancer patients

Next, an assessment was made of the influence of STATs

on ovarian cancer survival. According to openly accessible

data (2021 version: http://kmplot.com/analysis/index. Php?

p=service&cancer=ovar), using Kaplan-Meier Plotting tools, we

investigated whether mRNA levels of STATs correlated with the

survival time of ovarian cancer patients by “mean expression of

selected genes” inmultiple genes option. The desiredAffy ID is valid:

200887_s_at (ISGF-3, STAT91, STAT1), 225636_at (STAT2),

225289_at (STAT3), 206118_at (STAT4), 203010_at (STAT5,

MGF, STAT5A), 212549_at (STAT5B), 201331_s_at (STAT6, IL-
B

C

A

FIGURE 2

Enrichment analysis of the main functions of the STAT family. (A, B) biological processes and pathways related to STATs genes as enriched in
Gene Ontology, colored by p-values. (C) An enrichment network: each node in a cluster is colored accordingly, with cluster IDs that are close
together being grouped.
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4-STAT, D12S1644). Compared with the high-expression group of

the STATs family, the overall survival (OS) and progression-free

survival (PFS) of ovarian cancer patients in the low-expression group

were higher in Figure 5. Themedian survival time (MST) forOS and

PFS was 41.87 months versus 50.03 months (HR=1.42, P=0.0058),

and 16 months versus 22.24 months (HR=1.61, P=1.5×10-5) in the

high expression/low expression cohort, respectively.While the effect

on post-progression survival (PPS) was not significant (HR=0.87,

P=0.24, MST: 41 months versus 35 months). The whole high

expression level of STATs transcription factors increased the risk of

ovarian cancer death by 1.42 times. Therefore, the mean low

expression of STATs members is beneficial to the survival of

ovarian cancer patients.

Besides, the effect of each STAT member on the survival

time of ovarian cancer patients was also analyzed using the same

Probe Id as above (Table 1). Based on Kaplan-Meier curves and

log-rank tests, the results in Figure 5 showed that a significant

correlation was observed between increased STAT4 and 6

mRNA levels, decreased STAT1 mRNA levels, and overall

survival (OS) in ovarian cancer patients. (P < 0.05). Ovarian
Frontiers in Oncology 06
cancer patients with a high level of STAT4 and 6 gene expression

or a low level of STAT1 gene expression had high OS.

Moreover, in ovarian cancer patients with different

pathological types, STAT expression was tested for potential

correlation with OS, progression-free survival (PFS) as well as

post-progression survival (PPS), respectively (Supplementary

Material Tables 3–5 ). Patients with serous ovarian cancer

expressed lower levels of STAT1 mRNA, while higher levels of

STAT 2, 5A, and 5B mRNA had longer PFS but had no effect on

patients with endometrioid carcinoma. Based on these above

results, most members of the STAT family, except STAT3, may

be promising prognostic indicators for ovarian cancer.
Developing and evaluating a STATs
prognosis prediction model

Four STAT members with potential prognostic significance

were identified by LASSO (lambda.min=0.0234). A stepwise

multivariate Cox regression model was constructed using
B

A

FIGURE 3

Expression of STAT family members in ovarian cancer. (A) The expression distribution of STAT family genes in ovarian cancer tissues (G) and
normal tissues. Top-left represented the significance P-value, ****P < 0.0001. (B) An association between STATs expression and major tumor
stages in patients with ovarian cancer.
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FIGURE 4

Relationship between STAT family and clinical characteristics of ovarian cancer patients. Rows represent feature variables, different color
represents different age (<=60 years, >60 years) or pTNM_stage (I, II, III, IV) or Grade (G1, G2, G3) or expression level (High exp, Low exp) or
survival status (Alive, Dead). Lines show how the same sample is distributed across different feature variables.
FIGURE 5

Relationship between the STATs family and survival of ovarian cancer patients. Probe Id (Gene symbol): 200887_s_at (ISGF-3, STAT91, STAT1),
225636_at (STAT2), 225289_at (STAT3), 206118_at (STAT4), 203010_at (STAT5, MGF, STAT5A), 212549_at (STAT5B), 201331_s_at (STAT6, IL-4-
STAT, D12S1644). OS, overall survival; PFS, progression-free survival; PPS, post-progression survival, HR= hazard ratio.
Frontiers in Oncology frontiersin.org07
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B

C

D

E

F

G

A

FIGURE 6

Ovarian cancer survival prediction and STAT genes selection. (A) The coefficients of 7 STATs in the LASSO model were screened by 10-fold
cross-validation. (B) Analysis of the seven selected STATs by X-tile. (C, D) The selected dataset’s risk score, survival time, and survival status.
(E) The heatmap was the gene expression from the signature. (F) A risk model for signature OV patients with Kaplan-Meier survival analysis. HR
(High exp) represents the hazard ratio of the low-expression sample relatives to the high-expression sample. (G) ROC curves of 1,2,5 years, 1-,
2-, and 5-year overall survival probability based on the STATs Risk score.
TABLE 1 Correlation between the expression of STATs and OS or PFS in ovarian cancer patients.

