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Background: Docetaxel improves overall survival (OS) in castration-resistant

prostate cancer (PCa) (CRPC) and metastatic hormone-sensitive PCa (mHSPC).

However, not all patients respond due to inherent and/or acquired resistance.

There remains an unmet clinical need for a robust predictive test to stratify

patients for treatment. Liquid biopsy of circulating tumour cell (CTCs) is minimally

invasive, can provide real-time information of the heterogeneous tumour and

therefore may be a potentially ideal docetaxel response prediction biomarker.

Objective: In this study we investigate the potential of using CTCs and their

gene expression to predict post-docetaxel tumour response, OS and

progression free survival (PFS).

Methods: Peripheral blood was sampled from 18 mCRPC and 43 mHSPC

patients, pre-docetaxel treatment, for CTC investigation. CTCs were isolated

using the epitope independent Parsortix
®
system and gene expression was

determined by multiplex RT-qPCR. We evaluated CTCmeasurements for post-
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docetaxel outcome prediction using receiver operating characteristics and

Kaplan Meier analysis.

Results: Detection of CTCs pre-docetaxel was associated with poor patient

outcome post-docetaxel treatment. Combining total-CTC number with PSA

and ALP predicted lack of partial response (PR) with an AUC of 0.90, p= 0.037 in

mCRPC. A significantly shorter median OS was seen in mCRPC patients with

positive CTC-score (12.80 vs. 37.33 months, HR= 5.08, p= 0.0005), ≥3 total-

CTCs/7.5mL (12.80 vs. 37.33 months, HR= 3.84, p= 0.0053), ≥1 epithelial-

CTCs/7.5mL (14.30 vs. 37.33 months, HR= 3.89, p= 0.0041) or epithelial to

mesenchymal transitioning (EMTing)-CTCs/7.5mL (11.32 vs. 32.37months, HR=

6.73, p= 0.0001). Significantly shorter PFS was observed in patients with ≥2

epithelial-CTCs/7.5mL (7.52 vs. 18.83 months, HR= 3.93, p= 0.0058). mHSPC

patients with ≥5 CTCs/7.5mL had significantly shorter median OS (24.57 vs

undefined months, HR= 4.14, p= 0.0097). In mHSPC patients, expression of

KLK2, KLK4, ADAMTS1, ZEB1 and SNAI1was significantly associated with shorter

OS and/or PFS. Importantly, combining CTC measurements with clinical

biomarkers increased sensitivity and specificity for prediction of patient

outcome.

Conclusion: While it is clear that CTC numbers and gene expression were

prognostic for PCa post-docetaxel treatment, and CTC subtype analysis may

have additional value, their potential predictive value for docetaxel

chemotherapy response needs to be further investigated in large patient

cohorts.
KEYWORDS

prostate cancer, circulating tumour cells, docetaxel, response prediction, biomarker,
liquid biopsy, prognosis
Introduction

Prostate cancer (PCa) is the most frequently diagnosed

cancer in Western males, accounting for 24% of all new

cancers in 2018 (1). The effective first-line treatment for

metastatic disease is androgen deprivation therapy (ADT),

although after an initial response, progression to castration-

resistant PCa (CRPC) occurs within 1-3 years (2). Adding

docetaxel to ADT improves overall survival (OS) in metastatic

(m)CRPC (3) and since 2014 as a result of the CHAARTED (4)

and STAMPEDE (5) phase III trials, docetaxel has been used in

combination with ADT as a first-line treatment for metastatic

hormone-sensitive PCa (mHSPC) (3, 6). However, response to

docetaxel is not universal due to inherent and/or acquired

resistance. While numerous studies have investigated the

underlying mechanisms and pharmacogenomic biomarkers of

docetaxel resistance (7–11), there remains an unmet clinical

need for new surrogate markers and a robust predictive test to
02
stratify patients for treatment and develop personalised

therapeutic approaches (12).

Tissue biomarkers representing cancer characteristics may

help predict treatment outcome, but serial biopsies add

morbidity and delay, and sampling of bone metastases is

practically difficult. Furthermore, tissue biopsy fails to represent

the entire cancer population due to intra-tumoural heterogeneity.

In the case of therapy response prediction, markers that were

detectable within the initial tissue biopsy sample are unlikely to

truly represent the patient’s disease due to continuous tumour

evolution at the molecular level. This is particularly important

when considering second line therapies and beyond. As an

alternative to tissue biopsy, liquid biopsy refers to the analysis of

tumour biomarkers such as circulating tumour cells (CTCs),

circulating tumour DNA (ctDNA), microRNA (miRNA) and

extracellular vesicles (EVs) in peripheral blood or other body

fluids. Liquid biopsies are minimally invasive, easily repeatable

and can provide real time information of the heterogeneous
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tumour, providing a promising tool to overcome the limitations

posed by tissue biopsy. Prostate-specific antigen (PSA) remains

the standard serum biomarker for PCa diagnosis and progression,

however with limited ability to predict therapeutic response (13).

CTCs are malignant cells that have gained an invasive

phenotype, allowing them to shed from the tumour mass into

the circulation where they travel to distant sites and form

metastases (14). CTCs are unique amongst cancer biomarkers,

as they provide a source of live tumour cells that carry molecular

and biological information that may represent overall tumour

burden and phenotypic characteristics present in both primary

and metastatic sites. In addition to CTC enumeration, molecular

profiling of enriched CTC populations or single CTCs provides a

plethora of potentially clinically valuable markers of the

metastatic process, disease status and predictors of patient

individualised therapeutic response (15, 16). Therefore, CTC

analysis may be a potentially ideal docetaxel response

prediction biomarker.

Numerous studies have investigated various clinical

applications of CTC enumeration and characterisation in PCa

(17–22). Baseline CTCs have been shown to predict poor OS in

patients with mCRPC (19, 23), which led to the FDA approval of

CellSearch® detected CTCs for advanced PCa prognosis (24).

