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MicroRNAs (miRNAs): Novel
potential therapeutic targets
in colorectal cancer

Ying Yang, Wen-Jian Meng* and Zi-Qiang Wang

Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University,
Chengdu, China
Colorectal cancer (CRC) is the most common malignant tumor and one of the

most lethal malignant tumors in the world. Despite treatment with a

combination of surgery, radiotherapy, and/or systemic treatment, including

chemotherapy and targeted therapy, the prognosis of patients with advanced

CRC remains poor. Therefore, there is an urgent need to explore novel

therapeutic strategies and targets for the treatment of CRC. MicroRNAs

(miRNAs/miRs) are a class of short noncoding RNAs (approximately 22

nucleotides) involved in posttranscriptional gene expression regulation. The

dysregulation of its expression is recognized as a key regulator related to the

development, progression and metastasis of CRC. In recent years, a number of

miRNAs have been identified as regulators of drug resistance in CRC, and some

have gained attention as potential targets to overcome the drug resistance of

CRC. In this review, we introduce the miRNAs and the diverse mechanisms of

miRNAs in CRC and summarize the potential targeted therapies of CRC based

on the miRNAs.
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Introduction

Colorectal cancer (CRC) is the third most frequent cancer and the second leading

cause of cancer death, with an estimated more than 1.9 million new cases and 935,000

deaths worldwide in 2020 (1). The incidence of CRC is steadily increasing year by

year in many countries, with a trend of younger age onset (1, 2). At present, the
Abbreviations: 5-FU, 5-Fluorouracil; ABC, ATP-binding cassette; AGO2, Argonaute proteins; APC,

adenomatous polyposis coli; ATF4, activating transcription factor 4; CRC, Colorectal Cancer; CTx ,

cetuximab; DGCR8 , DiGeorge syndrome critical region 8; EMT, epithelial-to-mesenchymal transition;

HDAC4, histone deacetylase 4; HIF-1, hypoxia-inducible factor 1; OXA, Oxaliplatin ; PACT, protein

activator of the interferon-induced protein kinase; RISC, RNA-induced silencing complex; SMAD4, SMAD

family member 4; TM4SF1, transmembrane 4 L six family member 1; TRBP, TAR RNA binding protein;

VEGF, vascular endothelial growth factor.
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treatment of CRC mainly includes surgery, radiotherapy,

chemotherapy, immunotherapy and targeted therapy.

However, drug resistance and recurrence after therapy are

still the major obstacles to effective anticancer therapy for

CRC (3–5), and it is reported that approximately 50% of

CRCs are resistant to 5-Fu-based chemotherapy regimens

(6). In addition, immunotherapy (checkpoint blockade

therapies) is currently considered to be only effective for a

proportion (approximately 10-15%) of mismatch-repair-

deficient (dMMR) CRC (7–9). The prognosis of CRC was

negatively correlated with the progression of tumor stage.

Although these treatments can improve the survival rate of

CRC patients, the 5-year survival rate for those diagnosed

with distant-stage disease remains poor (only approximately

14%) (2). Therefore, it is necessary to find new therapeutic

strategies that can effectively treat CRC or improve the drug

resistance of CRC to prevent CRC relapse and improve the

prognosis of CRC patients.

MicroRNAs (miRNAs/miRs) are a category of short,

noncoding, highly conserved and single-stranded RNAs that

regulate gene expression at the posttranscriptional level by

mRNA degradation or silencing (10–12). MiRNAs are not

only critical for regulating normal physiological activities in

various biological processes, such as cell development,

metabolism, proliferation and apoptosis, but also play an

important role in the progression of cancer (13, 14). In

2003, the reduction in miRNAs was reported to be closely

related to CRC (15). Since then, research focusing on the

effects of miRNAs on CRC has gradually shown that aberrant

expression of miRNAs is associated with CRC progression,

including tumor formation, metastasis, and drug resistance

(16–19). For instance, Li et al. (20)reported that the

expression of miR-186-5p in CRC cell lines (HT116, H29,

SW620 and LoVo) was lower than that in the normal colonic

epithelial cell line NCM460. Moreover, the high expression of

miR-186-5p can inhibit the proliferation, epithelial-to-

mesenchymal transition (EMT), and metastasis of the CRC

cell line LoVo by targeting inhibition of ZEB1. Jin et al. (21)

found that the expression of miRNA-30a was significantly

increased in CRC tissues compared with normal colorectal

tissues, and the expression level of miRNA-30a was inversely

correlated with the invasiveness of CRC cell lines. Therefore,

miRNAs are expected to be potential novel therapeutic targets

for CRC.