OS PFS

MST (months) HR (95% CI) P-Value MST (months) HR (95% CI) P-Value

Low High Low High
STAT1 44.13 50 0.84 (0.72-0.98) 0.023 22.13 19.09 1.19 (1.04-1.37) 0.011

STAT2 48 40.4 1.32 (1.05-1.66) 0.016 22.6 15 1.63 (1.30-2.05) 1.7e-05

STAT3 40 48 0.89 (0.71-1.12) 0.32 18 16.03 1.27 (1.05-1.54) 0.016

STAT4 43 46 0.84 (0.73-0.96) 0.09 18.79 26.06 0.85 (0.74-0.97) 0.02

STAT5A 42.17 46.82 0.89 (0.77-1.02) 0.082 19.23 20.43 1.07 (0.94-1.21) 0.33

STAT5B 44.3 45.97 0.88 (0.78-1.01) 0.059 19.09 20.93 0.93 (0.82-1.06) 0.3

STAT6 43 50.3 0.79 (0.69-0.91) 0.0012 20 20 1.09 (0.96-1.25) 0.17
Frontiers in On
cology
 08
 fron
tiersin.o
MST, median survival time; Low, Low expression cohort; High, High expression cohort; HR, hazard ratio, 95% CI, 95% Confidence interval.
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STAT1, STAT3, STAT4, and STAT5A as filter variables

(Figures 6A, B). The Risk score was calculated as follows:

(-0.1694) * STAT1 + (0.0554) * STAT3 + (-0.1447) * STAT4 +

(0.1837) * STAT5A. Smooth curve fitting provided the following

results, which showed the Risk score from low (blue spot) to high

(blue spot), thus based on the Risk score median, a cut-off value

was determined (high risk: score > -0.257, low risk: score <

-0.257) (Figure 6C). As shown in scatter plots and also Kaplan-

Meier plots Figures 6D, F), patients with a high-Risk score had a

short median survival time (median time=3.2 vs. 4.3 years,

hazard ratio [HR] =1.914, P = 1.66e-06). The heatmap was the

gene expression of STAT1, 3, 4, and 5A from the signature. In

the high-risk group, the protective STAT1 and STAT4 genes

were low expressed, whereas STAT3 and 5A, the risk genes, were

significantly higher expressed (Figure 6E). In terms of time-

dependent ROC curves, 1-, 2-, and 5- years of survival were

assessed using Area Under Curve (AUC) values of 0.659, 0.645,

and 0.627, respectively (Figure 6G). A prognostic model based

on disease-specific survival (DSS) was also constructed through

STAT1, 4, 5A. Compared to the low-risk group with STAT1,4,

the high-risk group with STAT5A was closely linked with a

worse 1-, 2-, 5- years DSS of ovarian cancer patients (median
Frontiers in Oncology 09
time=3.4 vs. 4.7 years, HR =1.831, P = 3.31e-05 in Figure S2).

Finally, as revealed by univariate analysis, Age, Race, and STAT

1, 4, and 5A were significantly related to OS based on the TCGA

cohort (Figure S3A). Using the factors aforementioned above,

we performed a multivariate Cox regression analysis. As a result,

STAT5A was still an independent predictor of outcome for this

cohort of patients (hazard ratio [HR] = 1.3, P < 0.001), which

was consistent with LASSO analysis (Figure S3B). Additionally,

Figures 3C, D displayed the cohort’s 1-, 2-, and 5-years OS

Nomograms. As STAT5A was the gene with the highest risk

score in the OV prognostic model, it had become the focus of

follow-up research.
STAT5A gene mutation analysis in
ovarian cancer

STAT5A was altered (73%) in 272 samples from 374 patients

with ovarian serous cystadenocarcinoma. The somatic mutation

rate of STAT5A was only 0.37%, which was manifested as a gene

missense mutation, leading to abnormal amino acid coding in

the SH2 domain (Figure 7A). The panoramic waterfall mutation
B

A

FIGURE 7

A landscape analysis of STAT5A gene mutations in ovarian cancer. (A) Lollipop charts of the mutated STAT5A gene. (B) Oncoplot displays the
somatic landscape of OV TCGA cohorts. The genes and samples are sorted according to their mutation frequency and histology; Above the
legend, the bar plot shows the number of mutations burdened.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1054647
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gong and Liu 10.3389/fonc.2022.1054647
type diagram shows that each sample’s mutation load was

