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Low-grade gliomas (LGG) are commonly seen in clinical practice, and the

prognosis is often poor. Therefore, the determination of immune-related risk

scores and immune-related targets for predicting prognoses in patients with

LGG is crucial. A single-sample gene set enrichment analysis (ssGSEA) was

performed on 22 immune gene sets to calculate immune-based prognostic

scores. The prognostic value of the 22 immune cells for predicting overall

survival (OS) was assessed using the least absolute shrinkage and selection

operator (LASSO) and univariate and multivariate Cox analyses. Subsequently,

we constructed a validated effector T-cell risk score (TCRS) to identify the

immune subtypes and inflammatory immune features of LGG patients. We

divided an LGG patient into a high-risk–score group and a low-risk–score

group based on the optimal cutoff value. Kaplan–Meier survival curve showed

that patients in the low-risk–score group had higher OS. We then identified the

differentially expressed genes (DEGs) between the high-risk–score group and

low-risk-score group and obtained 799 upregulated genes and 348

downregulated genes. The analysis of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) show that DEGs were mainly

concentrated in immune-related processes. In order to further explore the

immune-related genes related to prognosis, we constructed a protein–protein

interaction (PPI) network using Cytoscape and then identified the 50 most

crucial genes. Subsequently, nine DEGs were found to be significantly

associated with OS based on univariate and multivariate Cox analyses. It was

further confirmed that CD2, SPN, IL18, PTPRC, GZMA, and TLR7 were

independent prognostic factors for LGG through batch survival analysis and a

nomogram prediction model. In addition, we used an RT-qPCR assay to

validate the bioinformatics results. The results showed that CD2, SPN, IL18,

PTPRC, GZMA, and TLR7 were highly expressed in LGG. Our study can provide

a reference value for the prediction of prognosis in LGG patients and may help

in the clinical development of effective therapeutic agents.
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Introduction

A glioma is a tumor arising from the carcinogenesis of glial

cells in the brain and spinal cord and is characterized by a high

incidence, a low cure rate, aggressive growth, a high malignancy,

and a significantly higher incidence in men than in women.

Gliomas are commonly found in clinical practice, accounting for

approximately 81% of intracranial malignancies (1). Most types

of gliomas have a poor prognosis due to their malignant

biological behavior (2). Low-grade gliomas (LGG) are gliomas

of low malignancy, and even though the prognosis is better than

that of glioblastoma, many LGG progress to high-grade gliomas

due to the great heterogeneity between different LGG, and thus

the prognosis of LGG patients is poor (3, 4). Currently, clinical

treatment for LGG includes surgical resection, radiotherapy,

chemotherapy, electric field therapy, and supportive therapy,

all of which help to prolong survival time and improve quality

of life (5). However, reliable biomarkers that can predict poor

prognoses in patients with LGG are uncommon in the diagnosis

and treatment of LGG. Therefore, a search for effective

prognostic predictors and therapeutic targets for LGG

is necessary.

The development of LGG is closely related to immunity, and

LGG cells can secrete a large number of cytokines that promote the

entry of various immune cells into the tumor, which in turn creates

a tumor microenvironment (6). The tumor microenvironment is

involved in LGG growth, recurrence, invasion, and response to

therapy, and immune cells are closely associated with poor

prognoses in LGG patients (7). Currently, immuno-oncology is of

great clinical interest due to its specific benefits in the treatment of a

variety of cancers. Immune-related genes and immune-infiltrating

cells play an integral role in the tumor microenvironment, helping

to determine prognosis and providing an impetus for

immunotherapy (8). Therefore, it is crucial to find immune-

related risk scores and immune-related targets for

predicting prognosis.

Currently, there is no report on the bioinformatics analysis

of immune-related targets for predicting LGG prognosis based

on single-sample gene set enrichment analysis (ssGSEA) and

constructing T-cell risk score (TCRS), as described in the

previous articles. In the present study, immune cell abundance

in LGG samples was explored using ssGSEA to construct an

effector TCRS. The prognostic value of immune cells for overall

survival (OS) time prediction was assessed to elucidate

functional differences between high- and low-risk groups

distinguished by TCRS. Subsequently, a protein–protein

interaction (PPI) network, univariate and multivariate Cox

analyses, batch survival analysis, and nomogram prediction

model can identify the crucial genes related to LGG prognosis

and resolve the mode of action of crucial genes in LGG,

providing a reference for improving the prognosis of

LGG patients.
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Data

Data sources

RNA-seq data from the LGG patient sample (n = 512) and

corresponding clinical information can be obtained fromThe Cancer

Genome Atlas (TCGA) for inclusion in subsequent analyses.
Prognostic value of immune cells for
predicting overall survival

The ssGSEA algorithm is based on a set of 22 immune genes,

including genes associated with different immune cell types,

functions, pathways, and checkpoints. The ssGSEA results were

analyzed using the R package “GSVA” to identify different levels of

infiltration of immune cell types, immune-related functions, and

immune-related pathways in LGG expression profiles. The image

clustering heat map was drawn using the R package “Pheatmap.”