Therefore, in this article, we will review the latest research

progress on the involvement of miRNAs in the occurrence

and development of CRC. This review also discusses the

current understanding of CRC drug resistance-related

miRNAs and their underlying molecular mechanisms.

Furthermore, we highlight the potential of miRNAs as CRC

therapeutic targets.
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Biosynthesis and mode of action
of miRNA

miRNAs are short, noncoding RNAs that are not translated

into proteins, with a length of approximately 22 nucleotides (22).

The first animal microRNA was lin4, called “small molecule

sequential RNA (stRNA)”, which was found in Caenorhabditis

elegans in 1993 (23). It was not until 2001 that a large number of

functional microRNAs with common characteristics were found

in many species, which were named miRNAs (24–26). Until

recently, the exploration of the roles and mechanisms of this

noncoding RNA in biological activities was in progress. Currently,

themajority of studies agree thatmiRNA is derived from a primary

miRNA transcript (pri-miRNA). Firstly, the miRNA gene is

transcribed into a large pri-miRNA containing multiple hairpin-

loop structures by RNA polymerase II in the nucleus (27). The pri-

miRNA typically contains thousands of nucleotides; subsequently,

the pri-miRNA is converted into a shorter hairpin-shaped

precursor miRNA (pre-miRNA) containing approximately 70

nucleotides by the Drosha enzyme (one type of RNAseIII) and

DGCR8 in the nucleus (28–30). Pre-miRNA is transported from

the nucleus to the cytoplasm by the Ran/GTP/Exportin-5 complex

(31, 32); the pre-miRNA is cleaved and processed to formadouble-

stranded miRNA of approximately 22 nucleotides in length in the

cytoplasm with the help of the Dicer enzyme (another type of

RNAseIII), TRBP and PACT (33–35). Finally, one strand of the

double-stranded miRNA is bound to AGO2 and loaded onto the

RNA-induced silencing complex (RISC) to become the RISC

complex, while the other strand is degraded (36). The mature

RISC complex binds to target mRNAs with complementary sites,

resulting in translational inhibition or degradation of target

mRNAs (37) (Figure 1).

Initially, it was not thought that these noncoding miRNAs

could have a severe impact on human health and even lead to the

occurrence and progression of cancer. With the continuous

exploration of miRNAs, humans have gradually changed this

view. Currently, it is widely assumed that miRNAs carrying RISC

recognize the binding site on the 3’-UTR of the target gene mRNA

through its seed sequence (nucleotides 2-8 at the 5-terminal). This

process produces two effects: transcriptional repression andmRNA

cleavage or degradation (38) (Figure 1). In 2002, Calin et al. (39)

showed that miRNA genes (miR-15 and miR-16) at 13q14 in

chronic lymphocytic leukemia are usually deleted or

downregulated by detailed deletion and expression analysis. This

study suggests that miRNAs may play an important role in

tumorigenesis and tumor progression. Thus, since then, an

increasing number of studies have demonstrated that the

aberrant expression of miRNAs is associated with cancer

progression, including CRC (40–42).

Intestinal microbiome is considered as a key participant in CRC

immune regulation and tumor promoting microenvironment,
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FIGURE 1

miRNA biosynthesis and mechanism of action. In the nucleus, the miRNA gene is transcribed by RNA polymerase II into pri-miRNA, which
become pre-miRNA with the help of Drosha and DGCR8. Then, the Ran/GTP/Exportin-5 complex delivers the pre-miRNA to the cytoplasm.
Here, with the assistance of Dicer, TRBP and PACT, the pre-miRNA is disassembled into single strands and combined with AGO2 and RISC to
become a mature RISC complex. Finally, the RISC complex binds to the target mRNA to cause mRNA degradation or translational repression.
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because bacteria from different intestinal sources can induce tumor

growth. In recent years, studies have found that the cross-talk

between gut microbes and the host in tumor cell metabolism is

largely achieved by regulating the level of miRNAs (43, 44).

Intestinal microbiota can affect the expression of miRNA, and the

abnormal expression of miRNA subsequently activates signal

pathways and regulates various aspects of tumor pathobiology in

CRC (45). The miRNA in the tumor microenvironment alters the

composition of the intestinal microbiota by influencing the gene

expression of the microbiota and transferring the metabolites

secreted by cancer (46). In conclusion, this interaction will

eventually create a favorable microenvironment for tumor cells,

including angiogenesis, immune escape and microbiota

composition. Meanwhile, the two-way interaction between host

and gut microbiome mediated by miRNAs brings new complexity

to miRNAs research.
The role of miRNAs in CRC

There is abundant evidence that miRNAs and their

biogenesis mechanisms are related to the occurrence and

development of CRC. Compared to normal tissues, miRNAs

are frequently dysregulated in tumors. It suggests that the

aberrant expression of miRNAs is closely related to the

progression, metastasis and drug resistance of CRC.
miRNAs involved in CRC progression
and metastasis

The progression and metastasis of CRC are the result of a

multistep process involving multiple genetic and epigenetic

alterations of oncogenes and tumor suppressor genes over

time. In addition, metastasis is also a major cause of poor

prognosis in CRC patients. In recent years, substantial data

have identified important roles for miRNAs in numerous

regulators involved in CRC pathogenesis and metastasis (47,

48). It is being increasingly regarded that miRNA regulation of

CRC progression and metastasis occurs by various mechanisms,

such as influencing signaling pathways, EMT, and angiogenesis.