different, and the median value was 82. TP53 had the highest

mutation rate (90%), and the top ten mutated genes included

TTN (37%), MUC16(12%), CSMD (13%), FAT3 (10%), FLG

(10%), RYR2 (10%), PRUNE2 (10%). FLG2 (9%) and APOB

(8%). However, STAT5A mutation only occurred in the group

with high STAT5A expression, so there should be no mutation

in ovarian cancer with relatively low STAT5A expression

(Figures 3, 7B S4B). A missense mutation was the main

classification of gene mutation in each sample. Single

nucleotide polymorphisms (SNPs) were the most common

mutation type. Cytosine (C > T, C > A, C > G) and thymine

(T > A, T > C, T > G) are the main types of single nucleotide

mutation (SNV) mutations (Figure S4A).
Correlation between STAT5A and the
functional states of OV cells

To further study the role of STAT5A in OV, GSEA online

database-Linkedomics (http://linkedomics.org) was used to

explore the pathways and functions involved in STAT5A. We

first analyzed the 50 most positively and negatively affecting

genes related to STAT5A expression, as shown in the heat map

in Figures S5A, B. Then GO and KEGG analysis of STAT5A in

patients with OV was carried out in Figures S5C, D which

revealed significant enrichment in mitochondrial gene

expression, mitochondrial respiratory complex assembly,

adaptive immune response, Oxidative phosphorylation,

Chemokine signaling pathway, NF-kappa B signaling pathway,

and JAK-STAT signaling pathway. From this, it can be

concluded that the transcription factor STAT5A may affect the

oxidative phosphorylation process of cells through the negative

regulation of the mitochondrial respiratory chain complex and

then interfere with the immune regulation and signal molecule

transmission process of the body. Next, we conducted a more in-

depth analysis of the function of STAT5A in OV using the

CancerSEA single cell sequencing database (http://biocc.hrbmu.

edu.cn/CancerSEA). Single gene analysis of STAT5A from

different cell groups, which denoted different OV patients-

derived xenograft samples, was performed. There are 7

functional states including Quiescence (R=0.28), Hypoxia

(R=0.28), Apoptosis (R=0.24), Angiogenesis (R=0.23), Cell

Cycle (R=-0.30), DNA repair (R=-0.36) and Invasion (R=-

0.38) that are significantly related to STAT5A (P < 0.05,

Figure S6). Specifically, a significant inverse relationship was

found between STAT5A expression and invasive behaviors and

DNA damage repair (Figure 8, P < 0.01), indicating that lower

STAT5A expression could promote ovarian cancer cell invasion

as well as improve the ability of cells to repair DNA damage, thus

participating in the process of metastasis and recurrence of

ovarian cancer.
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Analysis of the expression of STAT5A on
OV tissues and cell lines

For further validation of the main conclusion in Figure 8, we

first verified the expression of STAT5A and P-STAT5A in

ovarian cancer from tissue microarray (TMA). In the detection

of 45 pairs of ovarian cancer and adjacent normal tissues, the

expression levels of both in cancer were significantly lower than

those in para-cancerous tissues (Figure 9A, P<0.0001). The

receiver operating characteristics (ROC) curves on

independent tests of STAT5A and P-STAT5A are illustrated in

Figure 9B. The optimal cut-off value for STAT5A was < 0.04375

(sensitivity 73.33%, specificity 73.33%, AUC=0.744, P<0.0001),

while that for P-STAT5A was < 0.0125 (sensitivity 83.37%,

specificity 83.72%, AUC =0.920, P<0.0001). Kaplan-Meier

survival plots revealed that OV patients with high STAT5A

expression had longer survival times than those with low

STAT5A levels (P =0.039). However, high expression of P-

STAT5A seems to be a better prognostic indicator of ovarian

Cancer (P =0.0042, Figure 9C). Consistently, the univariate and

multivariate Cox regression analyses of OS in paired ovarian

cancer and para-cancerous tissues showed that P-STAT5A

rather than STAT5A could be an independent risk factor

(P=0.032, Supplementary Material Table 6 in Supporting

Information). Next, to address the role of STAT5A in OV cell

invasiveness, human ovarian serous cell line HO8910 was used

as the research object and normal ovarian epithelial cell IOSE80

as the control. First, we explored the baseline expression of

transcription factor STAT5A, the activated form P-STAT5A and

matrix metalloproteinases 2 (MMP2) and MMP12. The latter is

involved in the degradation of extracellular matrix (ECM), in

turn, mediates the epithelial-to-mesenchymal transition (EMT)

