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KIAA1429 regulates alternative
splicing events of
cancer-related genes in
hepatocellular carcinoma
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Hepatocellular carcinoma (HCC) remains one of the most fatal malignancies

with high morbidity and mortality rates in the world, whose molecular

pathogenesis is incompletely understood. As an RNA-binding protein

participating in the processing and modification of RNA, KIAA1429 has been

proved to be implicated in the pathogenesis of multiple cancers. However, how

KIAA1429 functions in alternative splicing is not fully reported. In the current

study, multi-omics sequencing data were used to analyze and decipher the

molecular functions and the underlying mechanisms of KIAA1429 in HCC

samples. RNA sequencing data (RNA-seq) analysis demonstrated that in

HCCLM3 cells, alternative splicing (AS) profiles were mediated by KIAA1429.

Regulated AS genes (RASGs) by KIAA1429 were enriched in cell cycle and

apoptosis-associated pathways. Furthermore, by integrating the RNA

immunoprecipitation and sequencing data (RIP-seq) of KIAA1429, we found

that KIAA1429-bound transcripts were highly overlapping with RASGs,

indicating that KIAA1429 could globally regulate the alternative splicing

perhaps by binding to their transcripts in HCCLM3 cells. The overlapping

RASGs were also clustered in cell cycle and apoptosis-associated pathways.

In particular, we validated the regulated AS events of three genes using clinical

specimens from HCC patients, including the exon 6 of BPTF gene and a marker

gene of HCC. In summary, our results shed light on the regulatory functions of

KIAA1429 in the splicing process of pre-mRNA and provide theoretical basis for

the targeted therapy of HCC.

KEYWORDS

alternative splicing, KIAA1429, HCC, RIP, BPTF
Abbreviations: AS, alternative splicing, RASGs, Regulated AS genes, RNA-seq, Transcriptome sequencing

data, RIP-seq, RNA Immunoprecipitation sequencing, HCC, hepatocellular carcinoma, pre-mRNA, pre-

messenger RNA, DEG, differentially expressed gene, RBPs, RNA binding proteins, m6A, N6-

methyladenosine, GEO, Gene Expression Omnibus, ES, exon skipping, A3SS, alternative 3’splice site,

A5SS alternative 5’ splice site, MXE, mutually exclusive exons, IR, intron retention, 5pMXE, mutually

exclusive 5’UTRs, 3pMXE, mutually exclusive 3’UTRs, ASEs, alternative splicing events, LIHC, liver

hepatocellular carcinoma.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1060574/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1060574/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1060574/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1060574/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1060574&domain=pdf&date_stamp=2022-11-25
mailto:dangxw1001@zzu.edu.cn
https://doi.org/10.3389/fonc.2022.1060574
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1060574
https://www.frontiersin.org/journals/oncology


Liu et al. 10.3389/fonc.2022.1060574
Introduction

Liver cancer ranks sixth among the most frequently-

diagnosed cancers and fourth in terms of death ranks, with

75%-85% of cases being caused by hepatocellular carcinoma

(HCC) (1). The majority of patients are diagnosed in later stages

with poor prognosis. Apart from Hepatitis C virus and Hepatitis

B virus infection, HCC progression was associated with several

important factors, including inflammation, various molecular

events, and different cellular signaling pathways (2). Although

there are a variety of therapies, targeted treatment and

immunotherapeutic drugs for HCC, drug resistance, tumor

recurrence and metastasis still greatly limit the efficacy (3, 4).

Therefore, deciphering the key events in cancer progression and

thoroughly understanding the mechanisms of l iver

carcinogenesis will promote the discovery of new targeted drugs.
In pre-messenger RNA (pre-mRNA) splicing, which occurs in

post-transcription, introns are spliced to create mature mRNA

molecules. Simultaneously, different exons are combined to

produce various transcripts. Alternative splicing (AS) defects

that are regulated by mutation or in splicing regulatory factors

and pre-mRNA sequences, were related to numerous pathologies

(5). Dysregulation of AS is a hallmark of human tumors.