There are many signaling pathways mediated by miRNAs in

CRC cells that play an important role in the progression and

metastasis of CRC (Table 1). As a regulatory pathway regulating

colorectal development, hyperactivation of the Wnt/b-catenin
pathway is found in more than 90% of CRC cells. The loss or

inactivation of adenomatous polyposis coli (APC, a key negative

regulator of the canonical Wnt signaling pathway) and the

overactivation of the Wnt/b-catenin signaling pathway are

considered to be the key processes in the initiation of CRC

(83, 84). Zheng et al. (49)aimed to investigate the tumorigenic

role of miR-490-3p in CRC. They reported that downregulation

of miR-490-3p promoted CRC progression by activating the
Frontiers in Oncology 04
classic Wnt/b-catenin signaling pathway. MiR-224 has been

found to directly target the GSK3b and SFRP2 genes to

activate Wnt/b-catenin signaling and direct the nuclear

translocation of b-catenin in CRC. Furthermore, miR-224

upregulation promoted CRC cell proliferation. Knockdown of

miR-224 attenuated the effects of Wnt/b-catenin on the

metastasis and proliferation of CRC cells (50). Similarly, miR-

452 enhanced the proliferation and metastasis of CRC cells by

activating the Wnt/b-catenin signaling pathway via directly

targeting GSK3b. While knockdown of miR-452 was found to

restore the expression of GSK3b and inhibit Wnt/b-catenin-
mediated cell metastasis and cell proliferation (51). The

expression of miR-494 was significantly increased in CRC,

with a negative correlation to APC expression in CRC tissues.

And up-regulation of this miR-494 has also been found to

enhance cell proliferation and tumorigenesis of CRC by

suppressing the expression of APC (52). As a member of the

BTB/POZ/zinc finger (ZF) family of transcription factors, BCL6

has been shown to target multiple functional signaling pathways,

including theWnt/b-catenin signaling pathway. In addition, Sun

et al. (53) suggested that BCL6 was a mediator of miR-144-3p in

regulating CRC cell proliferation and cell cycle arrest. They

reported that miR-144-3p inhibited cell proliferation and the

G1/S phase transition of CRC cells by targeting BCL6 via

inhibition of Wnt/b-catenin signaling. As a negative regulator

of Wnt/b-catenin signaling, miR-377-3p was shown to inhibit

CRC cell growth in vitro and in vivo by targeting XIAP and ZEB2

(54). The PI3K/AKT signaling pathway is an important signaling

pathway that controls the growth and metastasis of CRC (85). Jia

et al. reported that miR182/-135b promoted CRC progression by

targeting ST6GALNAC2 via regulation of the PI3K/AKT

pathway (55). miR-7 conferred its tumor-suppressing function

in CRC by inhibiting the activation of the PI3K/AKT pathway by

downregulating the miR-7 potential target TYRO3 (56).

Therefore, targeting these signaling pathways mediated by

miRNAs that regulate the progression and metastasis of CRC

may become a promising therapeutic strategy for targeting CRC.

It is widely accepted that epithelial–mesenchymal transition

(EMT) is the transition from epithelial cells to mesenchymal

cells during the progression and metastasis of malignancy. And

EMT is known to be associated with a wide array of malignant

behaviors of CRC, including tumorigenicity and metastasis (82).