The MAINSAIL phase III trial of mCRPC patients treated with

docetaxel found a significant association between baseline ≥5

CTCs/7.5ml of peripheral blood and poor OS, but not PSA

response or Response Evaluation Criteria in Solid Tumors

(RECIST) (25–27). The recent PROPHECY prospective

multicentre study in patients with mCRPC undergoing

treatment with enzalutamide or abiraterone followed by taxane

chemotherapy, focused on the detection of CellSearch® isolated

CTCs expressing the androgen receptor splice variant, AR-V7.

The study demonstrated that pre-treatment CTC AR-V7 status

was independently associated with shorter progression free

survival (PFS) and OS with abiraterone or enzalutamide,

however men with AR-V7-positive disease still experienced

clinical benefit from taxane chemotherapy (28). CTCs have

also been investigated as predictive and prognostic biomarkers

of clinical outcome, including mCRPC onset, in patients with

mHSPC (17, 29–31), however to date there is limited

information regarding their clinical utility in predicting

docetaxel response in this patient cohort. Furthermore, the

majority of studies to date have used epithelial epitope

dependent isolation, missing a potentially important

subpopulation of CTCs with epithelial negative phenotypes

following epithelial-mesenchymal transition (EMT) during

cancer cell invasion and metastatic spread. Previous research

from ourselves and others has demonstrated that CTCs that are

undergoing EMT, or those that have a fully mesenchymal

phenotype have significant value as biomarkers of increased

metastatic tumour burden (32), and disease progression (33, 34).

Moreover, EMT is increasingly recognised as an important

mechanism that drives inherent and acquired resistance to
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chemotherapies (35), including docetaxel (36). As such,

exclusion of CTCs with epithelial negative phenotypes limits

the detection of genes which might be developed into novel

predictive biomarkers of docetaxel response, which may

facilitate patient personalised treatment stratification.

We previously used the cell size and deformability based

Parsortix® CTC isolation system, which was recently FDA

approved, to detect CTCs with epithelial, mesenchymal and

intermediate phenotypes, and demonstrated their biomarker

potential in different clinical scenarios (32, 37, 38). In this

study we used Parsortix® to capture pre-docetaxel treatment

CTCs, evaluating CTC subtypes and their gene expression as

biomarkers of docetaxel response in order to identify CTC

markers with clinical value for the management of advanced

PCa patients. Our strategy combined epitope independent CTC

isolation for enumeration and molecular characterisation using

multiplex RT-qPCR for a targeted panel of genes. We

demonstrate the potential of analysing multiple CTC subtypes

and their gene expression as predictive and prognostic

biomarkers in both mCRPC and mHSPC patients.
Methods

Patients

Between January 2015 and January 2020, 18 mCRPC and 43

mHSPC patients were recruited with informed consented at St

Bartholomew’s Hospital, Barts Health NHS, London, UK.

Clinical characteristics for individual patients are shown in

Supplementary Table 1. Peripheral blood samples were

collected into EDTA tubes ≤2 months before commencing 6

cycles of docetaxel. Patients with mHSPC had started initial

hormone-therapy <3 months before blood collection. Patients

received CT and bone scans before and after treatment. Serum

PSA, ALP, and LDH were measured together with CTC

sampling. Radiological response assessment was based on

RECIST criteria (25): (1) complete response (CR):

disappearance of all target lesions; (2) partial response (PR): at

least 30% decrease in the sum of the longest diameter of target

lesions, taking as reference the baseline since treatment started;

(3) progressive disease (PD): at least 20% increase in the sum of

the longest diameter of target lesions, taking as reference the

baseline since treatment started; (4) stable disease (SD): neither

sufficient shrinkage to qualify for PR nor sufficient increase to

qualify for PD. Assessments of response by bone scan were

classified as follows: (1) CR: disappearance of all bone metastasis;

(2) PR: a decrease in number, extent or intensity of bone lesions

was detected; (3) PD: appearance of new bone lesion(s) and/or

apparent enlargement of the bone metastases; (4) SD: little or no

change in the number, extent or intensity of bone metastases was

observed. PSA progression was defined as two consecutive rises

above PSA nadir at least two weeks apart. CTC measurements
frontiersin.org
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were also investigated for their ability to prognose OS and

PFS outcomes.
Cell lines

The docetaxel-resistant human PCa cell line PC3-D12 and

the sensitive counterpart PC3-Ag, were gifted by A.J. O’Neill

(10), University College Dublin. PC3-D12 cells were treated

every 4 weeks with 12 nM docetaxel in order to maintain

resistance. The cells were maintained in RPMI-1640 medium

supplemented with 10% foetal bovine serum and 2 nM L-

glutamine (Invitrogen, Waltham, Massachusetts, Unites States).
CTC isolation, enumeration and
characterisation

CTCs were isolated from 7.5 mL of whole blood using the

Parsortix® (Angle Plc, Guildford, UK) isolation system and

identified for CTC enumeration using four-colour

immunofluorescence as previously described (32, 37). Briefly, 7

mL of blood was transferred to 50 mL LeucoSep tubes (Greiner

Bio-One, Frickenhausen, Germany) with 15.3 mL of Ficoll-Paque

Plus (GE Healthcare, Chicago, Illinois, Unites States) and

centrifuged at 1000 g for 15 min with the break off at room

temperature to recover the peripheral blood mononuclear cell

(PBMC) fraction. The PBMC fraction along with the plasma

above the fit of the LeucoSep tube was removed into a new 50 mL

falcon tube and pelleted at 200 g for 8 min at room temperature.

