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The identification of a series of attributes or hallmarks that are shared by virtually all

cancer cells constitutes a truemilestone in cancer research. The conceptualization

of a catalogue of common genetic, molecular, biochemical and cellular events

under a unifying Hallmarks of Cancer idea had a major impact in oncology.

Furthermore, the fact that different types of cancer, ranging from pediatric tumors

and leukemias to adult epithelial cancers, share a large number of fundamental

traits reflects the universal nature of the biological events involved in oncogenesis.

The dissection of a complex disease like cancer into a finite directory of hallmarks

is of major basic and translational relevance. The role of insulin-like growth factor-

1 (IGF1) as a progression/survival factor required for normal cell cycle transition has

been firmly established. Similarly well characterized are the biochemical and

cellular activities of IGF1 and IGF2 in the chain of events leading from a

phenotypically normal cell to a diseased one harboring neoplastic traits,

including growth factor independence, loss of cell-cell contact inhibition,

chromosomal abnormalities, accumulation of mutations, activation of

oncogenes, etc. The purpose of the present review is to provide an in-depth

evaluation of the biology of IGF1 at the light of paradigms that emerge from

analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent

years as a promising therapeutic target, we believe that a careful exploration of this

signaling system might be of critical importance on our ability to design and

optimize cancer therapies.

KEYWORDS

insulin-like growth factor-1 (IGF1), IGF1 receptor (IGF1R), cancer hallmarks, cell cycle,
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Introduction to the IGF system

The insulin-like growth factors (IGF1, IGF2) constitute one of the best characterized

families of signaling molecules (1–4). The role of the IGFs as mediators of the growth

hormone (GH)-stimulated incorporation of sulfate into cartilage was demonstrated more

than sixty years ago (5). The specific, GH-activated serum factor that was originally

termed ‘sulfation factor’ and then ‘somatomedin’ is now accepted as IGF1. The IGFs
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developed early in evolution, possibly as regulators of cellular

proliferation in relation to nutrient availability (6, 7). Circulating

IGF1 levels are dependent on liver production, which is tightly

controlled by pituitary-derived GH (8, 9). In addition to its

classical endocrine role, many extrahepatic tissues (e.g., brain,

kidney, stomach, etc) produce measurable quantities of IGF1

(10, 11). Locally synthesized IGF1 exhibits tissue-specific

paracrine and autocrine activities (12). Both IGF1 and IGF2

activate a common receptor, the IGF1 receptor (IGF1R), which

signals mitogenic, antiapoptotic and pro-survival activities (13,

14). The IGF1R is a cell-surface tyrosine kinase receptor coupled

to a number of intracellular second messenger pathways,

including the ras-raf-MAPK and PI3K-AKT signaling cascades

(15–17). The IGF1R is vital for cell survival, as illustrated by the

lethal phenotype of mice in which the IGF1R gene was disrupted

by homologous recombination (18–20). IGF2 also interacts with

the mitogenic subtype of the insulin receptor (INSR) and thus it

is usually more mitogenic than IGF1.

Recent technological developments, including the use of

modern genomic and proteomic approaches as well as other

high-throughput platforms, are having a huge impact on our

understanding of both basic and clinical aspects of the IGF

system (21, 22). The unprecedented gain-of-knowledge generated

by post-genomic technologies is allowing us to analyze

physiological and pathological processes at a level of

integration that was, until recently, unthinkable (23, 24).

Given that the IGF axis and, particularly, the IGF1R emerged

in recent years as promising therapeutic targets in oncology, the

identification of signaling networks linked to IGF1 action (‘IGF1

signatures’) is expected to be of major importance on our ability

to optimize interventional tools for the manipulation of this

endocrine system (25–31). Furthermore, combined omics

analyses will most certainly impinge on our capacity to predict

responsiveness to selective IGF1R-directed drugs (32, 33).
Hallmarks of cancer: an emerging
unifying concept

The dissection of a complex disease like cancer into a well-

defined series of shared genetic, molecular, biochemical and

cellular events, or ‘hallmarks’, constitutes a true landmark in the

history of cancer research. The original catalogue proposed by

Hanahan and Weinberg in 2000 included six hallmarks (34).

This set of unifying attributes was revised and expanded on a

number of occasions to include a number of additional emerging

or ‘enabling’ hallmarks (35). For a detailed review of the

development of the Hallmarks of Cancer concept the reader is

referred to the original publications of the authors (36, 37).