There is growing evidence that miRNAs play crucial roles in

regulating the phenotype of EMT (86). Ding et al. (73) illustrated

that miR-137-3p could attenuate CRC cell migration by

regulating a KDM1A-dependent EMT process. Li et al. (87)

reported that miRNA-34a inhibits tumor metastasis and EMT

by reducing the expression of PPP1R11 to prevent the activation

of STAT3. Low expression levels of miR-302c was found to

significantly correlate with advanced tumor stage, lymph node

metastasis and deeper tumor invasion. And miR-302c inhibit

EMT and metastasis of CRC by targeting the transcription factor

AP-4 (57). Transmembrane 4 L six family member 1 (TM4SF1)
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is a direct target gene of miRNAs in CRC cells and is involved in

the regulation of EMT progression in CRC. MiR−30a, which is

involved in the EMT of CRC, was shown to suppress malignant

behaviors of CRC, including migration and invasion, by directly
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targeting oncogenic TM4SF1 (58). Similarly, miRNA-206 and

miRNA-9 could directly target TM4SF1, thus suppressing EMT

of CRC cells and leading to the suppression of cell proliferation,

migration, and invasion in CRC cells (59, 60).
TABLE 1 A list of representative miRNAs identified in CRC that are associated with the progression/metastasis of CRC.

miRNA mechanism Targets/
Regulators

Function Reference

miR-490-3p Wnt/b-catenin signaling
pathway

FRAT1 Inhibition of CRC progression (49)

miR-224 Wnt/b-catenin signaling
pathway

GSK3b and SFRP2 Promotion of aggressive phenotype of CRC (50)

miR-452 Wnt/b-catenin signaling
pathway

GSK3b Promotion of aggressive phenotype of CRC (51)

miR-494 Wnt/b-catenin signaling
pathway

APC Promotion of CRC progression (52)

miR-144-3p Wnt/b-catenin signaling
pathway

BCL6 Inhibition of CRC cell proliferation and G1/S phase transition (53)

miR-377-3p Wnt/b-catenin signaling
pathway

XIAP and ZEB2 Inhibition of CRC cell growth (54)

miR182/-135b PI3K/AKT pathway ST6GALNAC2 Promotion of CRC progression (55)

miR-7 PI3K/AKT pathway TYRO3 Inhibition of the proliferation, migration and invasion of CRC (56)

miRNA-34a STAT3 PPP1R11 Inhibition of tumor metastasis and EMT (56)

miR-302c EMT transcription factor
AP-4

Inhibition of metastasis of CRC (57)

miR-30a EMT TM4SF1 Inhibition of migration and invasion of CRC (58)

miRNA-9 EMT TM4SF1 Inhibition of migration and invasion of CRC (59)

miRNA-206 EMT TM4SF1 Inhibition of migration and invasion of CRC (60)

miR-590-5p, miR-1249,
miR-622

angiogenesis VEGF-A Inhibition of angiogenesis and metastasis of CRC (61–66)

miR-150-5p angiogenesis VEGF-A Inhibition of CRC cell proliferation, migration, invasion and
angiogenesis

(67)

miR-125 – VEGF Inhibition of CRC cell growth (68)

miR-19a-3p WNT/b-catenin signaling
pathway

FOXF2 Inhibition of CRC cell proliferation (69)

miR-501-3p WNT/b-catenin signaling
pathway

APC Promotion of CRC cell proliferation and stemness (70)

miR-346-5p WNT/b-catenin signaling
pathway

FBXL2 Inhibition of CRC cell proliferation (71)

miR-552 WNT
signaling pathway

p53 tumor suppressor Promotion of CRC cell proliferation (72)

miR-137-3p EMT – Inhibition of CRC cell migration (73)

miR-10a EMT – Inhibition of CRC metastasis (74)

miR-363-3p EMT Sox4 Inhibition of CRC metastasis (75)

miR-128 Akt-p53-cyclin pathway RPN2 Inhibition of cell proliferation and migration (76)

miR-1236-3p EMT DCLK3 Inhibition of the proliferation, invasion, and migration of colon
cancer cells

(77)

miR-212 AKT/mTOR signaling
pathway

PIK3R3 Inhibition of CRC cell viability and invasion (78)

miR-146b-5p – TRAF6 Promotion of CRC initiation and tumorigenesis (79)

miR-410-3p NF-kB pathway ZCCHC10 Promotion of migration, invasion and EMT of CRC (80)

miR-206 c-Met/AKT/GSK-3b pathway – Inhibition of the proliferation, migration and invasion of CRC (81)

miR-195-5p – NOTCH2 Inhibition of CRC cell proliferation, clone formation, migration,
and invasion

(82)

miR-224 – SMAD4 Promotion of CRC metastasis (19)
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One of the characteristics of tumor growth is angiogenesis,

which fosters tumorigenesis and metastasis by supplying oxygen

and diffusible nutrients as well as releasing proangiogenic

chemicals. Angiogenesis is integral to the development and

progression of CRC, and it is crucial to the growth and

metastasis of CRC (61). There are many angiogenic factors

that control angiogenesis, including vascular endothelial

growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1).