Moreover, in tumors, these splicing variants specific to cancer

are often up-regulated, contributing to cancer development and

cancer cell survival, and predicting overall survival time in cancer

patients (6, 7). Aberrant alterations of RNA splicing events and

splicing factors have been involved in multiple cancers. In cervical

neoplasia, the aberrant activity of serine/arginine-rich (SR)

proteins and heterogeneous nuclear ribonucleoproteins

(hnRNPs) was found to initiate the generation of cancer-causing

proteins through processing pre-mRNA transcripts, which were

generated from human papillomaviruses genomes or human

genes (8). In gastric cancer, overexpressing PTBP3, which was

implicated in alternative splicing, may cause inhibition of the

differentiation and malignant proliferation of these cells through

disrupting the feedback regulation among Hes1, Id1, and PTBP3

(9). Differential AS events (ASEs), which are prevalent in HCC,

are largely influenced by the binding relations, expression

variations, and even mutations of RNA binding proteins (RBPs)

(10). Nuclear-enriched RBP-PTBP3, improves HCC cell

metastasis and growth by balancing the splicing variants

(NEAT1_1, NEAT1_2 and miR-612) (11). MTR4 drives the

metabolic activity of cancer by ensuring that the differential

splicing of pre-mRNAs of key glycolytic genes such as GLUT1

and PKM2 is correct (12). Furthermore, prognostic AS signatures

have been constructed to predict HCC prognosis and have showed

excellent performance in predicting HCC prognosis. Similarly,

prognostic AS events were reported to be clustered inmetabolism-

associated pathways (13, 14).
Among the AS regulators, KIAA1429 is known as an RBP and

an important methyltransferase participating in mRNA processing

and splicing and m6A modification (15). In the cells of mammals,
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N6-methyladenosine (m6A) modification is reversibly regulated by

m6A writers, erasers, and readers (WERs). Notably, KIAA1429

knockdown is reported to cause m6A peak scores to decrease by a

median ∼4-fold, which is more conspicuous than that achieved

when METTL3 or METTL14 was knocked down, demonstrating

that KIAA1429 was essential in the methyltransferase complex

(16). Strikingly, accumulating evidence proves that RNA m6A

modification affects AS events. The m6A reader YTHDC1

mediates mRNA splicing by recruiting or blocking the pre-

mRNA splicing factors, including SRSF3 and SRSF10 (17), so

that those splicing factors can gain or lose access to the binding

areas of targeted mRNAs. These discoveries proved the importance

of RNA m6A modification in regulating AS.

KIAA1429 is involved in the pathogenesis of multiple

cancers and its expression is related to the prognostic effect in

patients (15, 18, 19). Scientists began to study the functions of

KIAA1429 in HCC in recent years. KIAA1429 promoted the

invasion and migration of HCC through the inhibition of ID2

via the upregulation of m6A modification of ID2 mRNA (20).

And KIAA1429 was closely associated with the prognostic effect

of HCC. A prognostic model which included m6A genes

(ZC3H13 YTHDF1, YTHDF2, METTL3 and KIAA1429) was

developed (21). KIAA1429 facilitates the development of liver

cancer through regulating the expression of GATA3 by m6A

methylation modification (22).

Up until now, the functions of KIAA1429 in AS, tumor

genesis and associated mechanisms have not been fully studied.

Since methylation is inseparable from alternative splicing and

KIAA1429 can bind to RNA and cause m6A methylation, we

predict that the binding of KIAA1429 to RNAs may regulate the

alternative splicing of bound RNAs, thus playing an important

role in HCC. Therefore, we downloaded GSE134776 data, which

is the transcriptome data obtained from silencing KIAA1429 in

HCC cell line HCCLM3. Differentially expressed genes (DEGs)

and AS analysis were performed to obtain KIAA1429-regulated

AS profile. Then we downloaded GSE134978 data, which is RIP-

seq data of KIAA1429 in HCC cell line HCCLM3 with 2

biological duplications. Analysis of KIAA1429-bound RNA

was performed. The two sets of data were overlapped to obtain

genes that can combine with and be regulated by KIAA1429 for

the occurrence of AS events. We extensively studied the function

and mechanism of KIAA1429 in liver cancer by deciphering its

important roles in AS regulation. This study extended our

understanding of KIAA1429 and provided novel insights into

the new treatments for HCC in the future.
Material and methods

Access to and processing of public data

We used KIAA1429-regulated transcriptome sequencing data

(RNA-seq) and its associated RNA sequencing data by the method
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of RNA sequencing (RIP-seq) and immunoprecipitation (22). The

accession numbers of Gene Expression Omnibus (GEO) database

were GSE134978 (RIP-seq) and GSE134776 (RNA-seq),

respectively. Public sequencing data were obtained from the

Sequence Read Archive (SRA). SRA Run data files were

transformed into fastq format with NCBI SRA Tool fastq-dump.