As of today, the set of hallmarks includes the following ten

traits: (1) evasion of growth suppressors (2); avoidance of

immune destruction; (3) replicative immortality; (4)

promotion of inflammation by tumor; (5) activation of
Frontiers in Oncology 02
invasion and metastasis; (6) induction or accession to

vasculature; (7) genome instability and mutation; (8) resistance

to cell death; (9) deregulation of cellular metabolism; and (10)

sustained proliferative signaling. Additional emerging hallmarks

include: (1) unlocking phenotypic plasticity; (2) non-mutational

epigenetic reprogramming; (3) senescence; and (4) polymorphic

microbiomes (37).

The purpose of the present review is to provide an in-depth

analysis of the biology of IGF1 at the light of universal paradigms

that emerge from exploration of individual and combined

hallmarks. Different aspects of selected hallmarks will be

evaluated from the perspective of the IGF1 system. When

relevant, the roles of IGF1 and IGF2 in cancer biology will be

compared to those of the closely related insulin molecule (38).

We believe that this comparison is important from a clinical

viewpoint given the vast amount of information linking obesity,

hyperinsulinemia and diabetes with cancer initiation and

progression (39, 40).
Sustained proliferative signaling

One of the fundamental attributes of cancer cells involves

their proficiency to undergo chronic and, essentially, unlimited

proliferation (36). Thus, whereas normal cells exhibit tightly

regulated growth signals, transformed cells display a largely

deregulated signaling capacity. In most cases, this unrestricted

behavior results from the ability of cancer cells to synthesize a

variety of growth factor ligands and/or their cognate cell-surface

receptors. Growth factor independence may also result from

constitutive activation of signaling molecules downstream of the

receptors. Regardless of the specific event that is directly

responsible for supplying this growth signal, the net outcome

is identical, i.e., malignantly-transformed cells are able to

traverse the cell cycle in the absence of exogenous stimuli in

an unopposed manner. In other words, cancer cells exhibit an

inherent sustained proliferative potential. In this section we will

discuss the role of IGF1 in the context of proliferation signaling.

The ubiquitous nature of the IGF system has prompted the

use of multiple experimental models to study its effects both in

vitro and in vivo (41). At the cellular level, IGF1 stimulates

proliferation and inhibits death in a wide variety of cell types

(42). IGF1 stimulates a mitogenic response in primary cultures

of cells from various origins as well as in cancer cell lines. Of

importance, IGF1 has a fundamental role in stem cells biology

(43, 44). IGF1 fits the criteria of a progression factor, i.e., a

molecule that is expressly required to traverse the cell cycle

(45, 46). Quiescent cells in G0 can be induced to enter G1 by

competence factors (e.g., PDGF, FGF). Once in G1, the cells

require sub-physiological quantities of IGF1 to evade arrest and

to progress through the rest of the cycle (47) (Figure 1). IGF1 can

also induce differentiation (48), while antisense oligonucleotides

against the IGF1 gene blocked this effect (49).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1055589
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Werner and LeRoith 10.3389/fonc.2022.1055589
IGF1 induces a variety of cell- and organ-specific functions,

ranging from regulation of hormone synthesis and secretion

(50), chemo-attractant migration (51) and neuromodulation

(52). IGF1 also participates in cell recognition by the immune

system. Thus, glioblastoma cells in which IGF1 expression was

disrupted by antisense oligonucleotides generated a strong host

response and didn’t form tumors when injected into syngeneic

mice (53). In the central nervous system, the IGF1 gene is widely

expressed and promotes proliferation, survival and

differentiation of neuronal and non-neuronal cells. In rat

brain, distinct regions (e.g., cerebellar neurons, retina, sensory

and trigeminal ganglia) express high IGF1 mRNA levels during

embryonic development while other regions (e.g., midbrain,

cerebral cortex, hippocampus) expresses the gene mainly

during postnatal growth (54). Up-regulation of IGF1 in the

central nervous system is observed 1-7 days after a variety of

insults, including hypoxia-ischemia (55), brain contusion (56)

and penetrating brain trauma (57). Of notice, IGF1 has been

identified as a neurotrophic factor, rescuing neurons from

apoptosis (58) and enhancing neuronal growth and

myelination (59). The role of IGF1 as an anti-apoptotic factor

will be discussed below.

Finally, it is important in this context to discuss the

mechanisms associated with IGF1 action (12). Ligand binding

to the IGF1R extracellular a-subunits results in conformational

changes that induce autophosphorylation of tyrosine residues

wi th in the main ly in t race l lu l a r b - subun i t s (13 ) .

Autophosphorylation stimulates the receptor tyrosine kinase

activity and leads to phosphorylation of additional substrates.