The prognostic value of 22 immune cells for predicting OS

was assessed using least absolute shrinkage and selection operator

(LASSO) and univariate and multivariate Cox analyses. The

TCRS was determined based on the most prognostically

significant immune cells, and the optimal cutoff value of the

TCRS was calculated using the R package “ggrisk.” The LGG

samples were divided into a high-risk–score group and a low-

risk–score group based on the optimal cutoff value. Kaplan–

Meier and ROC analyses were used to compare the survival of

patients in both groups. Based on the ESTIMATE algorithm, the

R package “ESTIMATE” was used to calculate the stroma score,

immune score, and ESTIMATE score of LGG samples in different

risk score groups. The box plot was drawn using the R package

“ggpubr.” The relationship between different risk scores and

changes in the expression of each immune gene was analyzed.
Differential analysis

Differential analysis was performed on the high-risk–score

group and a low-risk–score group using the R package “limma”

according to the screening threshold of |Log2FC|>1, adj.p < 0.05.

The R package “clusterProfiler” was used to select datasets from

the Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Gene Ontology (GO).
Protein–protein interaction networks

PPI networks were identified using the STRING database,

and the biomolecular interaction networks of related genes were

visualized using Cytoscape. A modular analysis of the network

was performed using the MCODE plugin to screen the crucial
frontiersin.org
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genes in the PPI network. The prognostic value of the

differentially expressed genes (DEGs) was analyzed using

univariate and multivariate Cox analyses to obtain the genes

related to the prognosis of the LGG patient sample, and p < 0.05

was considered to be significant.
Identification of low-grade glioma
prognosis-associated genes

A univariate Cox regression analysis was performed on the

LGG patient sample DEGs to screen for genes associated with

prognosis using the log-rank test. The prognostic differences

between the high gene expression group and low gene expression

group were analyzed using the R package “Kaplan–Meier,” and p

< 0.05 was considered to be significant.
Nomogram construction

Independent prognostic factors were determined based on

univariate and multivariate Cox regression models. Column

plots were constructed using the R packages “rms” and

“survival.” A calibration curve was used to assess the accuracy

of the line graphs, and p < 0.05 was considered to be significant.
Cell culture

Human glioma cell lines HS683 and the normal human glial cell

line HEB were selected and provided by XiangyaMedical College of

Changsha Central South University (China). The cells were cultured

in DMEM supplemented with 1% streptomycin/penicillin and 10%

FBS under saturated humidity, 37°C, and 5% CO2.
Real-time quantitative polymerase
chain reaction

RNA was extracted using a TRIzol kit (Invitrogen, USA),

and cDNA was synthesized using a reverse transcription kit.

Real-time quantitative polymerase chain reaction (RT-qPCR)
Frontiers in Oncology 03
was performed using a SYBR Premix Ex Taq kit (TaKaRa,

Japan). The primer sequences used are listed in Table 1. Gene

expression levels were quantified using the 2−DDCT method. The

experiment was repeated three times.

Results

Prognostic value of immune cells for
predicting overall survival

The ssGSEA method was applied to the transcriptome of LGG

samples to find the distribution of 22 immune cell types

(Figure 1A). Based on the LASSO model, the TCRS can be

calculated as follows when lambda.min = 0.0257: RiskScore =

6.74934179805055 * CD4_naive + 6.83207575533917 * Tr1 −

1.22576340775653 * Th1 + 1.31766352136828 * NKT +

2.38814433064296 * B_cell + 3.26414059327394 * Monocyte +

3.2630292767646 * CD4_T (Figure 1B). Furthermore, using

univariate and multivariate Cox analyses, the optimal cutoff value

of 2.649 was obtained, and the results showed that Tr1, CD4_naive,

and B_cell were related to the OS of patients with LGG (Figure 1C).