process, which is known as one of the primary mechanisms for

tumor invasion and metastasis. Compared to IOSE80 cells, the

levels of STAT5A, P-STAT5A, and MMP12 proteins decreased

significantly in HO8910 cells, while MMP2 levels increased

(Figure 9D). After that, STAT5A overexpression plasmids

were transiently transfected into HO8910 cells. The

transfection efficiency was verified by quantitative real-time

PCR (qRT–PCR) (Figure 9E, P<0.0001) and Western blotting

analysis (Figure 9F). HO8910 cells overexpressing STAT5A

exhibited increased MMP12 expression, while MMP2 was

significantly suppressed. Compared with the control and the

negative vector transfection group, a significant reduction was

observed in the migration ability of cells transfected with cDNA-

STAT5A. It can be seen by the area of wound-healing (marked

by the yellow line in the figures) significantly decreased from the

init ial scratch time (0 h) to 48 h post-scratching

(Figure 9G, P<0.0001).

Furthermore, HO8910 cells were seeded in the upper

compartments of Matrigel-coated transwell chambers to assess

cell invasion ability. After 48 h, the number of cells that invaded
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the lower chamber in the STAT5A-PcDNA transfected group was

less than 30% of the control group (Figure 9H, P<0.0001). These

results suggested that low expressed STAT5A may directly or

indirectly regulate the expression of MMP2 and promote the

invasion andmetastasis of ovarian serous cystadenocarcinoma cells.
Discussion

STAT5 consists of two isoforms, STAT5A and STAT5B,

each encoded by a different gene, although they share 94% of the

same structure (35). STAT5A was cloned from the lactation

tissue of sheep in 1994 and was initially called mammary gland

factor (MGF) (36), which could initiate milk protein expression

and modulate prolactin action (37). As part of the classical

JAK2-STAT5A/5B signal pathway, the activated STAT5A/5B

dimer in the cytoplasm was required to travel into the nucleus.

An eight to ten base pair reverse repetitive DNA sequence
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known as TTC (C/T) N (G/A) GAA was recognized by the

nuclear STAT5A/5B (38). structurally active Mutations of

STAT5 caused carcinogenesis in vitro and in vivo (39). So far,

STAT5B mutations are rare and tend only to be found in human

myeloid leukemia such as CD4+ T-cell prominent granular

lymphocytic (T-LGL) leukemia, chronic natural killer

lymphopro l i f e ra t ive d i sorders (CLPD-NK) , Acute

promyelocytic leukemia (APL) (40, 41). Most mutations in

STAT5B occurred in the SH2 region (42). In this study, the

mutation frequency of STAT5A in ovarian cancer was found to

be extremely low, mainly missense mutation in the SH2

domain (Figure 7).

In much the same way as other STAT family members, the

structural activation of STAT5 contributes to tumor survival,

growth, metastasis, and chemotherapy resistance. As mentioned

earlier, activated STAT5B is involved in maintaining ovarian

CSCs; chemotherapy resistance and tumor immune response

are closely related. Nevertheless, little information was available
FIGURE 8

Correlation between STAT5A and functional states of OV cells.
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about how STAT5A affected ovarian cancer development and

progression. Interestingly, mice carrying STAT5 homozygous

deletion (STAT5A−/− 5B −/−) were shown to be sterile,

deficient in luteal functional differentiation, and disrupted
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ovarian development (43). Besides, STAT5 can be activated by

various cytokines and hormones. The interaction between steroid

receptors such as progesterone and estrogen receptors and nuclear

STAT5 stimulates its activity, showing the importance of STAT5
B C

D E F

G H

A

FIGURE 9

Evaluation of STAT5A expression in ovarian cancer tissues and cell lines. (A) Immunohistochemical staining of STAT5A and p-STAT5A on ovarian
cancer and adjacent tissues from TMA samples (n=90). Black scale bar, 50 mm. (B) The ROC curves of STAT5A and P-STAT5A are based on
independent tests. (C) Kaplan–Meier OS curves based on STAT5A or P-STAT5A level. (D) Immunoblots illustrating the basal expression of
STAT5A, P-STAT5A (Tyr 694), MMP12, and MMP2 in the indicated human ovarian serous adenocarcinoma cell (HO8910) and normal ovarian
epithelial cell line (IOSE80). (E, F) The mRNA and corresponding protein expression levels of SATAT5A were determined 48 h post-transfection
with pcDNA-STAT5A plasmids in HO8910 cells. For normalization, GAPDH was used as an internal reference. MW: molecular weight.
(G) Scratch-wound assay to quantify HO8910 cell migration ability. The scratches were recorded at 0 h and 48 h after scratching. Yellow lines
indicated the scratched edges. White scale bar, 100 mm. (H) Transwell invasion assay with Matrigel. Cell invasion abilities were measured 48 h
after cells or STAT5A overexpressing cells seeding onto a Matrigel-coated transwell filter. Black scale bar, 200 mm. **** P<0.0001, ns: not
significantly determined by one-way ANOVA (E, F, H), Mann-Whitney test (B), Chi-square test, Kaplan-Meier survival analysis, and Log-rank
statistical test (C).
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expression in maintaining the ovary’s normal structure and