Low-quality bases were discarded using a FASTX-Toolkit

(v.0.0.13). Then the clean reads were analyzed with FastQC.
Reads alignment and differentially
expressed gene analysis

We aligned quality-filtered reads to the human genome

(GRCH38) with TopHat2 with at most 4 mismatches (23).

Then we used uniquely mapped reads to count the read

number and reads per kilobase of exon per million fragments

mapped (RPKM) of each gene. Next, we used RPKM to calculate

the expression levels of genes. The R package edge R (24), whose

function is to identify which genes are differentially expressed,

was applied to identify DEGs from RNA-seq data. The false

discovery rate (FDR ≤ 0.05) and fold change (FC≥2 or ≤0.5)

were applied to determine whether a gene was significantly

differential between siKIAA1429 and control.
Alternative splicing analysis

ABLas pipeline was applied to define and quantify alternative

splicing events (ASEs) and regulated alternative splicing events

(RASEs) by siKIAA1429 as described previously (25, 26). Briefly,

on the basis of the splice junction reads, we detected ten types of

alternative splicing events, including exon skipping (ES),

alternative 3’splice site (A3SS), alternative 5’ splice site (A5SS),

A3SS&ES, A5SS&ES, mutually exclusive exons (MXE), intron

retention (IR), cassette exon, mutually exclusive 5’UTRs

(5pMXE), and mutually exclusive 3’UTRs (3pMXE).

For sample pair comparison, Fisher’s exact test was applied

to determine statistical significance. The p-value <=0.05 and

RASE ratio >=0.2 were set as the threshold to detect RASEs. For

repetition comparison, Student’s t-test was conducted to

evaluate the significance of AS ratio alteration. Those events

with p-value <= 0.05 were regarded as RASEs.
RIP-seq data analysis

For KIAA1429 RIP-seq data, the reads-mapping and

quality-filtering methods were the same as RNA-seq data.

After the uniquely mapped reads were aligned onto the

genome sequences, we used random IP method to detect the

binding sites (peaks) of KIAA1429 on transcripts, which had

been fully described in a previous study (26). After filtering the
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binding peaks of KIAA1429 with p-value < 0.05 as criterion, we

extracted the sequences of peaks and detected the enriched

motifs using HOMER software (27).
Functional enrichment analysis

We used Gene Ontology (GO) terms, KEGG pathways and

Reactome pathways to identify functional categories of DEGs via

KOBAS 2.0 server (28). The statistical significance was adjusted

by Benjamini-Hochberg FDR.
Validating alternative splicing events
by qPCR

We further validated the alternative splicing events of AS

genes (URI1, MTMR14, BPTF) regulated by KIAA1429 in

clinical samples using RT-qPCR. We extracted 13 pairs liver

cancer tissues and adjacent normal tissues of HCC patients from

the First Affiliated Hospital of Zhengzhou University and

examined the AS levels of three genes selected. The studies

involving human participants were reviewed and approved by

the ethics committee of the First Affiliated Hospital of

Zhengzhou University. All methods were employed according

to the regulations and guidelines. We strictly conformed to the

biosecurity law and followed institutional safety procedures in

China.All the specimens were processed instantly after being

collected, and then stored at − 80°C for RNA extraction. TRIzol

reagent (Invitrogen) was used to extract toal RNAs. Then

PrimeScript RT reagent Kit (Takara) was used to convert 10

mg RNA into complementary DNA (cDNA). RT-qPCR was

conducted according to the published method (29, 30).
Other statistical analysis

After the reads of each gene were normalized by TPM (Tags

per Million), in-house script (sogen) was used to visualize

genomic annotations and next-generation sequence data.