The pellet was then re-suspended in 4.5 mL of isolation buffer

(PBS containing 1% BSA and 2 nM EDTA) and added back to the

remaining 0.5 mL of whole blood and loaded onto the Parsortix®

for CTC isolation. Once samples are loaded, cells are separated

based on cell size and deformability according to a pre-set

programme PX-S99F that uses 6.5 µm-gap cassette and 99 mbar

pressure for isolation. Cells were then harvested using a pre-set

programme and transferred onto glass slides for downstream

analysis. All blood samples were processed within 4 hrs of

collection. Slides were stained using mouse monoclonal PE-

conjugated anti-CD45 (Miltenyi Biotec, Bergisch Gladbach,

Germany), mouse monoclonal FITC-conjugated anti-

Cytokeratin (Miltenyi Biotec, Bergisch Gladbach, Germany),

Alexa Fluor 647-conjugated anti-Vimentin (Abcam, Cambridge,

UK), and counterstained using SlowFade gold antifade mountant

with DAPI (Life Technologies, Carlsbad, California, United

States). CTCs were identified as Cytokeratin (CK)+/Vimentin

(VIM)−/CD45- (epithelial-CTCs), CK+/VIM+/CD45- (EMTing-

CTCs) and CK-/VIM+/CD45- (mesenchymal-CTCs). Patients

with ≥1 epithelial-CTC and/or ≥1 EMTing-CTC and/or ≥4

mesenchymal-CTCs were defined as CTC-score ‘positive’ using

our previously established definition based on the analysis of

healthy control blood samples (32)
Frontiers in Oncology 04
CTC RNA extraction and gene expression
analysis

CTCs were isolated from a separate 7.5 mL of whole blood

using the Parsortix® and collected into a 1.5 mL low-retention

eppendorf. Total RNA was extracted using miRNeasy micro kit

(Qiagen, Hilden, Germany) following manufacturer’s instructions

but eluted with a final volume of 11.5 mL. The total 11.5 µL of

RNA extracted from CTCs was mixed with 0.5 µL of random

primers and denatured at 65 °C for 5 min. After incubation for

5 min on ice, 4 µL offirst strand buffer, 2 µL of 0.1 MDTT, 1 µL of

10mMdNTPs (Roche, Basel, Switzerland), 0.5 µL of water and 0.5

µL of Superscript II (Thermo Fisher Scientific, Waltham,

Massachusetts, Unites States) were added and cDNA synthesis

was performed at 42 °C for 2 hrs, followed by enzyme inactivation

by heating at 70 °C for 15 mins. Multiplex RT-qPCR was

performed by Barts and the London Genome Centre using

BioMark HD system (Fluidigm Corporation, South San

Francisco, California, United States). 96.96 Dynamic Array

Integrated fluidic circuit (IFC) was used to test expression levels

of 32 assays in triplicates within one reaction plate. A list of

TaqMan probes (Applied Biosystems, Massachusetts, Unites

States) used are shown in Supplementary Table 2. The brief

workflows were as follows: (1) pooling the TaqMan assays.

Combine equal volumes of each 20X TaqMan Gene Expression

assays in a 0.5 mL microcentrifuge tube, up to 100 mL in total.

Dilute the pooled assays using DNA Suspension Buffer (10mM

Tris, pH 8.0, 0.1 mM EDTA) so that each assay is at a final

concentration of 0.2X. (2) Combine 2.5 mL of TaqMan® PreAmp

MasterMix (Life Technologies, Carlsbad, California, Unites

States), 1.25 mL of pooled assay mix and 1.25 mL of cDNA to

make the final sample mixture in each aliquot. (3) Place reaction

tubes in the thermal cycler and cycle as (95 °C for 10 minutes

followed by 14 cycles of 95 °C for 15 secs and then 60 °C for 4

mins). Only the targets of interests are amplified and this results in

small amount of cDNA being amplified equally without

introducing bias. Following pre-amplification, the samples were

diluted 1:5 (v/v) in DNA suspension buffer. Reactions were then

assayed using Dynamic Arrays prepared as instructed by the

manufacturer. PCR was performed with 40 cycles of reactions.
Gene panel selection

Two microarray expression profile data sets (GSE36135 (39),

GSE33455 (11)) were downloaded from the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo),

which are based on the GPL571 Affymetrix Human Genome

U133A 2.0 Array [HG_U133A_2] and GPL570 Affymetrix

Human Genome U133 Plus 2.0 Array [HG-U133_Plus_2],

respectively. The original Series Matrix data files were analysed

with GEO2R (using the GEOquery and limma R packages from

Bioconductor (http://www.bioconductor.org/) to identify
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differentially expressed genes (DEGs) in each of the paired

docetaxel-resistant and docetaxel-sensitive cell lines in the

datasets. A DEG was considered to be significant according to

the following criteria: Fold-change (FC) >2 and false discovery

rate (FDR) <0.05. Genes that were not upregulated in ≥2 DOC

resistant cell lines were excluded to control for random variance

in gene expression. Additionally, we identified reported PCa-

specific and/or docetaxel-resistance related genes by literature

search, and the two gene lists were combined to form a test gene

panel. To select for genes suitable for CTC analysis, the genes

were searched in The Genotype-Tissue Expression Portal V7

database for their expression in prostate and whole blood. Genes

were selected based on their relative high expression in the

prostate and low/no expression in whole blood. Candidate gene

expression was subsequently validated in a panel of PCa cell lines

and PBMC samples from five PCa biopsy negative males.
Statistical analysis

Mann-Whitney U test was applied to assess differences in

clinical characteristics between patient groups. Data were shown as

median (interquartile range [IQR]). Spearman’s rank correlation

was used to assess associations of CTC counts and gene expression

with concurrent PSA, ALP, LDH levels and OS/PFS. A combined

risk score (CRS) was computed as the linear predictor of the fitted

bivariate logistic model with PSA, ALP, CTC-score, total-CTC

number and KLK2 count as only predictors (as CRS = a * Y + b *

X…, where the values of ‘a’ and ‘b’ are the estimated log odds

ratios). Survival curves were generated using the Kaplan-Meier

method and compared using the logrank test. Bonferroni

correction method was applied to adjust p values (padj) for

multiple testing. RT-qPCR 2-DDCt was used to compare mRNA

expression levels in patient samples. Receiver operating

characteristic (ROC) curve analysis was used to evaluate

prediction values. Follow-up time started on the date of

administration of the first docetaxel dose. Observations were

censored on the date of last follow-up.

Statistical analyses were performed using GraphPad Prism 9.

All tests were two-sided with p values of <0.05 considered

statistically significant.