functional integrity (44). According to a study on non-coding

RNA transcripts involved in the pathogenesis of ovarian

endometriosis (OEM), it was found that STAT5A can be used

as a diagnostic marker of OME, and its overexpression was

associated with a positive outcome for EOC (45), which was

inconsistent with our experimental results. As shown in Figure 8,

STAT5A expression and ovarian cancer invasion were negatively

correlated (R= -0.38). Despite STAT5A/5B being active in most

leukemia and some solid tumors, the role of STAT5A/5B in tumor

invasion was complicated (46). Data from murine breast cancer

studies suggested that STAT5A had dual efficacy in malignant

mammary epithelial cells. In the early stage of breast cancer,

STAT5A/5B promoted malignant transformation of breast

epithelial cells and accelerated tumor growth. In advanced

breast cancer, STAT5 was a key molecule regulating and

promoting the differentiation of mammary epithelial cells,

which can effectively delay the invasion and metastasis of

tumors (47). And in the breast cancer clinical sample activated

STAT5A/5B was positively correlated with the differentiation

status of breast cancer, but it can also prevent the dissemination

of confirmed breast cancer, which was a sign of good outcome for

breast cancer with negative lymph nodes (48). Phenotypic analysis

of TRAM mouse models of prostate cancer and STAT5 knockout

mice indicated that STAT5A/5B activation was essential for the

growth and survival of prostate cancer. Further studies showed

that CyclinD1 and Bcl-xl were the target genes of STAT5 in

prostate cancer, which was a potential mechanism of STAT5

regulating prostate cancer (49). Nuclear STAT5A/5B expression

predicted early disease recurrence and enhanced the ability of

prostate cancer cells to metastasize in vivo and in vitro (50).

Prostate cancer distant clinical metastases were overexpressed

with nuclear STAT5A/5B in 61% of cases, which consequently

made prostate cancer cells migrate and invade more readily with

the aid of microtubule network rearrangement. Importantly, in an

experimental in vivometastasis test, activated STAT5 resulted in a

ten-fold increase in lung metastasis. In addition, constitutive

activation of STAT5 signaling also enhanced cell invasion,

migration, and EMT of head and neck squamous cell carcinoma

(51). In the subsequent verification, we also confirmed that the

expression of STAT5A and P-STAT5A was significantly lower in

OV tissues and cell lines, which was closely correlated to the

beneficial prognosis in OV patients, especially the low level of P-

STAT5A (Figures 9A–D). Besides, STAT5A was negatively related

to tumor-promoting MMP2 expression in human ovarian serous

cystadenocarcinoma cell line HO8910 (Figures 9D–F). It is

speculated that MMP2 may act as a direct or indirect effect

molecule of transcription factor STAT5A to promote the

invasion and migration of ovarian cancer, which was in line
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with previous studies on esophageal cancer (52). Other

researchers had suggested that STAT5A activation was related

to the regulation of angiogenesis in ovarian cancer, because VEGF

secreted by ovarian cancer cells can activate STAT via VEGFR in

the cancer cells (53). The dual role of activated STAT5A in ovarian

cancer invasion demonstrated the complexity of STAT5A

function. Of course, we had to admit that there are individual

differences among ovarian cancer cell lines, which will be further

checked in various human serous cancer cell lines (e.g., SK-OV-3,

Shin-3, OVCA-3). We will expand the sample size appropriately

to increase the rigor of this validation. In addition, we will

construct an ovarian cancer xenograft tumor model and

introduce STAT5A or JAK2 recombinant protein to verify the

inhibition of MMP2 by high expression of STAT5A, thus affecting

the invasion and migration ability of ovarian cancer.