The overexpression of miR-145-5p suppressed RHBDD1

through suppression of the EGFR-associated signaling pathway

(EGFR/Raf/MEK/ERK cascades), which in turn inhibited the

growth, invasion and migration of CRC cells (62). As a key

VEGF receptor, VEGF-A is involved in angiogenesis and

stimulates the germination of prevascular endothelial cells,

which results in the development of new vasculature. MiR-

590-5p was found to suppress the angiogenesis and metastasis

of CRC by modulating VEGF-A (63). Similarly, miR-1249 and

miR-622 can also inhibit CRC angiogenesis by regulating the

level of VEGF-A, thereby inhibiting CRC growth and metastasis

(64, 65). Additionally, miR-520a serves as a direct target of

VEGF-A, and ATAD2 can suppress VEGF-A production by

elevating the expression of miR-520a, hence inhibiting

angiogenesis in CRC (66). In vitro and in vivo, miR-150-5p

inhibited the ability of CRC cells to proliferate, migrate, invade,

and undergo angiogenesis. This inhibitory impact could be

reversed by transfecting a plasmid encoding the VEGF-A (67).

HIF-1 is a critical regulator of VEGF and one of the key

molecules that mediates the growth of CRC (88, 89).

Additionally, numerous miRNAs have been identified as

having a role in the regulation of HIF-1 on the angiogenesis

and development of CRC (90, 91). MiR-148a inhibited CRC

angiogenesis and reduced the risk of early recurrence of CRC by

regulating the level of pERK/HIF-1a (92).
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In conclusion, miRNAs play an important regulatory role in

the biological behavior of CRC. MiRNAs affect the self-renewal,

proliferation, differentiation, metastasis and other biological

behaviors of CRC by regulating related molecules of various

signaling pathways, EMT or angiogenesis. And miRNAs may

have broad prospects in clinical application. Further exploration

of key miRNAs and their regulatory mechanisms related to the

characteristics of CRC will provide more references for future

CRC targeted therapy.
MiRNAs and drug resistance in CRC

Resistance to anticancer therapy is one of the major barriers

to the successful treatment of CRC. It was reported that there

were approximately 80% of responders may develop drug

resistance (93). The mechanism of drug resistance acquired by

CRC has been continuously explored, and it is believed that the

drug resistance of CRC is associated with multiple factors, such

as the cancer stem cells and tumor microenvironment of CRC

(94, 95). However, no single viewpoint can explain the drug

resistance of all CRC patients. In recent years, an increasing

number of studies have shown that miRNAs are involved in the

drug resistance of CRC by regulating autophagy, the cell cycle,

important signaling pathways and efflux pumps (Table 2).

Autophagy is a type of programmed cell death different from

apoptosis. Autophagy is the process of transporting damaged,

denatured or aged proteins and organelles in cells to lysosomes

for digestion and degradation. On the one hand, autophagy is a

physiological process and a defense mechanism of cells in

adverse environments. On the other hand, the occurrence and

development of autophagy is also closely related to the drug

resistance of tumors (111, 112). In recent years, it has been
TABLE 2 Effects of miRNAs on anticancer regimens in CRC in vitro and in vivo studies.

MiRNAs Effect of miRNA on resistance Anticancer regimens Reference

miR-145 up 5-FU (96)

miR-195-5p up cisplatin (97)

miR-92b-3p up MDR (98)

miR-27b-3p down OXA (99)

miR-577 up 5-FU (100)

miR-506 down OXA (101)

miR-199b-3p up 5-FU (102)

miR-200b-3p down OXA (103)

miR-454-3p up OXA (104)

miR-135b,miR-182 up 5-FU (105)

miR-543 up 5-FU (106)

miR-455-5p down 5-FU (107)

miR-148a down cisplatin (108)

miR-139-5p down 5-FU (109)

miR-128-3p down OXA (110)
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reported that miRNAs regulate the drug resistance by

modulating autophagy (113). Despite tremendous progress in

anticancer therapy, 5-FU-containing regimens remain one of the

most commonly used and effective treatment regimens for CRC.

Furthermore, evidence suggests that miRNAs may be involved in

the chemoresistance of CRC cells to 5-FU. Zhao et al. (96) found

significantly low expression of miR-145 and p53, whereas the

expression of activating transcription factor 4 (ATF4) histone

deacetylase 4 (HDAC4) increased considerably by RT-qPCR and

Western blot analysis. They further found that ATF4-regulated

miR-145 enhanced CRC tumorigenesis and the resistance to 5-

FU via regulating the HDAC4/p53 axis. Oxaliplatin (OXA) is

another cruc ia l component o f the combinator ia l

chemotherapeutic standard of CRC. And OXA resistance is

also another major obstacle to effective chemotherapy in CRC

patients. In OXA-resistant cell lines (SW480-OxR and HCT116-

OxR), the expression of miR-27b-3p was significantly decreased

compared to that in the corresponding parental cells. miR-27b-

3p was able to inhibit autophagy in CRC cells by suppressing the

expression of ATG10 at the posttranscriptional level.