Based on Euclidean distance, the pheatmap package (https://

cran.rproject.org/web/packages/pheatmap/index.html) in R was

used to perform the clustering the two groups were compared

using Student’s t-test.
Result

KIAA1429 is highly expressed in HCC and
negatively associated with the prognosis
of patients

To have an overview of the expression level and prognosis

effect of KIAA1429 in liver cancer, we downloaded RNA-seq
frontiersin.org
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expression data of 419 samples in TCGA (The Cancer Genome

Atlas) database, including 369 tumor samples and 50 normal

samples. Then the expression level of KIAA1429 was analyzed.

The result showed that KIAA1429 was higher expressed in 369

tumor samples compared with in 50 normal tissue samples with

significance (Figure 1A). We further identified the relationship

between the survival rate in HCC patients and the expression

level of KIAA1429. The overall survival (OS) rate of patients in

low KIAA1429 group was higher than that in high KIAA1429

group (Figure 1B), demonstrating that high expression of

KIAA1429 may lead to a poor prognosis inHCC. To explore

the expression level of KIAA1429 in multiple cancers, we used

GEPIA2 online tool (31) and found that the expression levels of

KIAA1429 were higher in multiple tumors (Figure S1A).

Survival rate analysis showed that higher expression of

KIAA1429 was correlated with worse prognosis in multiple

cancer types (Figure S1B). These results indicate that

KIAA1429 performs important functions in the progression

of HCC.
RNA Immunoprecipitation sequencing
analysis showed the RNA binding
features of KIAA1429 in HCCLM3 Cells

To further investigate how KIAA1429 functions in HCC, we

downloaded RIP-seq data of KIAA1429 in HCC cell line

HCCLM3 (GSE134978), and analyzed the global RNA binding

features of KIAA1429. After the quality-filtered reads were

aligned onto human genome, we found that KIAA1429

showed higher percentage in coding DNA sequence (CDS)
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and 3’ untranslated regions (UTR) regions compared with IgG

control, and reads aligned in 3’UTR and CDS regions occupied

over 70% of total aligned reads (Figure 2A). We then divided

CDS, 5’UTR, and 3’UTR into 100 portions for each region and

analyzed the reads distribution in these regions. The results

showed that there was one peak around start codon and one

around stop codon. Meanwhile, CDS and 3’UTR regions also

showed higher levels in KIAA1429 IP samples compared with in

IgG (Figure 2B), consistent with the results in Figure 2A. We

then systematically identified the binding sites (peaks) of

KIAA1429 using previously described method (26). A total of

28896 and 16544 peaks were detected from replicate 1 and 2,

respectively; and 3895 peaks were shared by the two replicates

(Figure 2C). Following analysis of overlapping genes bound by

KIAA1429 in two biological replicates revealed that up to 5524

genes were shared by the two replicates (Figure 2D). After

functional enrichment analysis was conducted, these

overlapping genes were found to be clustered in GO BP

pathways including RNA metabolism, mRNA metabolism, cell

protein metabolism, mitosis, mitotic cell cycle, viral

reproduction, nuclear mRNA splicing via spliceosome, RNA

splicing, and DNA repair (Figure 2E), indicating KIAA1429

could bind to numerous RNAs with essential functions in HCC

HCCLM3 cells. Similar analysis using KEGG pathway database

also revealed that bound genes were highly enriched in RNA

splicing and cell cycle-associated pathways (Figure S2A).

Furthermore, we analyzed the enriched motif sequences

among the KIAA1429-bound peaks using HOMER software

(27), the results of which showed that the specific binding motif

of KIAA1429 was UCGAUG in two biological replicates (Figure

S2B). In summary, the RIP-seq confirmed that KIAA1429 had
A B

FIGURE 1

Analysis of KIAA1429 expression levels and prognosis in liver hepatocellular carcinoma samples from TCGA database. (A) Boxplot showing the
expression level of KIAA1429 in 419 liver hepatocellular carcinoma samples from TCGA database, including 50 normal samples and 369 tumor
samples. Error bars represent mean ± SEM. *p < 0.05. (B) Overall survival (OS) rate of HCC patients with high expression of KIAA1429 (top 25%
of the expression range) versus low expression of KIAA1429 (bottom 25% of the expression range).
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the ability to bind multiple target RNAs and had potential effects

on the targeted RNAs in HCC cells.
KIAA1429-mediated alternative splicing
events in HCCLM3 cells