Results

Patient characteristics and association of
pre-docetaxel CTC measurements with
clinicopathological data

Clinical characteristics and CTC counts are summarised in

Table 1. At least one CTC was detected in 12/18 (67%) of

mCRPC patients, 50% of patients had a positive CTC-score (≥1
Frontiers in Oncology 05
epithel ial-CTC and/or ≥1 EMTing-CTC and/or ≥4

mesenchymal-CTCs) and the median total CTC count was 1.5

(interquartile range= 0-5.8). In mHSPC patients, ≥1 CTC was

detected in 26/43 (60%), 51% of patients had a positive CTC-

score and the median total CTC count was 1 (interquartile range

= 0-4.3). Figure 1A shows an example of immunofluorescence

staining for three CTC subtypes. Figure 1B shows individual

CTC subtype counts in mHSPC and mCRPC patients. No

s ign ifican t d i ff e r ences were found be tween CTC

subtype numbers.

We subsequently investigated the relationship between

CTCs and clinicopathological data. Spearman’s correlation was

performed between CTCs and serum PSA and ALP, results are

shown in Table 2. In mCRPC patients, serum PSA was

significantly correlated with total-CTC (r= 0.51, p= 0.032),

epithelial-CTC (r= 0.51, p= 0.030), EMTing-CTC numbers

(r= 0.53, p= 0.024) and positive CTC-score (r= 0.68, p=

0.0021). Serum ALP was significantly correlated with total-

CTC (r= 0.51, p= 0.046) and epithelial-CTC numbers (r=
0.62, p= 0.012). In mHSPC patients, serum ALP was

significantly correlated with mesenchymal-CTC numbers (r=
0.34, p= 0.044), however no other significant correlations

were observed.
Correlation of pre-docetaxel CTCs with
RECIST response post docetaxel
treatment

To assess if CTCs could predict radiological response to

docetaxel following treatment cycles, we compared CTC

numbers between partial response (PR), stable disease (SD) or

progressive disease (PD) groups (Supplementary Table 1), and

performed ROC analysis. Due to the limited sample size, we

combined patients who had SD or PD at the end of docetaxel

treatment into one group. While there were no significant

differences in CTC numbers between patients with PR and

SD/PD in this small cohort, trends were observed. In mCRPC

patients with PR, limited mesenchymal-CTCs and no epithelial-

and EMTing-CTCs were detected. Total-CTCs trended towards

a significantly lower number in patients with a PR (p= 0.073)

compared to those with SD/PD (Figure 2A) with an AUC of

0.80, p= 0.071 in predicting SD/PD (Figure 2C). In comparison,

serum PSA had an AUC of 0.78, p= 0.089, and ALP had an AUC

of 0.74, p= 0.20 (Figure 2C). In order to improve our ability to

predict radiological response to docetaxel using blood-based

biomarkers, we generated a combined risk score (CRS)

combing the total number of CTCs, serum PSA and ALP

levels for SD/PD prediction as CRS-TPA= 0.7414 * Total-CTC

number + 0.02909 * PSA + 0.01423 * ALP, which resulted in an

AUC of 0.90, p= 0.037, with a sensitivity of 84.62% and
frontiersin.org
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specificity of 100% when the cut-off was set at >3.45 (Figure 2C).

The CRS-TPA performed better than serum PSA and ALP alone,

although the difference was not statistically significant (p= 0.66,

and 0.23 respectively), likely due to the limited sample size.

In mHSPC, epithelial- and EMTing-CTC numbers did not

differentiate patients based on radiological response to docetaxel.

Conversely, high mesenchymal-CTC numbers trended towards

(p= 0.079) higher chance of SD/PD (Figure 2B) with an AUC of

0.65, p= 0.099 (Figure 2D). Serum ALP levels were best able to

predict SD/PD, with an AUC of 0.68, p= 0.077, compared to that

of serum PSA which had an AUC of 0.52, p= 0.82 (Figure 2D). A

CRS comprised of mesenchymal-CTC number and serum ALP

levels as CRS-MA= 0.3599 * mesenchymal-CTC number +

0.002037 * ALP, increased the AUC to 0.69, however with

only a trend towards significance (p= 0.064) (Figure 2D).
Frontiers in Oncology 06
CTCs were significantly associated
with PFS and OS in mCRPC and
mHSPC patients

To assess the prognostic value of CTCs, we correlated CTC

measurements with patient OS and PFS. Long term follow-up

data was available for 18 mCRPC and 42 mHSPC patients. The

median follow-up time for mCRPC patients was 22.7 months

(range 8.0-53.1 months), during which time 13/18 (72%)

patients progressed and/or died. Spearman’s correlation

(Table 3) showed that OS significantly inversely correlated

with total- (r= -0.66, p= 0.0027), epithelial- (r= -0.62, p=

0.0057) and EMTing-CTC (r= -0.65, p= 0.0034) numbers and

a positive CTC-score (r= -0.80, p< 0.0001) in the mCRPC

cohort. Additionally, PFS was significantly inversely correlated
TABLE 1 Summary of clinical characteristics and CTC enumeration for metastatic PCa patients.

n mCRPC n mHSPC

Age at pre-docetaxel, y

Mean ± SD 18 73 (66.5-75.8) 43 68 (63-73)

PSA at diagnosis, ng/mL

Median (IQR) 14 21 (14.5-61.5) 39 54 (18.5-344.6)

Biopsy GS, n (%)

7 8 (44) 6 (14)

>7 9 (50) 28 (65)

unknown 1 (6) 9 (21)

Pre-docetaxel PSA, ng/mL

Median (IQR) 18 54.1 (12.9-111.8) 42 15.6 (3.6-50.1)

Pre-docetaxel ALP, U/L

Median (IQR) 16 88 (74.8-387.5) 36 104 (70-328)

Pre-docetaxel CTC-score, n (%)

Positive 9 (50) 22 (51)

Negative 9 (50) 21 (49)

Pre-docetaxel total CTC, n

Median (IQR) 18 1.5 (0-5.8) 43 1 (0-4.3)

Pre-docetaxel Epithelial-CTC, n

Median (IQR) 18 0 (0-2) 43 0 (0-1)