A number of SH2 domain-containing proteins, or ‘docking

proteins’, bind to specific phospho-tyrosine residues in the C-

terminal portion of the b-subunit (17). The insulin receptor
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substrate (IRS) family of proteins and Shc are the best

characterized docking proteins. Thus, enzymatic activation of

the IGF1R tyrosine kinase domain results in stimulation of an

array of intracellular cascades, including the ras-raf-MAPK and

PI3K-AKT pathways. Classically, IGF1-induced mitogenesis was

primarily attributed to the ras-raf-MAPK pathway whereas the

anti-apoptotic effect of IGF1 was thought to be mediated by the

PI3K-AKT pathway. Today, it is clear that the situation is, in

fact, much more complex. Whereas in the past IGF1R pathways

(like growth factor cascades in general) were depicted as linear

tracts, it has become increasingly evident that there is a cross-

talk between IGF1R and additional cell-surface receptors,

including G-proteins, integrins, and others (12).
Insensitivity to antigrowth signals

The capacity of normal adult cells to remain in a post-

mitotic, terminally differentiated state is dictated by their ability

to respond to a series of secreted, cellular or extracellular growth

inhibitors. These antiproliferative signals operate to keep the

cells out of the cell cycle and in a quiescent state. One of the

prototypical cancer hallmarks refers to the acquired faculty of

transformed cells to evade these antigrowth signals (34, 37). As a

result, cells might regain a previously repressed mitogenic

potential that would allow them to re-enter the cell cycle.

The E2F family of transcription factors plays a key role in

regulating the expression of genes involved in the G1/S transition

and DNA synthesis (60–62). The retinoblastoma (Rb) and E2F

proteins form a complex (Rb-E2F) that undergoes dissociation

upon phosphorylation of Rb, with ensuing activation of E2F-

dependent transcription and cell cycle progression (63, 64). E2F

binds to DNA and regulates the expression of genes involved in

cell cycle progression. Microarray analyses of E2F1-induced

genes revealed that genes associated with proliferation as well

as apoptosis are usually upregulated by E2F1 (65–67). Using

transient transfection assays we have demonstrated that E2F1 is

a potent inducer of IGF1R gene expression in prostate cancer

cells (68). Augmented IGF1R levels correlated with elevated

phospho-IGF1R values, suggesting activation of the IGF1R

signaling pathway. Deletion analysis indicated that the ability

of E2F1 to stimulate IGF1R promoter activity correlated with the

number of E2F1 sites present in the various constructs,

suggesting a dose-dependent effect of E2F1 binding on IGF1R

gene expression. In addition, in vivo analysis of promoter

occupancy by chromatin immunoprecipitation assays revealed

that E2F1 was specifically recruited to the IGF1R promoter.

Combined, data indicate that transcription factor E2F1 is an

important regulator of the IGF1R gene. Elevation in IGF1R levels

may contribute to the proliferative effects associated with

initiation of prostate (and other) cancer (30, 69).

Classically, loss-of-function mutations of tumor suppressor

genes or gain-of-function mutations of oncogenes are regarded
FIGURE 1

The role of IGF1 as a progression factor. Quiescent cells in G0

can be induced to enter G1 by competence factors such as
PDGF and FGF. Once in G1, the cells require sub-physiological
quantities of IGF1 or EGF to evade arrest and to progress
through the rest of the cycle. Hence, IGF1 fits the criteria of a
progression factor.
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as critical events in cancer development. In terms of the ‘two-hit

hypothesis’ these events fit the criteria of a first, i.e. oncogenic,

event. A mechanism of action that is shared by multiple

oncogenes involves the transactivation of different growth

factors or growth factor receptors, including IGF1R. Activation

of IGF1 axis components suits the definition of a second, i.e.

permissive, hit. This mode of action is commonly referred to as

‘adoption’ of the IGF1R signaling pathway by oncogenes

(Figure 2). For example, pp60src, the protein encoded by the

src oncogene of Rous sarcoma virus stimulates the constitutive

phosphorylation of the IGF1R tyrosine kinase domain (70).

Hence, pp60src alters growth regulation by rendering the cells

constitutively subject to a mitogenic signal. Other oncogenes,

including c-myb, can transactivate the IGF1R promoter, with

enhanced IGF1R gene transcription and biosynthesis (71). In

summary, cellular and viral oncogenes require an intact,

activated IGF1R signaling pathway in order to elicit their

transforming activities (69, 72).
Evasion of apoptosis

A quintessential feature of cancer cells involves the

acquisition of molecular and genetic means that will allow

them not-to-die. The ability of transformed cells to endure is

dictated not only by their proliferative potential but also by their

capacity to oppose death, particularly apoptosis. As stated by

Hanahan and Weinberg in their original report, acquired
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resistance towards apoptosis is a fundamental hallmark of,

most probably, all types of cancer (34). Classically,

programmed cell death has been regarded as an ‘altruistic’

mechanism that offers protection to the entire organism by

engaging in a self-annihilation program (73). Extensive

research over more than fifty years has identified complex

biochemical and molecular strategies that are acquired by

cancer cells and that are directly responsible for evasion

of apoptosis.