To further explore the outcoming influence of KIAA1429

on its bound transcripts in HCCLM3 cells, we downloaded the

global transcr ipt ional sequencing (RNA-seq) data

(GSE134776) of KIAA1429-silenced and control HCCLM3

cells with 2 biological duplicates, which were generated using

the same cell batch of HCCLM3 RIP-seq data. After aligning

RNA-seq data onto genome and calculating gene expression

levels and splicing junction reads, we performed DEGs and

alternative slicing AS analyses to obtain DEGs and AS events

regulated by KIAA1429. Since the previous study of the RNA-

seq data focused on DEGs (22), in this study we mainly

investigated the RASEs of KIAA1429. Using ABLas program

(26), we analyzed the alternative splicing events of the RNA-

seq dataset and investigated the ratio changes in AS

occurrence. Besides the known AS events previously

annotated in the annotation file, we discovered plenty of

novel alternative splicing events and classified them into ten
Frontiers in Oncology 05
canonical AS types. Dominant alternative splicing types

include IR, ES, A5SS and A3SS (Figure 3A). Then we

extracted RASEs with significant differences (p-value < 0.05)

between siKIAA1429 samples and control samples, and

detected hundreds of RASEs after silencing KIAA1429

(Figure 3B). The changed ratios of these RASEs showed

consistent patterns in the two biological replicates (Figure

S3A). Functional enrichment analysis of genes from RASEs

revealed that these genes mediated by KIAA1429 at AS level

were highly enriched in the positive regulation of fibroblast

proliferation and the decomposition of cell components during

apoptosis (Figure 3C), which were closely related to tumor

progression. Transcription-related pathways were also

enriched (Figure 3C). KEGG and Reactome pathway analyses

demonstrated several pathways associated with tumor

progression (Figure 3D, Figure S3B). Our DEG and RASG

overlapping analyses showed that only 5 genes are both DEGs

and RASGs, including CPZ, CYP27B1, GRB10, RP11-

656D10.3, and TENM1 (Figure 3E). We then illustrated the

expression levels and splicing ratio changes of these 5 genes

and found consistent changes between siKIAA1429 and

control (Figure 3F). In summary, these results indicate that

KIAA1429 could regulate transcriptome profile through

transcriptional and post-transcriptional regulation manners.
A B

D EC

FIGURE 2

RIP-seq data demonstrated the RNA interactome of KIAA1429 in HCCLM3 cells. (A) The distribution of genomic region of KIAA1429-bound
peaks. were shown by bar plot. (B) The peak reads distribution on transcripts was shown by line plot. Three regions (5’UTR, CDS, and 3’TUR) in
each gene were divided into 100 bins. The KIAA1429 peak reads of each bin were counted. The reads density of KIAA1429 peaks in each gene
was presented. (C) The overlapping peaks in two replicate RIP-seq samples were shown by venn plot. (D) The overlapping KIAA1429-bound
genes in two replicate RIP-seq samples were shown by venn plot. (E) The top 10 enriched GO biological processes of genes bound by
KIAA1429 were shown by bar plot.
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KIAA1429 selectively binds to mRNAs to
regulate alternative splicing of cancer-
associated genes

To further explore if there is an association between

KIAA1429-bound transcripts and KIAA1429-regulated ASEs,

we conducted an interaction analysis. Although there were only

four RASEs that had KIAA1429-bound peaks around their

genomic locations (Figure S4A), we found that about 67%
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(340/502) of alternative splicing genes regulated by KIAA1429