Pre-docetaxel EMTing-CTC, n

Median (IQR) 18 0 (0-0) 43 0 (0-0)

Pre-docetaxel Mesenchymal-CTC, n

Median (IQR) 18 1 (0-2.25) 43 0 (0-2)

mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; IQR, interquartile range; PSA, prostate specific antigen; GS, Gleason
score; SD, standard deviation.
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with epithelial-CTC numbers (r= -0.63, p= 0.0049) and a

positive CTC-score (r= -0.65, p= 0.0033). We also evaluated

the performance of serum biomarkers PSA and ALP. We found

that serum PSA levels significantly inversely correlated with OS

(r= -0.72, p= 0.0008) and PFS (r= -0.50, p= 0.035). With a view

to improve the sensitivity and specificity of pre-docetaxel
Frontiers in Oncology 07
biomarkers for the prediction of OS, we generated a combined

risk score using both PSA and CTC-score data. The AUC of a

CRS comprised of PSA (AUC= 0.93) and CTC-score (AUC=

0.89) (CRS-PS= 0.08127 * PSA + 4.159 * CTC-score) to

discriminate mCRPC patients with <24 months OS from those

with ≥24 months OS reached 0.96, p= 0.0009, with a sensitivity
BA

FIGURE 1

Detection of three subtypes of CTCs in PCa patient samples. (A) Three distinct CTC subtypes were identified by immunofluorescence in patient
blood samples. Top: One CK+/VIM-/CD45- epithelial-CTC adjacent to two CD45+ leucocytes. Middle: One CK+/VIM+/CD45- EMTing-CTC
adjacent to three CD45+ leucocytes. Bottom: One CK-/VIM+/CD45- mesenchymal-CTC adjacent to two CD45+ leucocytes. (B) Individual CTC
numbers in each mCRPC and mHSPC patient sample, respectively. Median CTCs number per 7.5mL of blood is shown. Abbreviations: CK,
Cytokeratin; VIM, Vimentin.
TABLE 2 Spearman’s correlation between CTCs and serum PSA and ALP.

PSA ALP

Spearman’s r (p-value)

mCRPC patients

Total-CTCs 0.51 (0.032) 0.51 (0.046)

Epithelial-CTCs 0.51 (0.030) 0.62 (0.012)

EMTing-CTCs 0.53 (0.024) 0.38 (0.15)

Mesenchymal-CTCs 0.22 (0.37) 0.27 (0.31)

CTC-score 0.68 (0.0021) 0.45 (0.091)

PSA – –

ALP 0.35 (0.19) –

mHSPC patients

Total-CTCs -0.017 (0.92) 0.27 (0.11)

Epithelial-CTCs 0.14 (0.37) 0.080 (0.65)

EMTing-CTCs 0.066 (0.68) -0.032 (0.86)

Mesenchymal-CTCs -0.047 (0.77) 0.34 (0.044)

CTC-score -0.006 (0.97) 0.21 (0.23)

PSA – –

ALP 0.35 (0.044) –

bold black numbers, significant results
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of 88.9% and a specificity of 100% when the cut-off was set to

<5.96 (Figure 3). This made an improvement on the AUC of

PSA alone but without significance, p= 0.60.

We then performed Kaplan Meier survival analysis using

total and subtype CTC numbers to predict OS and PFS with

optimal CTC number cut-offs evaluated (Table 4). In mCRPC

patients, each total-CTC number cut-off that was explored (<2

vs. ≥2 to <6 vs. ≥6 CTCs) was significantly associated with

patients with short median OS. The detection of a positive CTC-

score (12.80 vs. 37.33 months, HR= 5.08, p= 0.0005) (Figure 4A),

≥3 total-CTCs (12.80 vs. 37.33 months, HR= 3.84, p= 0.0053)

(Figure 4B), ≥1 epithelial-CTC (14.30 vs. 37.33 months, HR=

3.89, p= 0.0041) (Figure 4C) and ≥1 EMTing-CTC (11.32 vs.

32.37 months, HR= 6.73, p= 0.0001) (Figure 4D) were most

significantly associated with shorter median OS. Importantly,
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when the Bonferroni correction method was applied to adjust p

values for multiple testing, a positive CTC-score (padj= 0.0055),

≥1 epithelial-CTC (padj= 0.045) and ≥1 EMTing-CTC (padj=

0.0011) remained significantly associated with shorter median

OS. The detection of ≥2 epithelial-CTCs was most significantly

associated with shorter median PFS (7.52 vs. 18.83 months, HR=

3.93, p= 0.0058) (Figure 4E).