Seminal studies from the laboratory of Renato Baserga

generated early evidence that the IGF1R exhibits a very potent

anti-apoptotic activity in comparison to most other growth

factor receptors (74–78). Using a series of IGF1R mutants,

O’Connor et al. demonstrated that the domains of the IGF1R

required for its anti-apoptotic function are distinct from those

required for proliferation or transformation (79). Of notice,

IGF1 inhibition of apoptosis occurs in the absence of protein

synthesis and, therefore, does not require immediate gene

expression (80). Finally, protection from apoptosis is evident

in the post-commitment (i.e., mitogen-independent) S-G2-M

phases of the cell cycle.

The inherent anti-apoptotic activity of the IGF1R confers

upon receptor-expressing cells enhanced survivability, a

fundamental property of cancer cells. Consistent with this

notion, fibroblasts (R-) derived from IGF1R ‘knock-out’

embryos (the total deficiency of IGF1R is a lethal condition)

do not undergo malignant transformation when exposed to

oncogenes (81, 82). Reintroduction of a functional receptor
FIGURE 2

Cancer genes adopt the IGF1 signaling pathway. IGF1 is regarded as a non-genotoxic growth factor, i.e., it is unable, in itself, to induce
mutations or transformation. However, once an oncogenic event has occurred, IGF1 can enhance proliferation and survival of already
transformed cells. In the context of the ‘two hit hypothesis’, IGF1 action is regarded as a second, or permissive, hit. Multiple cancer genes,
including oncogenes and anti-oncogenes, adopt the IGF1 signaling pathway. In agreement with this notion, cells devoid of the IGF1R usually do
not undergo transformation.
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renders R- cells susceptible to the transforming activities of these

oncogenes. Certain exceptions to this general paradigm have

been reported. For instance, transfection of the GTPase-deficient

mutant Ga13 resulted in transformation of R- cells. These results

indicate that Ga13 can induce cellular transformation through

pathways independent of IGF1R (83). Taken together, studies

are in agreement with the notion that IGF1R expression and/or

activation are fundamental pre-requisites for cancer

development (8, 20) (Table 1). It is important to understand,

however, that IGF1, per se, is neither genotoxic nor oncogenic. In

other words, even supra-pharmacological doses of the hormone

cannot induce malignant transformation.

The key role of the mitochondria in the regulation of

biochemical and molecular events associated with apoptosis

have been described by Green and Reed (92). Recent genomic

analyses identified the thioredoxin interacting protein (TXNIP)

as a novel target for IGF1 and insulin action (93). TXNIP is a

mitochondrial protein that belongs to the a-arrestin family and

plays a key role in redox regulation (94–98). TXNIP binds to the

catalytic active center of reduced thioredoxin and inhibits its

expression and activity (99). TXNIP is highly expressed in

lymphoblastoid cells derived from Laron syndrome patients, a

type of congenital IGF1 deficiency. The role of the TXNIP gene

as a downstream target for negative regulation by IGF1 was

confirmed by studies showing that IGF1 (or insulin) treatment

led to marked reductions in TXNIP levels in cultured cells.

Furthermore, transfection studies revealed that the effect of IGF1

on TXNIP gene expression was mediated at the level of

transcription (93). We envision a scenario in which IGF1

could inhibit apoptosis by down-regulating TXNIP at the

transcriptional level. Independent of redox regulation, TXNIP

also functions as a regulator of glucose metabolism (100) and its

levels are increased in diabetes (101).
Genome instability and mutation

Genome instability and mutation were categorized as an

enabling cancer hallmark that serves as a pre-requisite for some

(possibly most) of the previously described hallmarks (36). The

biological rationale for this trait relies on the recognition that

specific mutations might confer upon certain cell populations

distinctive advantages that could, eventually, facilitate their

selective expansion and dominance.

Tumor suppressor p53 is a transcription factor that typically

accumulates in the cell in response to DNA damage (102).