The LGG patient sample was divided into a high-risk–score group

and a low-risk–score group based on the optimal cutoff value

(Figure 1D). Kaplan–Meier survival curves figured out that

patients in the low-risk–score group had greater OS than those in

the high-risk–score group (Figure 1E, p < 0.05). The ROC curves

showed that TCRS had a better predictive value for 1-, 3-, and 5-

year OS (Figure 1F). To verify the validity of the above model, the

ESTIMATE algorithm was used to calculate the stromal score,

immune score, and ESTIMATE score of LGG samples. The results

showed that the stromal score, immune score, and ESTIMATE

score were higher in the high-risk–score group than in the low-risk–

score group (Figure 1G, p < 0.05). There was a significant difference

in the expression of immune genes between the high-risk–score

group and the low-risk–score group (Figure 1H, p < 0.05).
Analysis of differences

Differential analysis was performed on the high-risk–score

group and the low-risk–score group, and 799 upregulated genes
TABLE 1 RT-qPCR primer sequence.

Gene Forward 5′!3′ Reverse 5′!3′

CD2 TCAAGAGAGGGTCTCAAAACCA CCATTCATTACCTCACAGGTCAG

SPN GCTGGTGGTAAGCCCAGAC GGCTCGCTAGTAGAGACCAAA

IL18 TCTTCATTGACCAAGGAAATCGG TCCGGGGTGCATTATCTCTAC

PTPRC ACCACAAGTTTACTAACGCAAGT TTTGAGGGGGATTCCAGGTAAT

GZMA TCTCTCTCAGTTGTCGTTTCTCT GCAGTCAACACCCAGTCTTTTG

TLR7 TCCTTGGGGCTAGATGGTTTC TCCACGATCACATGGTTCTTTG

GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG
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FIGURE 1

Prognostic value of immune cells for predicting OS. (A) Distribution of immune cell types. (B) LASSO coefficient profiles. (C) Univariate and multifactorial
Cox analyses used to identify OS-related immune cells. (D) Heat map of survival status and expression in different risk score groups. (E) Kaplan–Meier
survival curves showing survival in the different risk score groups. (F) ROC curve showing the predictive value of TCRS for 1-, 3-, and 5-year OS. (G) Box
plots showing differences in the stromal score, immune score, and ESTIMATE score between different risk score groups. (H) Expression of immune
genes in different risk-score groups compared with low group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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and 348 downregulated genes were identified (Figures 2A, B).

KEGG analysis showed that DEGs were enriched mainly in

Staphylococcus aureus infection, complement and coagulation

cascades, tuberculosis, and other pathways (Figure 2C). GO

analysis showed that DEGs were enriched mainly in the

immune system process, immune response, and other

terms (Figure 2D).
Establishment of protein–protein
interaction network

The most important module in the PPI network consisted of

50 nodes and 868 edges (Figures 3A, B). The prognostic value of

the 50 DEGs was analyzed using univariate and multivariate Cox

analyses, and a total of nine prognostic-related genes were

obtained, including CD2, SPN, IL18, CLEC7A, PTPRC, TLR2,

GZMA, CD163, and TLR7 (Tables 2, 3). The expression of all
Frontiers in Oncology 05
nine genes was different in the different risk-score groups

(Figure 3C, p < 0.05).
Batch survival analysis to identify low-
grade glioma prognosis-related genes

Kaplan–Meier survival curves showed that OS was

significantly worse in the group with a high expression of CD2,

SPN, IL18, CLEC7A, PTPRC, TLR2, GZMA, CD163, and TLR7

(Figure 4, p < 0.05).
Construction of nomogram
prognostic model

A total of nine prognosis-related genes, age, sex, and race

were used as variables, and univariate and multivariate Cox
A B

DC

FIGURE 2

Analysis of differences. (A, B) Volcano plot showing DEGs in different risk score groups. (C) Bubble plot from KEGG analysis showing major
enrichment of DEGs. (D) Bubble plot from GO analysis showing major enrichment of DEGs.
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A B

C

FIGURE 3

Establishment of the PPI network. (A) PPI network showing protein interactions between nodes. (B) Most important modules in the PPI network.
(C) Expression of nine prognosis-related genes in the different risk-score groups compared to low group. ****p < 0.0001.
TABLE 2 Univariate Cox regression analysis.