The median follow-up time for mHSPC patients was 29.5

months (range 5.9-48.8 months), during which time 25/42

(60%) patients progressed and 11/42 (26%) died. Spearman’s

correlation did not show associations of CTC measurements

with PFS and OS, however, ALP was significantly inversely

correlated with OS (r= -0.45, p= 0.0068) and PFS (r= -0.62,

p< 0.0001) (Table 3). Kaplan Meier analysis revealed that

patients with ≥5 CTCs experienced the most significantly
B

C D

A

FIGURE 2

The relationship between pre-docetaxel CTCs and initial RECIST response. (A) Number of CTC subtypes and total-CTC numbers in mCRPC
patients with PR or, SD and PD combined. Epithelial and EMTing-CTCs were not detected in patients with PR, although they did not significantly
differentiate from patients with SD/PD, p=0.1065 and p=0.7907, respectively. Mesenchymal CTCs were detected in a small number of patients
with PR but the majority were detected in patients with SD/PD (p=0.2513). Total CTC number trended towards a significant difference between
patients with PR and SD/PD p=0.0732. (B) Number of CTC subtypes and total-CTC numbers in mHSPC patients with PR or, SD and PD
combined. There was no significant difference in the numbers of epithelial-CTCs (p=0.5975), EMTing-CTCs (p=0.7909) and total-CTCs
(p=0.2053) detected between patients with PR and SD/PD. However, mesenchymal-CTC numbers trended towards a significant difference
between the patient outcome groups (p=0.0785). (C) For prediction of immediate tumour response in mCRPC patients, total-CTCs had an area
under the curve (AUC) of 0.80, p= 0.071, PSA had an AUC of 0.78, p= 0.089 and ALP had an AUC of 0.74, p= 0.20. A combined risk score
combining all three variables was calculated as CRS-TPA= 0.7414*Total-CTC number + 0.02909 *PSA + 0.01423*ALP, which increased the AUC
to 0.90, p=0.037. (D) For prediction of immediate tumour response in mHSPC patients, mesenchymal-CTCs had that highest AUC of 0.65, p=
0.099, PSA had an AUC of 0.52, p= 0.82 and ALP an AUC of 0.68, p= 0.77. A combined risk score combining all mesenchymal CTC numbers
and ALP was calculated as CRS-MA= 0.3599 * mesenchymal-CTC number + 0.002037 * ALP, resulted in an AUC of 0.69, p= 0.064.
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shorter median OS (24.57 vs undefined months, HR= 4.14, p=

0.0097) (Table 4, Figure 4F).
CTC gene expression predicted PFS and
OS in mHSPC patients

Subsequently, we interrogated CTC mRNA expression to

enhance the efficiency of CTCs as predictive biomarkers beyond

CTC enumeration in the mHSPC cohort. Up-regulated

differentially expressed genes in docetaxel-resistant cell lines

from two microarray datasets were considered for docetaxel-

resistant CTC detection. There were 162 genes commonly up-

regulated in docetaxel-resistant cell lines and considered for

further validation. Additionally, we identified 75 reported

docetaxel-resistance related genes by literature search of

relevant publications regarding the mechanisms of docetaxel

resistance. These panels were combined to form a 237-candidate

gene panel (Supplementary Table 3). As the enriched CTC

fraction that is harvested from the Parsortix® is not pure, it

was necessary to account for white blood cell contamination in

the sample. Therefore, we performed two steps of gene

expression analysis to exclude any of the 237 candidate genes

that were expressed in leucocytes, 1. in silico analysis and 2. in

vitro experiments using PCa cell lines and patient derived
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leucocyte samples. Firstly, the 237 genes were searched in The

Genotype-Tissue Expression Portal V7 database for their

expression in prostate and whole blood. Genes were selected

based on their relatively high expression in prostate tissue and
TABLE 3 Spearman’s correlation of CTCs and serum biomarkers with OS and PFS.

OS PFS

Spearman’s r (p-value)

mCRPC patients

Total-CTCs -0.66 (0.0027) -0.52 (0.075)

Epithelial-CTCs -0.62 (0.0057) -0.63 (0.0049)

EMTing-CTCs -0.65 (0.0034) -0.14 (0.57)

Mesenchymal-CTCs -0.40 (0.10) 0.34 (0.17)

CTC-score -0.80 (<0.0001) -0.65 (0.0033)

PSA -0.72 (0.0008) -0.50 (0.035)

ALP -0.41 (0.13) -0.16 (0.55)

mHSPC patients

Total-CTCs 0.16 (0.31) -0.087 (0.58)

Epithelial-CTCs -0.084 (0.60) -0.16 (0.30)

EMTing-CTCs 0.13 (0.41) 0.11 (0.43)

Mesenchymal-CTCs 0.20 (0.20) -0.076 (0.63)

CTC-score 0.012 (0.94) -0.18 (0.26)

PSA -0.21 (0.19) -0.16 (0.33)

ALP -0.45 (0.0068) -0.62 (<0.0001)

PFS, progression-free survival; OS, overall survival; bold black numbers, significant results
FIGURE 3

CRS of CTC-score and PSA for the prediction of <24 months OS
in mCRPC patients. In mCRPC patients, combining CTC-score
with PSA as CRS-PS= 0.08127 * PSA + 4.159 * CTC-score,
increased the AUC to 0.96, p= 0.0009.
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TABLE 4 Kaplan Meier analysis of CTC enumeration cut-offs for OS and PFS in mCRPC and mHSPC.

CTC parameters Patients per
group (n)

OS PFS

Median survival
(months)

HR (95%
CI)

p-
value

Median survival
(months)

HR (95%
CI)

p-
value

mCRPC patients

CTC-score negative vs. CTC-
score positive

9 vs. 9 37.33 vs. 12.80 5.08 (3.41 to
43.57)

0.0005 18.83 vs. 8.0 2.70 (1.18 to
15.03)

0.042

< 2 vs. ≥ 2 CTCs 9 vs. 9 34.80 vs. 12.80 3.13 (1.37 to
15.82)

0.021 16.43 vs. 8.0 1.54 (0.50 to
5.50)

0.43

< 3 vs. ≥ 3 CTCs 11 vs. 7 37.33 vs. 12.80 3.84 (2.08 to
34.72)

0.0053 16.43 vs. 8.0 2.03 (0.66 to
11.16)

0.20

< 4 vs. ≥ 4 CTCs 12 vs. 6 32.27 vs. 12.53 3.66 (1.80 to
39.08)

0.010 13.82 vs. 8.30 1.57 (0.41 to
7.95)

0.46

< 5 vs. ≥ 5 CTCs 13 vs. 5 32.27 vs. 12.27 3.39 (1.38 to
41.25)

0.025 11.20 vs. 9.80 1.25 (0.25 to
6.61)

0.77

< 6 vs. ≥ 6 CTCs 14 vs. 4 28.23 vs. 12.53 2.50 (0.68 to
22.90)

0.014 11.30 vs. 7.33 2.10 (0.38 to
21.12)

0.32

0 vs. ≥ 1 E-CTC 10 vs. 8 37.33 vs. 14.30 3.89 (2.17 to
28.45)

0.0041 18.83 vs. 7.70 3.57 (1.82 to
28.47)

0.0088

< 2 vs. ≥ 2 E-CTC 11 vs 7 37.33 vs. 12.80 3.72 (1.99 to
32.21)

0.0065 18.83 vs. 7.52 3.93 (2.20 to
51.88)