Mutation of the p53 gene is the most common event in

human cancer (103, 104). When hyperphosphorylated, p53

arrests cell cycle progression at the G1 phase. The p53 pathway

is activated in response to different stress signals, including DNA

damage and telomere shortening, hypoxia, heat and cold shock,

inflammation and activation of oncogenes by mutations (105,

106). These various strains bear the potential to decrease the
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fidelity of cell cycle progression and DNA replication, thus

leading to increased mutation rates (107, 108). As alluded to

above, accumulation of mutations constitutes an early event in

malignant transformation. p53-mediated cell cycle arrest enables

damaged DNA to be repaired before the replicative phase of the

cell cycle (104, 109). Alternatively, p53 can elicit an apoptotic

program. Of relevance, evidence gathered in recent years

indicate that, in addition to its well established ability to

control cell cycle progression, p53 activation has a major

impact on metabolic processes, including glucose transport

(110) and obesity (111).

Extensive molecular and genetic analyses revealed that the

mechanism of action of wild-type p53 involves transcriptional

suppression of the IGF1R gene (112). Gain-of-function, or loss-

of-function, mutations of p53 in tumor cells seem to disrupt its

inhibitory activity, generating oncogenic molecules capable of

transactivating the IGF1R gene. Because p53 is a potent inducer

of apoptosis, we assume that the effect of this molecule on

apoptosis is mediated, at least in part, via suppression of the

IGF1R promoter. Lack of IGF1R inhibition by mutant p53

molecules may help expand cancer cell populations that are

otherwise destined to die (113). The ubiquitin ligase Mdm2 is

of major importance in regulation of p53 activity (114) and

IGF1 was shown to induce p53 degradation in an Mdm2-

dependent manner (115). Girnita et al. have shown that Mdm2

physically associates with IGF1R and causes its ubiquitination

and degradation (116). Mdm2 serves as a ligase in

ubiquitination of IGF1R and thereby causes its degradation

by the proteasome system. Consequently, by sequestering

Mdm2 in the cell nuclei, the level of p53 may indirectly

influence the expression of IGF1R. This function of Mdm2

and p53 constitutes a potential mechanism for the regulation of

IGF1R and cell growth. As an operational outcome to these

studies, IGF1R was identified as a molecular determinant for
TABLE 1 IGF1R gene expression in human cancers.

Cancer Reference

Ovary Bruchim et al. (84)

Endometrium Bruchim et al. (85)

Breast Yerushalmi et al. (86)

Thyroid Wang et al. (87)

Colon Codony-Servat et al. (88)

Lung Macaulay et al. (89)

Stomach Lowe et al. (90)

Kidney Chin and Bondy (91)

Ewing sarcoma Mancarella and Scotlandi (27)

Brain Garcıá-Segura et al. (54)
Enhanced IGF1R gene expression constitutes a common feature of most human cancers.
IGF1Rs in tumors have been characterized using competitive binding assays, affinity
cross-linking, Northern blots, RNase protection assays, RT-PCR, or a combination of
them. The table represents a partial list of tumors in which IGF1R is highly expressed.
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response to p53 reactivation therapy in conjunctival

melanoma (117).

The characterization of the mechanisms responsible for

regulation of the IGF1 pathway by p53, as described above, led

us to formulate an hypothesis aimed at offering a generalized

paradigm for regulation of IGF1R expression by different tumor

suppressors (69, 113, 118). While tumor suppressors might differ

in their organ-specific expression, mechanisms of activation,

type of tumors involved and other parameters, they share the

IGF1R pathway as a common response path. This unifying

model may explain the involvement of the IGF1 axis in

genome instability and mutations.

The breast and ovarian cancer susceptibility gene (BRCA1)

is a transcription factor involved in DNA damage repair, cell

growth and apoptosis (119, 120). Mutations of the BRCA1 gene

are detected in a significant proportion of families with inherited

breast and/or ovarian cancer (121, 122). Transfection of a

BRCA1 expression vector in breast cancer cells led to a

marked reduction in endogenous IGF1R levels and promoter

activity (123–125). In contrast, a mutant BRCA1 gene encoding a

truncated version of the molecule (del185AG, a mutation with a

high incidence among Ashkenazi Jews) had no effect on IGF1R

expression. Hence, activation of BRCA1 in response to DNA

damage, oxidative stress, or other cellular insults, may lead to a

reduction in IGF1R levels and IGF1 action. Suppression of the

IGF1 pathway is expected to prevent from cells from engaging

in mitosis.
Sustained angiogenesis

The ability to grow new blood vessels, or angiogenesis,

represents an important capability that neoplasms develop to

increase in size and, ultimately, to endure (126). This feature is

critically required by the proliferating cell in order to obtain

nutrients and oxygen (127). The labeling of sustained

angiogenesis as a hallmark of cancer reflects the universal

nature of this trait (34). The process of angiogenesis is tightly

regulated by secreted growth factors and their receptors as well

as by cellular and extracellular adhesion molecules (i.e.,

integrins, cadherin, etc). The single most important protein

that epitomizes the angiogenic process is vascular endothelial

growth factor (VEGF) (128, 129).