overlapped with genes bound by KIAA1429 (p-value ≤ 0.05,

Hypergeometric test, Figure 4A), suggesting that KIAA1429

might regulate a large number of alternative splicing events

through directly binding to RNA targets. Functional enrichment

analysis of these overlapping genes demonstrated that they were

highly enriched in several functional pathways, including

decomposition of cellular components during apoptosis, cell

cycle block, etc., which were closely related to liver cancer
A B

D

E

F

C

FIGURE 3

KIAA1429-regulated alternative splicing events in HCCLM3 cells. (A) Classification of all the AS events detected. X-axis: Percentage. (B)
Classification of all the AS events (RAS) regulated by KIAA1429. X-axis: AS number. up: alternative splicing pattern was up-regulated compared
with model splicing pattern. down: alternative splicing pattern was down-regulated compared with model splicing pattern. (C) The top 10
enriched GO biological processes of alternative splicing genes regulated by KIAA1429. (D) The top 10 enriched KEGG pathways of alternative
splicing genes regulated by KIAA1429. (E) Venn diagram displaying the overlap of differential expression genes (DEGs) and alternative splicing
genes (RASGs) regulated by KIAA1429. (F) Box plots shows expression levels (left) and PSI profiles of two examples of overlapping genes from (E).
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(Figure 4B). Functional enrichment analysis of KEGG and

Reactome databases also revealed several enriched pathways

(Figure S4B, C). We then selected and presented the splicing

ratio changes of several RASGs that were from apoptotic process

and were also bound by KIAA1429, including ACIN1, CASP8,
Frontiers in Oncology 07
GSN, and CAPN10 (Figure 4C). The splicing reads number and

ratio changes of URI1 (ES event), MTMR14 (A5SS event), and

BPTF (ES event) were also presented to show the significant

differences between siKIAA1429 and control (Figure 4D and

Figure S4D).
A B

D

C

FIGURE 4

KIAA1429 selectively binds to mRNA to regulate alternative splicing of cancer related genes. (A) Venn diagram showed the overlap of KIAA1429-
bound genes and KIAA1429-regulated alternatively splicing genes. (B) The top 10 enriched GO biological processes of the genes of overlap of
KIAA1429-bound peaks and -regulated alternatively splicing events. (C) Bar plots shows PSI profile of the four overlapped KIAA1429-regulated
alternative splicing events by RNA binding in HCCLM3 Cells. (D) IGV-sashimi plot showed the KIAA1429-regulated alternative splicing events
across mRNA of URI1 and MTMR14. Reads distribution of each alternative splicing event was plotted in the left panel with the transcripts of each
gene shown below. The schematic diagrams depict the structures of ASEs at the top of the right panel. RNA-seq quantification of ASEs is shown
at the bottom of the right panel. Error bars represent mean ± SEM. *p < 0.05.
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Validation of alternative splicing events
regulated by KIAA1429 in liver cancer
using clinical specimens

We then validated the identified RASEs using clinical

specimens from liver cancer patients by RT-qPCR experiment.

We randomly selected three alternative splicing events regulated

by KIAA1429, including URI1 (ES event), MTMR14 (A5SS

event), and BPTF (ES event), which were shown in Figure 4

and Figure S4. Specific primers for RASEs were designed

according to the exact splicing junction sequences (32). The

AS ratios of these three AS events all increased in siKIAA1429

samples, indicating that they should increase in normal clinical

specimens from which the expression level of KIAA1429

decreased compared with that of HCC samples (Figure 1A).

The RT-qPCR results revealed that AS ratios of these three genes

significantly decreased in cancer samples (p < 0.001, Figures 5A-

C), conforming to the RNA-seq results in KIAA1429-silenced

HCCLM3 cells.
Discussion

As a multifunctional RNA binding protein and an important

RNA methyltransferase, KIAA1429 is implicated in mRNA

splicing and processing and m6A modification (15), and the

altered KIAA1429 function enhances the proliferation,

migration and invasion abilities of HepG2 cells through the

inhibition of ID2 via the upregulation of m6A modification of

ID2 mRNA (20). Additionally, increasing studies proved that

KIAA1429 is related to the progression of multiple cancers, such

as gastric cancer (19), osteosarcoma (18), and breast cancer (15).

Thus, high-throughput methods have been adopted to identify

targets of KIAA1429. KIAA1429 facilitates liver cancer

progression by regulating the expression of GATA3 through

m6A methylation modification (22). In this study, RNA

immunoprecipitation sequence (RIP-seq) and RNA-seq data

were applied to draw a comparison between the expression
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profiles of control and KIAA1429 stable knockdown HCC

cells, the analyzing results of which, demonstrated that

KIAA1429 can affect the alternative splicing patterns of genes

implicated in various pathways by binding to numerous RNAs.

Our results highlight the important regulatory roles of

KIAA1429 in AS pattern. Thus, KIAA1429 might affect the

development of HCC and could serve as a therapeutic target in

the future.