Meanwhile, miR-27b-3p could increase the sensitivity of CRC

cells to OXA in vivo and in vitro by regulating the level of

autophagy (99). However, there are still few studies on miRNAs

affecting CRC drug resistance by regulating autophagy levels,

and more high-quality studies are needed in the future to

confirm this view.

The cell cycle is the process of DNA replication and cell

division and includes four stages: G1, S, G2 and M (114). Studies

have shown that impaired cell cycle regulation is the key

mechanism that promotes drug resistance in cancer. However,

miRNAs may facilitate the resistance of cancer cells to

chemotherapy by affecting the cell cycle (115). Zhao et al. (98)

found that miR-92b-3p was highly expressed by CRC HCT8/T

cells and that knockdown of miR-92b-3p may attenuate the

resistance of MDRHCT8/T cells to chemotherapy in vitro and in

vivo. They further demonstrated that miR-92b-3p regulated the

sensitivity of CRC cells to chemotherapeutic drugs by regulating

the cell cycle and apoptosis (via directly targeting cyclin-

dependent kinase inhibitor 1C and suppressing its expression).

The expression of miRNA-375-3p was significantly decreased in

CRC cell lines, and the expression level of miRNA-375-3p was

proportional to the sensitivity of CRC cells to 5-FU. It was

confirmed to enhance the sensitivity of CRC cells to 5-FU by

inducing apoptosis and cycle arrest of CRC cells (116). The

expression of miR-577 was found to be significantly increased in

5-fluorouracil (5-FU)-resistant SW480 cells (SW480/5-FU). And

Jiang et al. revealed that miR-577 inhibited tumor growth and

enhanced 5-FU sensitivity in SW480/5-FU cells by inducing G0/

G1 cell cycle arrest in CRC cells (100).

Many signaling pathways have been shown to be involved in

tumor chemoresistance. In recent years, there has also been

growing evidence that miRNAs regulate the resistance of CRC

cells to therapy through signaling pathways. MiRNA-506 was
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found to be low expressed in OXA-resistant CRC tissues. And

the overexpression of miRNA-506 could not only inhibit the

growth of CRC cells, but also reverse the resistance of OXA-

resistant CRC cells to OXA. Further exploration by Zhou et al.

(101) showed that miRNA-506 increased the sensitivity of CRC

to OXA therapy by inhibiting MDR1/P-gp expression via

downregulation of the Wnt/b-catenin pathway. miR-199b-3p

was shown to enhance the drug resistance of CRC cells. Han

et al. (102) suggested that suppressing miR-199b-3p could

enhance the sensitivity of CRC cetuximab (CTx)-resistant cells

to CTx in vitro and in mouse xenograft models by targeting the

inhibition of CRIM1 via the Wnt/b-catenin signaling pathway.

Wu et al. (103) found that the overexpression of miR-200b-3p

could enhance OXA sensitivity in OXA-resistant CRC cells

(HT29 and HCT116 cells) and induce growth inhibition and

apoptosis of OXA-resistant CRC cells by inhibiting the

expression of bIII-tubulin protein. As an important regulator

of the PI3K/AKT signaling pathway, PTEN is also a direct target

of miRNAs. The expression of miR-454-3p was significantly

upregulated in OXA-resistant cells. Interestingly, inhibition of

miR-454-3p was observed to sensitize OXA-resistant cells to

OXA treatment and enhance OXA-induced cells apoptosis. In

the xenograft model, this effect also exists. Meanwhile, Qian et al.

(104) further confirmed that miR-454-3p enhanced OXA

resistance by targeting PTEN and activating the AKT signaling

pathway. And the PI3K/AKT signaling pathway is closely related

to the chemosensitivity of CRC cells to 5-FU. Studies have

shown that miRNAs affect the sensitivity of CRC cells to 5-FU

by targeting the targets of the PI3K/AKT signaling pathway. Liu

et al. (105) found that upregulation of miR-135b or miR-182

could enhance the resistance to 5-FU in CRC cells by targeting

ST6GALNAC2 via the PI3K/AKT pathway. Similarly, Liu et al.