The physiological role of VEGF is to induce the formation of

new blood vessels during embryonic development and to restore

injured vessels (130). Members of the VEGF family (VEGF-A,

-B, -C, -D, and placenta growth factor, PGF) are produced by

many types of cancer, being the expression of VEGF-A usually

correlated with metastatic potential. VEGF-A enhances

migration and mitosis of endothelial cells, stimulates matrix

metalloproteinase activity and augments integrin avb3 activity

(131). The VEGF-A gene is regarded as an hypoxia-inducible
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gene, being its transcription regulated by hypoxia-inducible

factor-a (HIF-a) (132). In hypoxia (low oxygen pressure), the

absence of oxygen-dependent hydroxylation of HIF-a prolines

allows HIF-a subunits to accumulate, dimerize and translocate

to the nucleus, triggering transcription of VEGF-A and other

hypoxia-inducible genes (133). The IGF axis enhances the

hypoxic response by activation of Akt signaling, leading to

stabilization of HIF-a and upregulation of VEGF-A (134, 135).

The von Hippel-Lindau gene product (pVHL, the substrate

recognition component of an E3 ubiquitin ligase complex) has

an important role in the oxygen-dependent proteolysis of HIF-a
(136). Inactivation of VHL in clear cell renal cell cancer (CC-

RCC) allows normoxic accumulation of HIF-a subunits, leading

to constitutive expression of the angiogenic VEGF-A gene. We

have previously identified a new hypoxia-independent role for

VHL in suppressing IGF1R transcription and mRNA stability

(137). IGF1R levels were higher in CC-RCC cells harboring a

mutant inactive VHL than in isogenic cells expressing a wild-

type VHL. Hence, mutant VHL leads to IGF1R upregulation, an

event typically associated with renal tumorigenesis. Taken

together, data indicate a functional interplay between the

IGF1R and VEGF signaling pathways (138). Dysregulation of

specific components in these paths might lead to sustained

angiogenesis, an important hallmark of cancer.
Tissue invasion and metastasis

The ability of tumor cells to invade adjacent tissues and to

colonize remote sites in the body, (i.e., metastasis), is responsible

for the vast majority of deaths from cancer (139). This cancer

hallmark depends, to a large extent, on hallmarks described

above (34). The processes of invasion and metastasis have been

extensively investigated over the years from both basic and

translational angles. Research led to the identification of

molecules and signaling pathways that are directly involved in

pathological changes at the interface between malignant cells

and the microenvironment. Most of the clinically-relevant

changes can be ascribed to proteins involved in cell-cell

adhesion, including integrin, cadherin and others (140–143).

Accumulating experimental and epidemiological evidence

provide support to the idea that obesity is an important risk

factor for cancer (39, 144, 145). A number of mechanisms by

which obesity contributes to tumor progression have been

d e s c r i b ed . Obe s i t y i s a s s o c i a t e d w i th s y s t em i c

hyperinsulinemia as well as differences in circulating IGFs,

adipokines and cytokines (146). The contribution of these

molecules to proliferative and cell-survival events has been

well documented (147). The increase in adipose tissue in the

tumor microenvironment is a source of lipids that can be used by

tumors for metabolism and as structural and signaling

molecules. In this context, cholesterol was shown to affect gene
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expression of the jun family in colon cancer cells, leading to

potentially pathogenic signaling events (148).

Obesity also leads to changes in the extracellular matrix,

adipose stromal cells and immune cells, creating a cancer-

permissive microenvironment. The reader is referred to a

recent comprehensive review article by Vella et al. that

provides a thorough analysis of the interplay between

estrogens, insulin/IGFs and their receptors, and stroma (149).

Regarding the mechanisms of action responsible for these

interactions, the estrogen receptor-a (ERa) has been identified

as a potent transactivator of the IGF1R gene (30, 150, 151).