Furthermore, in this study single-cell sequencing data in

Figure 8 also demonstrated that in ovarian cancer cells,

STAT5A expression was negatively related to DNA repair (R=

-0.36). STAT5A-overexpressed ovarian cancer patients can benefit

from multiple types of treatment, including chemotherapy,

radiotherapy, and immunotherapy because an essential limiting

factor in tumor therapeutic efficacy is tumor cells’ ability to repair

DNA damage. In a study of radiation resistance and glutamine

anabolism, STAT5 regulated the transcriptional level of glutamine

synthetase (GS), then promoted nucleotide metabolism,

accelerated DNA damage repair, and eventually made cancer

cells more resistant to radiation. In turn, radiation-resistant cells

exhibited high glutamine anabolic, including nasopharyngeal

carcinoma cells (CNE2-IRR) and glioma cells (U251-IRR) (54).

However, a novel class III RKT inhibitor-AIU2001 reduced DNA

damage repair genes expression by downregulating STAT5

mRNA level in lung cancer cells (55). Moreover, STAT5A/5B

participated in the regulation of DNA repair using homologous

recombination in prostate cancer by inducing the RAD51 mRNA

level while blocking of JAK2-STAT5A/5B signal pathway

sensitized prostate cancer to radiotherapy (56). To sum up, the

relationship between STAT5 expression and DNA damage and

repair of tumor cells may vary with tumor types.

An integrated prognostic model that includes STAT1,

STAT3, STAT4, and STAT5A may be more accurate than one

based on a single biomarker. Transcriptional factor families,

such as E2F and Forkhead box O (FOXO) transcription factors,

have demonstrated outstanding potential as a predictor of cancer

outcomes recently. The above studies preliminarily proved that

STATs expression had an essential impact on ovarian cancer

progression. Mainly, STAT5A affected cell invasion and DNA

damage repair, which can be an essential tool to predict ovarian

cancer prognosis. However, there are limitations to the current

research. Data for this study were derived from the TCGA
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database and single-cell sequencing, and no independent cohort

studies were available. As a next step, we will collect enough

clinical samples to validate the effect of STAT family expression

on the clinical parameters of ovarian cancer patients.
Conclusion

Here, a comprehensive analysis of STATs expression and its

prognostic value has been carried out to construct an ovarian

prognosis model. These results provided a basis for realizing

personalized and accurate treatment of ovarian cancer and

improving predictive biomarkers. Based on our findings,

STAT1, STAT4, and STAT6 may be viable therapeutic targets

for ovarian cancer. Low P-STAT5A, but not STAT5A, was a

favorable prognostic indicator in human OV. Since STAT5A

expression was negatively correlated with ovarian cancer cell

invasion and DNA repair, STAT5A/P-STAT5A activators or

inducers may increase ovarian cancer survivorship and allow

more of them to benefit from radiotherapy and chemotherapy,

molecular targeted drug therapy, or immunotherapy.
Materials and methods

Source of the data

RNA-sequencing profiles and relevant clinical data

consisting of 374 OV tissues came from the TCGA dataset

(https://portal.gdc.com). 180 normal control samples were

accessed from Genome Type tissue expression (GTEx) datasets

(V8) (https://www.gtexportal.org/home/datasets). Additionally,

various clinical parameters were collected, including survival

status, age, race, pTNM stage, and grade collected in Table 1. We

used R software v4.0.3 (R Foundation for Statistical Computing,

Vienna, Austria) for our statistical analyses. Statistical

significance was deemed to be p-value <0.05.

The Sankey diagram was constructed with the R software

package ggalluvial. The gene mutation data were downloaded

and visualized by the map tools package in R software. Genes

with higher mutational frequency detected in an ovarian cancer

patient in histogram were shown.
GEPIA2 dataset

A total of 9736 tumors and 8587 normal samples based on

the TCGA and GTEx projects were analyzed using the GEPIA2

analyzer. Through the multiple gene comparison columns in the

expression analysis plate, the STATs expression level in various

tumors was investigated. Besides, we profiled the expression of

STATs in the significant stage of ovarian cancer using a box plot

in the “pathological stage plot” column.
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Metascape database

Metascape database is a highly effective tool for studying

functional gene annotations. Genes and proteins can be analyzed

in batches to understand better how genes or proteins work.

First, the members of the STAT family were input into the

“multiple gene list” text box, and the species “H.sapines” was

selected for custom analysis. Findings from the gene ontology

enrichment analysis were obtained in the analysis report.
Kaplan-Meier Plotter

Based on ovarian cancer gene chip data, Kaplan-Meier Plotter

analysis was conducted to determine how STAT’s gene expression

affects ovarian cancer survival rates.Theprognostic value (mainlyOS

and PFS of ovarian cancer patients) of each member of the STATs

family was analyzed, respectively. According to themedian values of

the expression levels of the samples of the ovarian cancer patients,

groups with high and low expression were created. Comparing the

two cohorts yielded anHRwith 95%confidence intervals (CIs) and a

log-rank P-value using the Kaplan-Meier survival plot, indicated at

the top right of the main graph (57).
Prognostic value assessment of STATs

The ovarian RNA sequencing data from the TCGA database

were converted into transcripts per million (TPM), the data log2

(TPM+1) was normalized, and the clinical information samples

were retained for follow-up analysis. An analysis of survival rates

among groups by the log-rank test was conducted. The

prediction accuracy and risk score of STATs gene were

analyzed and compared by time ROC (v0.4).