Tag HR Lower 95% Upper 95% Likelihood Log-rank Wald

PDCD1LG2 1.520116292 1.369792153 1.686937347 7.34E−10 8.80E−17 3.20E−15

CD2 1.452943277 1.311213594 1.609992586 2.66E−08 1.18E−15 9.75E−13

CD40LG 75.90563174 23.15108433 248.8723573 2.02E−08 3.88E−15 8.93E−13

CASP1 1.213978947 1.154007576 1.277066905 4.51E−10 7.95E−15 6.31E−14

LCK 3.6385036 2.5422305 5.207516961 2.25E−08 9.35E−15 1.66E−12

SPN 2.622728033 2.023027009 3.400202915 9.09E−11 5.14E−14 3.36E−13

CD3E 1.662195837 1.43668872 1.923099249 9.79E−08 1.11E−13 8.44E−12

CXCR3 7.589077041 4.178056523 13.78489975 6.80E−08 3.83E−13 2.83E−11

CXCL11 1.181252395 1.120596448 1.245191542 2.70E−06 1.01E−12 5.89E−10

FCGR2B 1.976307546 1.61004357 2.425891813 1.48E−06 2.41E−12 7.31E−11

CCR2 4.555315166 2.836910836 7.314609962 3.53E−07 2.11E−11 3.49E−10

SLAMF1 84.49490994 19.95938776 357.6958317 1.67E−06 7.08E−11 1.68E−09

FASLG 132.1604317 24.87050552 702.29291 5.23E−06 9.26E−10 9.99E−09

IL7R 1.275505655 1.157951312 1.404994027 0.000466979 2.21E−09 8.11E−07

IL18 1.142776013 1.092357372 1.195521767 1.01E−07 2.84E−09 6.75E−09

(Continued)
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analyses showed that CD2, SPN, IL18, PTPRC, GZMA, and

TLR7 were independent prognostic factors for LGG (Figures 5A,

B, p < 0.05). The nomogram prediction model had good

predictive power for 1-, 3-, and 5-year prognoses in LGG

patients (Figures 5C, D).
Expression validation of crucial genes

CD2, SPN, IL18, PTPRC, GZMA, and TLR7 genes were

validated using an RT-qPCR assay. The results showed that the

expression of CD2, SPN, IL18, PTPRC, GZMA, and TLR7 was

upregulated in the tumor group compared with the normal

group (Figure 6, p < 0.05).
Frontiers in Oncology 07
Discussion

LGG have become a focus of brain tumor research. Surgical

resection is currently the main treatment modality for LGG, but

because LGG frequently presents with infiltrative growth and is

mostly found in functional areas of the brain, extended resection by

surgery is greatly limited, and the LGG patients still do not have an

ideal prognosis (9, 10). As a result, there is a need to construct

effective prognostic prediction models for LGG. Immune

infiltration plays a role in the development of LGG (11). Because

LGG survive in a complex tumor microenvironment, it brings a

serious challenge for clinical assessment and treatment of LGG.

Wu et al. constructed an immune risk score signature (IRSS)