Furthermore, GC-rich sequences in the proximal IGF1R

promoter region were required for this effect. Impaired

interactions between ERa and zinc-finger proteins may lead to

aberrant IGF1R expression in breast cancer cells. Dysregulated

expression and availability of IGFs are regarded as key regulators

of metastasis (152). Recent genomic analyses identified the

nephronectin (NPNT) gene as a downstream target for IGF1

action (153). NPNT is an intracellular and secreted extracellular

matrix protein with important roles in kidney development (154,

155). NPNT interacts with a8b1 integrin through its central

linker segment. NPNT expression correlated with poor

prognosis in breast cancer and was shown to promote

metastasis via its integrin-binding motif (156, 157). Our

analyses identified NPNT as the top down-regulated gene in

Laron syndrome cells, a condition associated with diminished

IGF1 levels (158).

Finally, constitutive activation of the IGF1R was shown to

affect lineage differentiation during mammary tumorigenesis

(159). Constitutive IGF1R activation promoted tumors with

mixed histology and multiple cell lineages. In these tumors,

IGF1R expanded the luminal-progenitor population while

influencing myoepithelial differentiation. Combined, the

capacity to affect lineage differentiation may promote

heterogeneous mammary tumors and might have

translational implications.
Nuclear IGF1R: A new layer of
biological regulation

As alluded to above, the classical model of IGF1 action

involves the ligand-induced phosphorylation of IGF1R, a

heterotetrameric cell-surface tyrosine kinase receptor, with

ensuing activation of cytoplasmic signaling cascades. The

recent identification of nuclear IGF1R translocation provides

an additional level of biological complexity by allowing a typical

transmembrane receptor to function in a discrete, membrane-

bound cellular environment (160–162). Using cell fractionation

techniques and confocal microscopy it was shown that the cell-

surface IGF1R undergoes modification by the small ubiquitin-
Frontiers in Oncology 07
like modifier protein (SUMO-1), with subsequent translocation

to the nucleus (163, 164). SUMOylation sites on lysine residues

within the tyrosine kinase domain are conserved among a variety

of homologues from different species. Mutagenesis of these sites

arrested nuclear import and gene activation (165).

Lysosomal and endocytic pathways that are mainly involved

in IGF1R and INSR degradation were shown to be also

responsible for nuclear translocation of the receptors (162).

Importin-b, an important player in nuclear translocation, was

shown to coimmunoprecipitate with IGF1R (164). In addition,

use of the clathrin-dependent endocytosis inhibitor

dansylcadaverine abrogated IGF1R nuclear import (162, 166).

The capacity of IGF1R to interact with DNA was investigated by

chromatin immunoprecipitation (ChIP)-seq assays. Analyses

showed that the vast majority (~80%) of IGF1R-enriched

regions were intergenic (i.e., distal from any annotated gene),

while ~6% of these regions were located in introns and ~6% in

exons (165). Hence, data is consistent with the notion that

IGF1R may bind to enhancer regions and function as a

transcriptional activator.

What are the clinical implications of nuclear IGF1R

translocation? The impact of nuclear IGF1R on tumor

aggressiveness can be deduced from the fact that inhibition of

nuclear IGF1R import correlated with a reduced proliferative

potential (167, 168). Aleksic and colleagues reported that nuclear

IGF1R was present in renal cancer cells, preinvasive breast

lesions and non-malignant tissues with a high proliferative

index (162). Moreover, nuclear IGF1R staining correlated with

an adverse prognosis in renal cancer. Similarly, nuclear IGF1R

localization in alveolar rhabdomyosarcoma was associated with

an aggressive phenotype. Finally, immunohistochemical

analyses identified IGF1R staining in 47 out of 53 pediatric

gliomas (169). Ten out of the 47 cases exhibited nuclear staining.

IGF1R staining was mostly non-nuclear in low-grade tumors,

while nuclear expression was predominant in high-grade

gliomas. Survival was significantly longer in patients with

gliomas having non-nuclear IGF1R localization than in

patients with nuclear IGF1R. Taken together, data indicate

that intracellular IGF1R distribution may help in stratifying

pediatric glioma patients.
IGF1R: An emerging therapeutic
target in oncology

Following our analysis of cancer hallmarks from the

perspective of the IGF1 signaling pathway, it is relevant to

question what was the rationale behind the identification of

IGF1R as a therapeutic target. Three main lines of research over

the past 25 years led to the concept that the IGF1 axis and, in

particular, the IGF1R is a potential goal for pharmacological (or
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other) intervention (1): during oncogenic transformation a