In this study, the LASSO regression algorithm was employed

as a feature selection algorithm, along with 10-fold cross-

validation, and a glmnet package in R was performed for the

analysis. Multivariate cox regression analysis was used to

construct a prognostic model, and first, the multi-factor Cox

regression was used to analyze the data, and then the step

function performed the iteration. Finally, the optimal model

was selected as the final model. Kaplan-Meier curves plotting

standard was the same as that described above.

The analyses and R packages were all developed with R

(foundation for statistical computing 2020) version 4.0.3.

Statistical significance was deemed to be P-value <0.05.
LinkedOmics database

LinkedOmics is a database based on multiple group association

data analysis for TCGA. The ovarian cancer data set (TCGA-OV)
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was selected, and RNAseq was chosen as the data type in the

searching and targeting data sets. The target gene STAT5A was

input; then, the Pearson Correlation test statistical method was

selected for correlation analysis. Finally, we obtained the heat map

of the genes positively and negatively related to STAT5A.Moreover,

the above results were analyzed by GSEA enrichment analysis in the

LinkInterpreter plate based on WebGestalt. In the Enrichment

Analysis column, select the KEGG pathway and GO Analysis

(Biological process) for further analysis.
CancerSEA single cell state atlas

The database collects 72 single-cell datasets, totaling 41,900

single cells of 25 human cancers, Mapping the functional states

of a single cell of these 14 functional states related to cancer in

different cancers. These functional states were also associated

with 18,895 protein-coding genes (PCGs) and 15,571 LncRNAs

on the single cell level to understand the mechanisms underlying

functional differences in cancer cells (58). By inputting the

STAT5A gene, the heat map of its correlation with 14 states of

ovarian cancer cells was plotted. The status of ovarian cancer

cells with a high correlation with the STAT5A gene was filtered

by limiting the correlation strength (R > 0.3), and the

corresponding scatters plot was generated automatically.
Cell lines and culture

Human ovarian cancer cell line HO8910 was obtained from

the American Type Culture Collection (ATCC). Human normal

ovarian epithelial cells (IOSE80) were a kind gift from Hanqing

Hong (International Peace Maternity and Child Health Hospital,

China). The two kinds of cells were incubated in DMEM High

Glucose medium and DMEM-F12medium (HyClone,

SH30234.01), respectively, with 10% Foetal Bovine Serum

(FBS), 1% penicillin, and 1% streptomycin at 37°C in 5% CO2.

HO8910 cells were transiently transfected with pcDNA3.1-

STAT5A-C-3Fla or empty vector plasmids using Lipofectamine™

3000 Transfection Reagent (Thermo L3000015) according to the

manufacturer’s instructions. The total RNA and whole-cell lysates

were thenharvested forWesternblots analysis 48 hafter transfection.
RT-PCR

Total RNA was extracted from HO8910 cells by the Trizol

method. According to TAKARA reverse transcription kit

instructions, the reaction solution was prepared in a 0.2 mL

Ep tube. The reverse transcription conditions were as follows: 37

℃ for 15 min. The target gene and internal reference gene

expression in the cell sample were detected by qPCR. RT2Profiler
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PCR Array Data Analysis system of QIAGEN Company was

used for data analysis. Primer sequence for STAT5A and

GAPDH (5’to 3’):
STAT5A-human-F: GCAGAGTCCGTGACAGAGG;

STAT5A-human-R: CCACAGGTAGGGACAGAGTCT.

G A P D H - h u m a n - F :

TCAACGACCACTTTGTCAAGCTCA;

GAPDH-human-R: GCTGGTGGTCCAGGGGTCTTACT.
PCR reaction condition was as follows: 10 min 95°C pre-

denaturation; 95°C 15 s, 60°C 60 s PCR cycles for 40 cycles, 60!
95°C for dissociation curves.
Western blots

Above 1107 IOSE80 and HO8910 cells were collected,

respectively. Western blotting analysis was carried out using

whole-cell extracts lysed with RIPA lysis buffer (Thermo 89901).