using the LASSO model, and the IRSS included six relevant
TABLE 2 Continued

Tag HR Lower 95% Upper 95% Likelihood Log-rank Wald

FCGR2A 1.084849239 1.055299647 1.115226254 8.86E−07 4.07E−09 7.47E−09

CLEC7A 1.216203839 1.13925352 1.29835173 2.67E−06 4.27E−09 4.37E−09

CD80 4.563367614 2.473199935 8.419992129 0.000541267 7.15E−09 1.19E−06

IL10 1.972319731 1.548931374 2.511438005 4.07E−05 1.49E−08 3.61E−08

ITGAX 1.116224672 1.073805236 1.160319839 7.99E−07 1.49E−08 2.66E−08

PDCD1 2.892951433 1.970626433 4.24695815 1.00E−05 2.01E−08 5.86E−08

CXCL10 1.027817602 1.016827153 1.038926841 9.43E−05 3.30E−08 5.67E−07

CD69 1.39826594 1.230533292 1.588862041 1.36E−05 1.79E−07 2.72E−07

PTPRC 1.111688395 1.066629168 1.158651128 2.33E−05 3.24E−07 5.29E−07

ITGAL 1.210034564 1.121282744 1.305811272 2.64E−05 5.14E−07 9.33E−07

CD74 1.000982762 1.000574112 1.001391579 4.37E−05 1.55E−06 2.42E−06

HAVCR2 1.060795489 1.035001734 1.087232063 1.48E−05 1.93E−06 2.61E−06

TLR2 1.061560111 1.034981622 1.088821139 0.000124234 3.77E−06 3.88E−06

CXCL9 1.085836678 1.042788787 1.130661652 0.00175701 1.48E−05 6.61E−05

TLR1 1.22612022 1.11399963 1.349525397 0.0001822 2.26E−05 3.09E−05

TLR6 1.706751561 1.32659079 2.195854905 0.000152853 2.84E−05 3.21E−05

GZMA 1.207293281 1.097999303 1.327466295 0.001108677 4.71E−05 9.98E−05

IL2RB 1.601590896 1.2462979 2.058170359 0.001969111 0.000133686 0.000232795

CTLA4 2.287753151 1.470110919 3.560149383 0.004282951 0.0001396 0.000244672

CCR1 1.057674123 1.027356743 1.08888617 0.001114016 0.000179795 0.000157572

CD163 1.008029664 1.003566842 1.012512332 0.004829108 0.000181982 0.00041132

VCAM1 1.018221134 1.007751055 1.028799993 0.002950449 0.000549683 0.000616844

ITGAM 1.124513823 1.051511646 1.202584244 0.001181054 0.000597246 0.000611085

IL10RA 1.076085559 1.031286061 1.122831167 0.003457336 0.000630622 0.000725157

CD33 1.585029901 1.213991796 2.069470154 0.001298347 0.000677602 0.000711565

IL1A 1.439369434 1.15739573 1.790039752 0.005193204 0.000983137 0.001060541

CCL2 1.008871682 1.003453323 1.014319299 0.005649978 0.00101128 0.001306026

FCGR3A 1.006650517 1.002547706 1.010770119 0.005185133 0.001310516 0.001467292

CYBB 1.01873458 1.006276509 1.031346887 0.006484694 0.003259481 0.003110249

ICAM1 1.025125663 1.006887071 1.043694626 0.019545403 0.005367287 0.006742245

TLR7 1.099084271 1.024661061 1.178912989 0.013378943 0.008035934 0.008267125

SYK 1.060559802 1.015264986 1.10787539 0.011451597 0.008064287 0.008284398

TLR5 1.185162561 1.033717809 1.358794715 0.024620574 0.015399611 0.014876759

TREM1 1.142466409 1.003308082 1.300925927 0.087955159 0.04046097 0.044452378
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TABLE 3 Multivariate Cox regression analysis.

Tag Exp(coef) p-value Lower 95% Upper 95% Coef

CD2 4.411465527 0.036529593 1.0974606 17.73278066 1.484206953

SPN 5.049279253 0.001727158 1.833888852 13.90227164 1.619245511

IL18 1.253022008 0.005611449 1.068163609 1.469872349 0.22555824

CLEC7A 0.672503094 0.042080937 0.458728497 0.985899969 −0.396748567

PTPRC 1.476656053 0.003460154 1.137091104 1.917623919 0.389780108

TLR2 0.839361265 0.021333758 0.723100033 0.974315172 −0.175114075

GZMA 0.147221226 0.000464471 0.050361944 0.430366421 −1.915818884

CD163 1.029691184 0.010471213 1.006880376 1.05301877 0.029258936

TLR7 0.656053832 0.039488752 0.439226813 0.979918843 −0.421512432
Frontiers in Oncology
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FIGURE 4

Batch survival analysis identifying LGG prognosis-related genes.
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immune genes that were good predictors of prognosis in LGG

patients. Moreover, the immune infiltration results showed that

the genetic profile correlated with innate immune cytopenia (12).

Zhang et al. found that using LASSO and multivariate Cox

regression analyses, they were able to obtain six immune genes

that comprise a risk model and may be involved in the process of

neoantigen presence and triggering immune responses (13). The

present study differs from previous LGG-related literature in that

we obtained crucial genes that may be associated with LGG

prognosis based on ssGSEA and by constructing TCRS. In this

study, ssGSEA was performed on 22 immune gene sets to

calculate immune-based prognostic scores. The prognostic

value of the 22 immune cells for predicting OS was assessed

using LASSO and univariate and multivariate Cox analyses.
Frontiers in Oncology 09
Subsequently, we constructed a validated TCRS to identify

immune subtypes and inflammatory immune features in LGG

patients. Trl, CD4_naive, and B_cells were found to be related to

OS in LGG patients by LASSO and by univariate and

multifactorial Cox analyses. We divided the LGG patient

sample into a high-risk–score and low-risk–score group

according to the optimal cutoff value. Kaplan–Meier survival

curves displayed that patients in the low-risk–score group had

higher OS. The ROC curve showed that TCRS was able to identify

the immune subtype of LGG and had a better predictive value for

1-, 3-, and 5-year OS. We then identified DEGs in the high-risk–

score and low-risk–score groups and obtained 799 upregulated

genes and 348 downregulated genes. KEGG and GO analyses

showed that DEGs were enriched mainly in immune-related
A B

DC

FIGURE 5

Construction of a nomogram prognostic model. (A) Univariate Cox regression model. (B) Multivariate Cox regression model. (C) Column-line
plot for predicting survival time. (D) Calibration curve for predicting a 1-, 3-, and 5-year prognosis.
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processes. We constructed a PPI network using Cytoscape and