(106) revealed that highly expressed miR-543 enhanced the

resistance of CRC cells to 5-FU by downregulating the

expression of PTEN, and the low expression of PTEN can

activate the PI3K/AKT signaling pathway. As another

regulator of the PI3K/AKT signaling pathway, PIK3R1 was

confirmed to be a target of miR-455-5p in CRC cells. Lou

et al. (107) found that miR-455-5p sensitized CRC cells to 5-

FU through CCK-8 and flow cytometry analysis. They further

studied the mechanism underlying this phenomenon and

revealed that miR-455-5p enhanced the sensitivity of CRC

cells to 5-FU by targeting PIK3R1 and DEPDC1. However,

these conclusions were supported at the cellular level. And

future in vivo studies to confirm these findings are urgently

required. Shi et al. (108) selectively enriched cisplatin-resistant

CRC cell lines from the SW480 cell line by using cisplatin. By

PCR assay, they found that the expression of miR-148a was

down-regulated in cisplatin-resistant SW480 cells, while

overexpression of miR-148a was able to attenuate cisplatin

resistance and inhibit the growth of CRC cells in cisplatin-

resistant SW480 cells. Further research found that miR-148a

played a role in regulating CRC cisplatin resistance and tumor
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development by inhibiting the expression of its downstream

target Wnt10b and the activity of b-catenin signaling. And this

conclusion was also validated in an immunized mouse xenograft

model of SW480 resistance. The Notch pathway is a highly

conserved signaling pathway that plays a key role in CRC, which

contributes to cell proliferation, EMT and chemoresistance

(117). MiR-139-5p was downregulated in 5-FU-resistant CRC

cell lines (HCT-8/5-FU and HCT-116/5-FU). And the

expression of miR-139-5p increased 5-FU-induced apoptosis

and sensitized CRC cells to 5-FU by inhibiting NOTCH-1 and

its downstream molecules (MRP-1 and BCL-2) (109). Similarly,

in 5-FU-resistant cells (SW620 and HT-29 cells), the expression

of miR-195-5p was decreased. Jin et al. (97) demonstrated that

miR-195-5p reduced the stemness and chemoresistance of CRC

cells by inhibiting the Notch signaling pathway.

The most common mechanism for cancer drug resistance is

reduced drug accumulation concentrations in cancer cells, and

studies have shown that a major cause of this phenomenon is

increased drug efflux mediated by the ATP-binding cassette

(ABC) efflux pump. ABC efflux pump can directly excrete

drugs from cancer cells, affecting drug absorption, distribution,

and metabolic clearance, resulting in chemotherapy failure (118,

119). Recently, studies on miRNAs have shown that miRNAs

may regulate the drug resistance of CRC cells by affecting the

ABC efflux pump. Liu et al. (110)showed that miR-128-3p

inhibited EMT and increased intracellular OXA concentrations

in OXA-resistant CRC cell lines. MiR-128-3p was found to

competitively bind Bmi1 and MRP5 (an ABC efflux pump),

resulting in decreased intracellular OXA efflux and enhanced

OXA-induced EMT. Therefore, overexpression of miR-128-3p

can enhance the therapeutic response of CRC cells to OXA.

Together, these studies provide a rationale for developing

miRNA-based therapies to effectively treat drug-resistant CRC

cells. However, one important limitation of these findings must

be recognized. Most of the current research is at the cellular level

and includes a few studies in animal models. There are more

clinical research trials to be made before these miRNAs can truly

become targeted drugs for reversing CRC resistance.
Therapeutic approaches targeting
miRNAs for CRC

As discussed above, some miRNAs promote CRC

progression, metastasis, or drug resistance, while others show

the opposite effect. According to their regulatory effects on

tumors, miRNAs are broadly divided into two types: tumor

suppressor miRNAs and oncogenic miRNAs. Therefore, the

current treatment approaches based on targeting miRNAs

include: (1) the upregulation of tumor suppressor miRNAs

utilizing miRNA mimics, such as double-stranded synthetic

miRNAs and miRNA expression vectors, when tumor

suppressor miRNAs are downregulated; (2) inhibiting the
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expression of oncomiRs by miRNA antagonists, such as

antisense oligonucleotides, antagomirs, and miRNA sponges,

when oncomiRs are overexpressed (120). An effective treatment

regimen requires not only the selection of the right regulatory

molecules, but also the selection of appropriate drug delivery

strategies. Although targeting miRNAs is a promising

therapeutic strategy for the treatment of CRC, naked miRNA-

based agents have many shortcomings, such as poor targeting

capabilities, short circulation times, and off-target effects. In

recent years, nanoparticle carriers have provided unprecedented

opportunities for efficiently delivering therapeutics of miRNAs

by controlling release kinetics, prolonging circulation time and

improving biological distribution to improve the therapeutic

efficacy of miRNA-targeting agents with less toxicity compared

with other anticancer drugs (121, 122). For instance, miR-145

was shown to be downregulated in colon cancer and to have

antiproliferative and proapoptotic effects . Through

nanotechnology, Liang et al. (123) studied a PLGA/PEI-

mediated miRNA vector delivery system and verified the

validity of this method by using a colon cancer xenograft

model with a miR-145 vector encoding for the expression of

miR-145 (pDNA). The results of this work showed that miR-145

could be efficiently delivered to colon cancer cells and exerted

potent antitumor efficacy through a PLGA/PEI/HA vehicle.