The RIP-seq method was an approach to systematically

identify the transcripts to which an RBP binds (33). In this

study, RIP-seq analysis demonstrated that the RNA binding

motif of KIAA1429 is UCGAUG. AS genes bound by KIAA1429

are enriched in functional pathways that are closely related to

tumors, including mRNA metabolism, RNA metabolism, cell

protein metabolism, mitosis, mitotic cell cycle, viral

reproduction, nuclear mRNA splicing via spliceosome, RNA

splicing, and DNA repair. This discovery greatly broadens our

understanding of the functions of KIAA1429 in various

biological processes. These results demonstrated that

KIAA1429 functions in liver cancer mainly by regulating AS

events. Previous studies have proved that KIAA1429 plays a vital

part in the progression of liver cancer, but the functions of

KIAA1429 in AS and tumorigenesis and associated mechanisms

are still unclear. Our DEG and AS analysis shows that only 5

genes were differentially expressed and variably spliced

simultaneously, indicating that KIAA1429 regulates distinct

gene sets through transcriptional and post-transcriptional

regulation. We hypothesized that KIAA1429 may, through its

methylation, alter the variable splicing of key tumor genes and

generate tumor-promoting spliceosomes, thus promoting tumor

progression. In the present study, AS events regulated by

KIAA1429 occurring in these genes were greatly enriched in

the positive regulation of fibroblast proliferation and the

decomposition of cell components during apoptosis, which

were closely related to tumor progression. Meanwhile, a recent

study demonstrated that key RNA methyltransferase METTL3

could promote tumorigenesis by enhancing translation of

epigenetic factors in the absence of m6A (34). We propose that
A B C

FIGURE 5

The validation of the alternative splicing events in clinical specimens. ***p < 0.001. (A–C): The RT-qPCR results revealed that AS ratios of these
three genes significantly decreased in cancer samples (p < 0.001).
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KIAA1429 may also regulate AS patterns independent of m6A

modification in primary-RNAs.

Furthermore, recent study demonstrated that neoantigens for

therapies based on immune in cancer can arise from dysregulated

splicing (35). Since immune checkpoint inhibitors (e.g.,

ipilimumab and nivolumab) and chimeric antigen receptors

(CAR-T) have succeeded in increasing patient survival, cancer

therapies had been revolutionized by immunotherapy-based

treatments (36, 37). Using RBP-focused CRISPRCas9 screening,

researchers uncovered an essential role of YTHDF2 in breast

cancer driven by MYC, highlighting the important functions of

RBPs serving as effective therapeutic targets (38).Their studies

revealed that RBP-RNA interactions promoted the progression of

diseases and facilitated the growth and survival of tumor cells

instead of somatic tissues, and that targeting RBPs is expected to

be safe and effective and precise treatment modalities in particular

cancer subtypes (38).For this reason, more studies are urgently

needed to examine the immunogenicity of underlying neoantigens

derived from AS events regulated by KIAA1429 for

immunotherapies in liver cancer.

In addition, due to dysregulated splicing in cancer,

oncogenes have undergone isoform switching as a mechanism

through which cancer cells developed drug resistance to cancer

treatments. For example, melanoma patients acquire resistance

to RAF inhibitors through generating spliced isoforms of BRAF

V600E in the absence of RAS-binding domain (39).

Additionally, chronic myeloid leukemia patients with BCR-

ABL chromosomal translocation displayed alternative splicing

variants of BCR-ABL when treated with imatinib, the tyrosine

kinase inhibitor (40). AS events regulated by KIAA1429

occurring in these genes were clustered in the positive

regulation of the decomposition of cell components during

apoptosis, suggesting that KIAA1429 may play a vital part in

tumor drug resistance through regulating the splicing of related

genes, which requires further exploration.