“primitive” pattern of IGF1R expression is established, leading

to enhanced IGF1R levels. A similar developmental trend is

exhibited by IGF2, which is produced by most cancer cells and,

usually, constitutes the main ligand in tumors (170, 171). These

observations led to the dogma that IGF1R expression is a critical

requirement for establishment of a tumor (15). This paradigm,

however, is not necessarily true in every type of cancer. Thus,

whereas IGF1R overexpression is a common trait of most

pediatric and other solid tumors (e.g., brain, kidney), a more

complex pattern of expression is seen in adult epithelial tumors

(e.g., breast, prostate) (172–174); (2) further support to the

notion that IGF1R might constitute a rational therapeutic

target in oncology was provided by studies showing that cells

deprived of the receptor, in their vast majority, do not undergo

oncogenic transformation (81); and (3) the identification of

endocrine IGF1 as a risk factor in multiple neoplasias

generated the “critical mass” needed to proceed with clinical

trials against the IGF1 axis (175). IGF1R-directed therapies are

aimed at:
Fron
• inhibiting cancer cell survival and proliferation;

• reversing tumor growth and metastasis development;

and

• sensitizing to chemotherapy, radiotherapy and biological

therapies.
Different strategies have been developed to target the IGF

system in vitro and in animal models (25, 27, 28, 176–178).

However, three main strategies progressed to clinical trials (1):

antibodies that target the IGF1R and induce its internalization

and degradation; (2) small molecule IGF1R tyrosine kinase

inhibitors; and (3) neutralizing antibodies that target the IGF1

and IGF2 ligands (179, 180). Unfortunately, most clinical trials

led to disappointing results and it is nowadays clear that a

combined approach aimed against the IGF axis along with

additional pathway/s should lead to a better outcome (181). A

recent pre-clinical study provided evidence that co-treatment

of breast cancer cells with AEW541 (a selective IGF1R

inhibitor) along with gemcitabine (a chemotherapeutic drug)

improved the treatment efficiency (31). The degree of synergy

achieved, as expressed in combination index values, was very

strong. Finally, cell cycle analyses suggested that the synergism

was derived, at least in part, from AEW541-induced G1 arrest

and gemcitabine-induced S arrest.

Some of the IGF1R antibodies developed in recent years

were shown to cross-react with the INSR leading to

hyperglycemia. The potential effect of IGF1R antibodies on

INSR signaling is of special concern given that these

antibodies can alter INSR function, leading to insulin

resistance and adverse effects on glucose and carbohydrate
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metabolism. On the other hand, INSR targeting could be

potentially beneficial because inhibition of the INSR, in

addition to IGF1R inhibition, might increase the effective anti-

tumoral activity (182, 183). Hence, one of the critical challenges

in the field is to define whether future trials should be limited to

IGF1R or, alternatively, targeting tools should be implemented

also against INSR.
Concluding remarks: Future IGF
research and the clinics

In summary, we believe that the negative outcomes of recent

clinical trials, despite the obvious disappointment, were critically

analyzed and important lessons were learned (26, 184, 185).

Among other possible causes, a retrospective evaluation points

out at a fierce competition between pharma companies as one of

the reasons that hampered the development of efficient IGF1R

drugs. These ‘battles’ led to the design of badly planned trials

that, for the most part, were conducted on unselected patients.

Therefore, it is of critical importance to identify predictive

markers that could assist in selecting patients who might

benefit from these treatments. Furthermore, biomarkers are

also needed to monitor patient’s response to therapy. We

believe that a rational and integrated use of omics platforms

may certainly help identifying ‘IGF1 signatures’ that correlate

with better clinical outcomes.

The question whether INSR is a druggable target in cancer is

a matter of controversy. As mentioned in the previous section, a

critical challenge is to define whether future trials should be

limited to IGF1R or, alternatively, should target also INSR.

Given the important role of insulin and INSR in cancer

biology, mainly breast and endometrial tumors, it is expected

that future efforts will embrace also the development of INSR-

directed molecules.

As stated above, most available evidence indicates that

selective IGF1R inhibitors along with chemotherapy or other

biological drug (i.e., combination therapy) usually lead to a

better outcome than monotherapy. The enhancement of the

therapeutic effect stems from the fact that IGF1R therapy and

chemotherapy are aimed against different phases or targets of the

cellular machinery. Hence, whereas chemicals mostly induce

DNA damage, IGF1R inhibitors specifically target the survival

machinery of the cell.

Elucidation of the interplay between the IGF1 axis and

additional pathways, including oncogenes and anti-oncogenes,

will have a major impact on our understanding of basic

molecular oncology processes as well as on our ability to

design and optimize cancer therapies. A summary of the

involvement of the IGF1 system in Cancer Hallmarks is

presented in Table 2. The potential of new drugs, alone or in
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combination with chemotherapy or other biological agents,

needs to be investigated in randomized studies. Finally, lessons

from the field of personalized medicine will be implemented in

IGF1R targeting.
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