Similarly, Ibrahim et al. (124) developed a miRNA delivery

system by using polyethylenimine (PEI)-mediated delivery of

unmodified miRNAs and validated the method in a mouse

model of colon carcinoma. The results of this study showed

that miRNA replacement therapy for miR-145 and miR-33a

could reduce tumor growth. Despite the growing number of

studies targeting miRNAs for the treatment of CRC, more

studies, especially clinically relevant studies, are needed to

demonstrate the clinical significance of therapeutic strategies

for targeting miRNAs.
Emerging role of circulating miRNAs as
biomarkers in CRC

Despite having a strong genetic component, most CRC cases

are sporadic and undergo a lengthy (usually several years)

process of slow progression from adenoma to cancer (125).

The prognosis of CRC is highly related to the stage at diagnosis.

The 5-year survival rate of early CRC patients can reach more

than 90%, while the 5-year survival rate of advanced CRC

patients is approximately 14% (2). Therefore, CRC screening

and early diagnosis and treatment can effectively reduce the

mortality of CRC. At present, the most frequently used

diagnostic tool for CRC is colonoscopy. However, colonoscopy

has some limitations in CRC screening, such as invasive

procedures, poor population compliance, and high technical

requirements for operators. In addition, CRC is a

heterogeneous disease with various histologic characteristics,
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molecular characteristics, and prognosis. Although TNM staging

system is a crucial clinical parameter to evaluate the prognosis of

CRC patients, the prognosis of patients with CRC still varies

considerably at the same stage (126). The drug resistance of CRC

patients to current chemotherapy drugs also reflects its

heterogeneity. Taken together, these limitations highlight the

urgent need of CRC for new non-invasive biomarkers. MiRNA is

relatively stable, not easily degraded by rnase, and less affected by

high temperature and extreme pH. And it is a crucial regulator of

life process, closely related to the tumor (can be actively secreted

into the circulatory system by cancer cells) (127). Therefore,

circulating miRNAs are a potential biomarker. In 2008, Mitchell

et al. first proposed that circulating miRNAs are emerging as
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promising biomarkers for solid tumors (128). And then in 2009,

Ng, EKO et al. (129) reported that circulating miRNA (MiR-92)

was significantly increased in the plasma of CRC and might be a

potential non-invasive biomarker for the diagnosis of CRC. In

2013, Kanaan, Ziad et al. (130) identified and verified the

characteristics of miRNAs in the plasma of healthy controls,

colorectal adenomas and CRC patients, and designed two

powerful prediction models: a panel of 8 plasma miRNAs

(miR-532-3p, miR-331, miR-195, miR-17, miR-142-3p, miR-

15b, miR-532 and miR-652) could significantly distinguish

colorectal adenomas from healthy people [AUC=0.868 (95%

confidence interval [CI]: 0.76-0.98)]. Furthermore, a panel of 3

plasma miRNAs (miR-431, miR-15b and miR-139-3p) could
FIGURE 2

List of circulating miRNAs reported as promising biomarkers in CRC in recent 5 years. References are provided in Table S1.
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also distinguish patients with stage IV CRC from healthy people

[AUC=0.896 (95% CI: 0.78-1.0)]. Noteworthy, a growing

number of studies have highlighted that circulating miRNAs,

especially the prediction models based on miRNA panels, are a

promising tool for early detection, prognosis and treatment

selection of CRC in recent 5 years (Figure 2).
Conclusion and future perspectives

In summary, miRNAs play important roles in CRC cell

proliferation, metastasis, and chemoresistance by regulating

CRC-related signaling pathways, EMT, angiogenesis and others.

According to the different effects of miRNAs on tumors, miRNAs

are also divided into tumor-promoting and tumor-suppressing

types, and these two types also provide future directions for

targeting miRNAs in the treatment of CRC. However, one of

the greatest challenges in developing miRNA-based therapeutics is

to design a delivery system that can make miRNA-based

therapeutics durable and enable tissue-specific targeting while

avoiding potential toxicities and off-target effects. Although

there is no lack of scientific evidence that nanostructures

containing miRNAs mimetics or antagonists can produce robust

antitumor effects with few side effects, most of the current exciting

results remain at the level of cell studies, and few relevant clinical

studies have been reported. In conclusion, although miRNAs are a

promising target for the treatment of CRC, the introduction of

miRNA-targeted therapies into clinical practice still requires

substantial and in-depth research.
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