Our study also demonstrated that by directly binding to

RNA targets, KIAA1429 might regulate many alternative

splicing events. Several pathways emerged from the functional

analysis of these genes: decomposition of cellular components

during apoptosis, cell cycle block, etc., which are closely related

to liver cancer. The 3 randomly selected alternative splicing

genes (URI1, MTMR14 and BPTF) were further validated by

qPCR in HCC clinical samples and alternative splicing events of

these three genes are significantly changed (p < 0.001). Among

them, BPTF is a protein-coding gene, about which researchers in

neurodegenerative diseases are extremely concerned (such as

Alzheimer’s disease) (41). In patients with neurodegenerative

diseases, high expression levels of BPTF have been detected. In

recent years, the role of BPTF in tumor has caught the attention

of a large number of researchers. BPTF is found to be highly

expressed in HCC. And high expression of BPTF leads to poor

overall survival, which may be related to epithelial-mesenchymal
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transition (EMT) (42). Previous studies have shown that BPTF

knockout also inhibits the growth and metastasis of HCC tumors

in xenograft mouse models, and that BPTF may have the

potential to be a new target for hepatocellular carcinoma

therapy (43). Zhang et al. recently investigated the vital role of

m6A modification and the METTL14/BPTF axis in the

epigenetic and metabolic remodeling of metastasis of renal cell

carcinoma, highlighting the BPTF inhibitor-AU1 as a key

therapeutic candidate (44). Our preliminary study found that

KIAA1429 inhibited the generation of BPTF variant splice

subtype BPTF-A, but promoted the generation of BPTF-B, so

we speculated that BPTF-B could have greater influence on HCC

metastasis than BPTF-A, which needs future validation.

However, our study is based on the RNA-seq and RIP-seq

data from single cell line, which should be validated

experimentally for further analysis. Further studied are

urgently needed to reveal its specific and detailed mechanism,

by which KIAA1429 regulate many alternative splicing events.

In summary, as an RBP, KIAA1429 is aberrantly expressed

in HCC, whereas its role as a safe and effective drug target

remains largely unexplored. Our study revealed that KIAA1429

regulated alternative splicing events by binding to transcripts

which were tightly associated with cell cycle and apoptosis in live

cancer. This functional manner of KIAA1429 may be achieved

by m6A modification of RNAs, or perhaps by regulating m6A

modification of host RNAs. Our results extended the

understanding of the molecular mechanisms of KIAA1429 in

HCC cells, demonstrating that KIAA1429 may be a potential

molecular target for the development of new therapeutics for

liver cancer treatment in the future.
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SUPPLEMENTARY FIGURE 1

Analysis of the expression levels and prognosis of KIAA1429 in different

tumor samples from TCGA database. (A) Relative expression (TPM) of
KIAA1429 in tumor samples (red) from 16 cancer types versus normal

samples (green) *P < 0.05. (B)Correlation of KIAA1429 expression with the

survival rates in multiple cancer types.

SUPPLEMENTARY FIGURE 2

RIP-seq data showed the RNA interactome data of KIAA1429 in HCCLM3

cells. (A) the top 10 enriched GO biological processes of KIAA1429-bound
genes were shown by bar plot. (B) Top five motifs of KIAA1429-bound

peaks using HOMER software.

SUPPLEMENTARY FIGURE 3

KIAA1429-mediated alternative splicing events in HCCLM3 cells. (A) PSI
heatmap of all significantly regulated alternative splicing events (intron

retention events, IR RAS) among KIAA1429-KD and control samples. (B)
The top 10 enriched Reactome pathways of alternative splicing genes

regulated by KIAA1429.

SUPPLEMENTARY FIGURE 4

KIAA1429 selectively binds to mRNA for regulating the alternative splicing

of cancer-related genes. (A) The overlap of peaks bound by KIAA1429 and
alternatively spliced events regulated by KIAA1429 was shown in venn

diagram. (B) The top 10 enriched KEGG pathways of the overlapping
genes of peaks bound by KIAA1429 and alternatively spliced events

regulated by KIAA1429. (C) The top 10 enriched Reactome pathways of
the overlapping genes of peaks bound by KIAA1429 and alternatively

spliced events regulated by KIAA1429. (D) The alternative splicing events
regulated by KIAA1429 across mRNA of BPTF were shown in IGV-sashimi

plot. In the left panel was the reads distribution of each alternative splicing

event and the transcripts of each gene were shown below. At the top of
the right panel were the schematic diagrams depicting the structures of

ASEs. At the bottomof the right panel was RNA-seq quantification of ASEs.
Error bars represent mean ± SEM. *p < 0.05.
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