0.0058

0 vs. ≥ 1 EMTing-CTC 14 vs. 4 32.37 vs. 11.32 6.73 (11.47 to
1043)

0.0001 11.20 vs. 10.28 1.03 (0.23 to
4.72)

0.97

0 vs. ≥ 1 M-CTC 10 vs. 8 32.37 vs. 16.07 1.39 (0.60 to
5.29)

0.30 13.82 vs. 8.3 0.89 (0.30 to
2.61)

0.83

< 2 vs. ≥ 2 M-CTC 12 vs. 6 28.23 vs. 12.53 1.88 (0.56 to
8.89)

0.27 10.57 vs. Undefined 0.60 (0.18 to
2.31)

0.50

mHSPC patients

CTC-score negative vs. CTC-
score positive

20 vs. 22 Undefined vs.
Undefined

2.53 (0.72 to
7.74)

0.15 36.40 vs. 12.52 1.90 (0.89 to
4.01)

0.10

< 2 vs. ≥ 2 CTCs 23 vs. 19 Undefined vs. 40.30 1.73 (0.53 to
5.60)

0.37 26.57 vs. 16.83 1.42 (0.67 to
3.02)

0.37

< 3 vs. ≥ 3 CTCs 27 vs. 15 Undefined vs. 40.30 2.74 (0.86 to
9.71)

0.090 21.80 vs. 13.33 1.58 (0.74 to
3.66)

0.23

< 4 vs. ≥ 4 CTCs 29 vs. 13 Undefined vs. 31.07 3.91 (1.31 to
16.89)

0.018 26.57 vs. 11.13 1.62 (0.74 to
4.06)

0.22

< 5 vs. ≥ 5 CTCs 32 vs. 10 Undefined vs. 24.57 4.14 (1.61 to
27.36)

0.0097 26.57 vs. 9.63 1.79 (0.77 to
5.27)

0.16

< 6 vs. ≥ 6 CTCs 34 vs. 8 Undefined vs. 24.57 3.98 (1.54 to
35.11)

0.013 26.57 vs. 9.63 2.18 (0.94 to
8.33)

0.067

0 vs. ≥ 1 E-CTC 28 vs. 14 Undefined vs.
Undefined

2.86 (0.92 to
12.25)

0.068 29.37 vs. 11.42 2.07 (0.99 to
5.33)

0.098

< 2 vs. ≥ 2 E-CTC 35 vs. 7 Undefined vs.
Undefined

2.07 (0.49 to
12.93)

0.27 21.80 vs. 11.13 1.54 (0.58 to
4.65)

0.39

0 vs. ≥ 1 EMTing-CTC 36 vs. 6 Undefined vs.
Undefined

0.50 (0.12 to
2.81)

0.50 15.90 vs. 28.97 0.85 (0.31 to
2.34)

0.76

0 vs. ≥ 1 M-CTC 22 vs. 20 Undefined vs. 40.30 2.13 (0.65 to
7.0)

0.23 26.57 vs. 15.88 1.22 (0.57 to
2.61)

0.60

(Continued)
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low/no expression in whole blood. This resulted in a candidate

panel of 39 genes. Secondly, using RT-qPCR in paired docetaxel-

sensitive (PC3-AG) and docetaxel-resistant (PC3-D12) PCa cell

lines, and five PBMC samples from biopsy-negative patients, we

experimentally validated 23/39 genes for lack of expression in

leucocytes. A further seven genes, including EMT and stem cell

markers (PTPRC (CD45), SNAI1, ZEB1, NANOG, POU5F1,

PROM1 and SOX2) were included due to their potential

prognostic value in clinical samples and lack of expression in

leucocytes, along with housekeeping genes GAPDH and

MRFAP1. Unfortunately, the mCRPC sample size available at

this time point was limited and gene expression analysis was not

performed. However, the relationship between candidate gene
Frontiers in Oncology 11
expression and OS/PFS was investigated in 33 mHSPC

patient samples.

Survival analysis was performed by separating patients into

the following groups: 1) Expression vs. no expression 2) 50%

highest expression vs. 50% lowest expression. Kaplan Meier

analysis revealed that KLK2 expression was significantly

associated with shorter median OS (27.17 vs. undefined

months, HR= 3.87, p= 0.037) (Figure 5A) and PFS (8.13 vs.

26.57 months, HR= 5.15, p= 0.0002) (Figure 5B). KLK4

expression was significantly associated with shorter median

PFS (10.17 vs. 26.57, HR= 3.01, p= 0.034) (Figure 5C), while

KLK3 (PSA) expression had only a trend towards shorter

median OS (30.13 vs. undefined months, HR= 3.18, p= 0.068)
TABLE 4 Continued

CTC parameters Patients per
group (n)

OS PFS

Median survival
(months)

HR (95%
CI)

p-
value

Median survival
(months)

HR (95%
CI)

p-
value

< 2 vs. ≥ 2 M-CTC 31 vs. 11 40.30 vs 31.07 1.86 (0.57 to
7.28)

0.29 26.57 vs. 13.33 1.56 (0.68 to
3.97)

0.27

PFS, progression-free survival; OS, overall survival; E-CTC, Epithelial CTC; M-CTC, Mesenchymal CTC; Undefined, The probability of survival exceeds 50% at the longest time point;
bold black numbers, significant results; bold grey numbers, results with a trend towards significance.
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FIGURE 4