The above two cell protein lysates were electrophoresed with

10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) (Concentration: 100V, 15min; Separation: 120V,

60min) and then transferred to nitrocellulose (NC) membranes

(Merck, filter type 0.45mm). Next, all the NC membranes were

blocked with 1×protein-free rapid blocking buffer (Epizyme,

Shanghai) in a room temperature setting for 40 min. A further

incubation step was taken with anti-STAT5A (Proteintech

13179-1-AP), anti-P-STAT5A (Signalway Antibody, 11048),

anti-MMP2 (Proteintech, 10373-2-AP), anti-MMP12

(Proteintech, 22989-1-AP), and HRP-conjugated mouse anti-

GAPDH (Yeasen Biotech, #30203ES10) diluted to 1:1000 at

room temperature for 2 hours. Wash three times in Tris-

buffered saline containing 0.1% Tween-20 (TBST) for five

minutes each; incubat ion of the membranes with

corresponding secondary antibodies (diluted to 1:10000)

followed for 1 hour. The enhanced chemiluminescence (ECL)

reagent (Millipore WBKLS0500) was used to visualize protein

signals on an Image Quant LAS4000 system (GE Healthcare).

These images were analyzed semi-quantitatively using ImageJ

1.8.0 (USA) software, then normalized to a background image.
Scratch wound assay

HO8910 cells, after different treatments, were seeded in 48-

well plates with 1.5x105 cells per well and incubated overnight in

DMEMHigh Glucose medium supplemented with 2%FBS. Then

the cell monolayer was scraped horizontally with a 200 mL
pipette tip and scratches were immediately generated and

washed twice with 1XPBS. 2 ml of fresh DMEM High Glucose

medium containing 2% FBS was added, and cells were continued
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to be cultured for 48 h. Images of cells using an inverted

microscope (Leica DMi8) by a 10X objective. Image J software

quantified and analyzed the scratch area (freeware http://fiji.sc).
Transwell invasion assay

The Matrigel was placed in the refrigerator at 4° C overnight

from -20° C, and the upper chamber surface of the bottom

membrane of the Transwell chamber was coated with 50 mg/L

Matrigel (1:8 diluent) and air-dried at 4° C. HO8910 cells after

different treatments were digested with trypsin and resuspended

with serum-free medium. The cell density was adjusted to 5×105

cells/mL. 200 mL of cell suspension was added into the upper

compartment of the Transwell chamber, and 500 mL of culture

medium containing 10% FBS was added into the lower chamber

of the 24-well plate. The culture plates were placed in a CO2

incubator at 37° C for 48 h. The chambers were taken out, and 1

x PBS was washed twice. The cells in the upper layer of the

chamber’s membrane were removed carefully using a cotton

swab. 4% paraformaldehyde-fixed for 20 min. Crystal violet

solution stained for 15 min. Images were taken under an

inverted microscope (Leica DMi8) by a 4X objective. 10 fields

of view were counted randomly for each sample by Image J

software (freeware http://fiji.sc) and then analyzed statistically.
IHC assay

Ovarian Cancer and adjacent normal tissue microarray (TMA,

n=90) were obtained from Shanghai Outdo Biotechnology

Company, Ltd (SHXC2021YF01). IHC was carried out as

described previously (59). The TMA was placed in an oven at 68°C

for 2 h. Dewaxing was completed in the automatic dyeing machine,

and the slides were placed in the antigen retrieval instrument to

initiate the repair. Then, theywere allowed to cool naturally formore

than 10 minutes and washed with PBS buffer. The working solution

of primary antibodies, including anti-STAT5A (Proteintech 13179-

1-AP), anti-P-STAT5A (Signalway Antibody, 11048), anti-MMP2

(Proteintech, 10373-2-AP) diluted 1:200was added respectively. The

slides were kept at 4°C overnight and then rewarmed at room

temperature for 45 min, washed with PBS buffer, and put into

DAKO automatic IHC instrument. The blocking, secondary

antibody binding, and DAB color development procedures were

selected according to the “Autostainer Link48UseGuide”. The slides

were stained with hematoxylin for 1min, immersed in 0.25% alcohol

hydrochloric acid (400ml 70% alcohol +1ml concentrated

hydrochloric acid) for about 10 s, and rinsed with tap water for 5

min.Then, the slidesweredried at roomtemperature and sealedwith

neutral resin.
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Statistical analysis

All the experiments were performed independently, at least in

triplicate. All the data were expressed as mean ± standard deviation

(SD). Statistical analyses were carried out with GraphPad Prism

software version 8.0. Multiple group comparisons were performed

using aone-wayANOAtest.Mann-Whitney testwasused to analyze

the expression of molecules in tissues. The correlation between

molecular and clinical indicators was evaluated by the Chi-square

test, Kaplan-Meier survival analysis, and Log-rank Statistical test.P<

0.05 was considered statistically significant.
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