then identified the top 50 crucial genes. Subsequently, nine DEGs

were found to be significantly related to OS based on univariate

and multivariate Cox analyses. OS was significantly worse in the

high-expression group of CD2, SPN, IL18, CLEC7A, PTPRC,

TLR2, GZMA, CD163, and TLR7 compared to the low-

expression group. This indicates that these nine crucial genes

may be related to the process of immune cells affecting OS.

Finally, we constructed a prognostic nomogram model that

revealed CD2, SPN, IL18, PTPRC, GZMA, and TLR7 to be

independent prognostic factors for LGG. Columnar plots and

ROC curves were used to verify that the model was reasonably

accurate in predicting the prognosis of LGG patients at 1, 3, and 5

years. In addition, this study used an RT-qPCR assay to verify the

bioinformatics results, revealing that CD2, SPN, IL18, PTPRC,

GZMA, and TLR7 were highly expressed in LGG.

CD2 is expressed on the surface of all peripheral blood T cells,

more than 95% of human thymocytes, most NK cells, and some

malignant B cells and may indirectly reflect the immune function

of the body’s cells (14). Chen’s team found that CD2 was

upregulated in breast cancer samples and that CD2

immunomodulation contributed to the mitigation of disease

progression and could be used as an immunomodulatory agent
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in clinical treatment (15). SPN, alias CD43, encodes a glycoprotein

that is expressed on the membrane surface of normal and

tumorigenic T cells. SPN can regulate intercellular adhesion,

intracellular signaling, cell proliferation, and apoptosis (16).

Gao’s team found that miR-129-5p was beneficial in delaying the

malignant progression of clear cell renal carcinoma by targeting the

downregulation of SPN (17). IL18 is a proinflammatory cytokine

with important functions, such as induction of angiogenesis and

regulation of immune function, and is involved in the progress of

many inflammatory diseases, immune disorders, and tumors (18).

Park’s team speculated that IL18 contributes to the poor prognosis

of triple-negative breast cancer patients by inducing

immunosuppression of PD-1 expression on NK cells (19).

PTPRC, alias CD45, is an antigen of leukocytes that is common

on their surface. PTPRC acts as a key molecule of signal

transduction on cell membranes and positively regulates T-cell

antigen receptor signaling (20, 21). PTPRC can affect the processes

of cell growth, differentiation, and mitosis, and it has been

suggested that PTPRC may have a role in regulating the MAPK/

ERK signaling pathway, with implications for cervical

carcinogenesis and patient prognosis (22). GZMA is a serine

protease that is mainly secreted by NK cells and cytotoxic T

lymphocytes and delivered to bacterial or virally infected target
FIGURE 6

RT-qPCR assay used to verify the expression of crucial genes. Compared with the normal group. *p < 0.05; **p < 0.01; ***p < 0.001.
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cells (23). GZMA mediates apoptosis and cell scorching, induces

the release of inflammatory factors, is involved in the body’s

defense against pathogenic bacterial infections, and is associated

with the development of certain autoimmune diseases (24).

Santiago’s team showed that GZMA can be involved in tumor

development and is a potential prognostic target for various

cancers; this may be due to the ability of extracellular GZMA to

promote the production of NF-kB-dependent IL6 in macrophages

(25). TLR7 is an important pattern recognition receptor in natural

immunity, playing a vital role in the body’s resistance to pathogenic

infections and acting as a key line of defense for the immune

system (26). Studies have shown that TLR7 can be used as a reliable

marker of poor prognosis, which reveals the high expression of

TLR7 in patients with non-small cell lung cancer, which is related

to the inflammatory process of TLR7 signaling (27).

In summary, CD2, SPN, IL18, PTPRC, GZMA, and TLR7

were identified as independent prognostic factors for LGG, and

these genes may be potential indicators of the regulation of the

immune microenvironment. This may contribute to the clinical

development of more effective therapeutic agents. To ensure the

accuracy of the results, a larger sample is needed, and other

datasets should be used for validation. In addition, the

mechanisms of action of CD2, SPN, IL18, PTPRC, GZMA,

and TLR7 in LGG require further exploration.
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