Kaplan Meier survival analysis of CTC measurements to predict OS and PFS in mCRPC and mHSPC patients. (A) mCRPC patients with a positive
CTC-score experienced significantly shorter median OS compared to those with a negative CTC-score (12.80 vs. 37.33 months, HR= 5.08, p=
0.0005). (B) mCRPC patients with ≥3 total-CTCs experienced significantly shorter median OS compared to those with <3 total-CTCs (12.80 vs.
37.33 months, HR= 3.84, p= 0.0053). (C) mCRPC patients with ≥1 epithelial-CTCs experienced significantly shorter median OS compared to
those with <1 epithelial-CTC (14.30 vs. 37.33 months, HR= 3.89, p= 0.0041). (D) mCRPC patients with ≥1 EMTing-CTCs experienced significantly
shorter median OS compared to those with <1 EMTing-CTC (11.32 vs. 32.37 months, HR= 6.73, p= 0.0001). (E) mCRPC patients with ≥2
epithelial-CTCs experienced significantly shorter median PFS compared to those with <2 epithelial-CTC (7.52 vs. 18.83 months, HR= 3.93, p=
0.0058). (F) mHSPC patients with ≥5 CTCs experienced significantly shorter median OS compared to those with <5 CTCs (24.57 vs undefined
months, HR= 4.14, p= 0.0097).
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(Figure 5D) and did not separate patients based on PFS. Patients

with 50% highest SNAI1 and/or ADAMTS1 expression

experienced significantly shorter median OS (31.07 vs.

undefined months, HR= 9.51, p= 0.0090 (Figure 5E); 31.07 vs

undefined months, HR= 4.30, p= 0.047 (Figure 5F), respectively)

and patients with the 50% highest ZEB1 expression experienced

significantly shorter median PFS (11.50 vs. 24.40 months, HR=

2.5, p= 0.036) (Figure 5G). Hazard ratios for each gene for OS

and PFS are presented in Figure 5H.

We then investigated the clinical outcomes of patients who

had CTCs expressing more than one high-risk gene. The median

PFS for patients with KLK2+ZEB1hi (8.13 months Logrank p=

0.0004) (Figure 6A) and/or KLK2+SNAI1hi (5.9 months,

Logrank p= 0.0019) (Figure 6B) and/or KLK2+ADAMTS1hi

(5.9 months, Logrank p= 0.0004) (Figure 6C) was significantly

shorter than for patients with no KLK2 expression and low

expression of each gene. Patients expressing both genes also had

high total CTC numbers detected in paired samples (KLK2

+ZEB1hi: ≥8 CTCs, KLK2+SNAI1hi: ≥5 CTCs, KLK2

+ADAMTS1hi: 0, 5 and 9 CTCs).

Using receiver operating characteristic curve analysis, high

expression of ADAMTS1 was significantly predictive of shorter

OS with an AUC of 0.73, p= 0.043 (Figure 7A). Neither serum

PSA or ALP levels significantly differentiated patients based on
Frontiers in Oncology 12
OS, although ALP showed a trend towards significance (AUC=

0.55, p= 0.66; AUC= 0.73, p= 0.072, respectively) (Figure 7A).

Combining ADAMTS1, ALP and ≥5 total CTCs to form a CRS

as CRS-AA5o= 0.06386 * ADAMTS1 + 0.001465 * ALP + 2.169 *

≥5 total CTCs, which increased the AUC to 0.83, p= 0.0070 (65%

sensitivity and 87.5% specificity at a cut off of <0.48) vs AUC of

0.73 for ALP alone, (Figure 7A) however without a significant

difference (p= 0.38).

We then evaluated the candidate genes for the prediction of

PFS and found that high expression of ZEB1, SNAI1 and

ADAMTS1 was significantly predictive of progression within

24 months (AUC= 0.77, p= 0.0092; AUC= 0.71, p= 0.039; AUC=

0.71, p= 0.043, respectively) (Figure 7B). Expression of KLK2

had a trend of correlated with <24 months PFS, but the AUC was

not significant (AUC= 0.64, p= 0.18) (Figure 7B). ALP but not

serum PSA levels significantly discriminated patients with <24

months PFS from those with ≥24 months PFS (AUC= 0.86, p=

0.0015; AUC= 0.52, p= 0.86, respectively) (Figure 7B).
Discussion

Improvements in our understanding of the genetic

landscape of PCa have advanced treatments for metastatic
B
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FIGURE 5

Kaplan Meier analysis based on CTC gene expression. (A) KLK2 expression was significantly associated with shorter median OS (27.17 vs. undefined
months, HR= 3.87, p= 0.037). (B) KLK2 expression was significantly associated with shorter median PFS (8.13 vs. 26.57 months, HR= 5.15, p= 0.0002).
(C) KLK4 expression was significantly associated with shorter median PFS (10.17 vs. 26.57, HR= 3.01, p= 0.034). (D) KLK3 (PSA) expression had a
trend towards significant association with shorter median OS (30.13 vs. undefined months, HR= 3.18, p= 0.068). (E) Patients with 50% highest
SNAI1 expression experienced significantly shorter median OS (31.07 vs. undefined months, HR= 9.51, p= 0.0090). (F) Patients with 50% highest
ADAMTS1 expression experienced significantly shorter median OS (31.07 vs undefined months, HR= 4.30, p= 0.047). (G) Patients with the 50% highest
ZEB1 expression experienced significantly shorter median PFS (11.50 vs. 24.40 months, HR= 2.5, p= 0.036). (H) Hazard ratios for each gene for OS and
PFS. Undefined months: The probability of survival exceeds 50% at the longest time point.
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disease. These treatments comprise androgen-receptor targeting

therapies (abiratorine, enzalutminde) bone-targeting

radiotherapies (Radium-223), immunotherapies, and cytotoxic

chemotherapies (docetaxel, cabazataxel). Docetaxel is now a

first-line therapy in both mCRPC and mHSPC, however its

efficacy is limited by the vast inter- and intra-tumour

heterogeneity of PCa, resulting in clonal populations with

inherent and/or acquired resistance in a proportion of

patients. Although multiple docetaxel resistance mechanisms

have been revealed through extensive research, such as

upregulation of drug efflux pumps (e.g. ABCB1) (40),

alterations to b-tubulin and expression of tubulin isoforms

(41), deregulation of apoptosis and survival signalling

pathways (42), induction of EMT and cancer stem cells
Frontiers in Oncology 13
phenotypes (36, 43, 44), and deregulation of AR signalling

(45), the development of clinically useful tools to predict

response is currently still required (46–48). Thus, patients with

resistance may undergo systemic chemotherapy with little

survival benefit (49, 50). Our ability to elucidate biomarkers of

resistance is limited by tissue biopsy, which samples only a small

fraction of the entire heterogeneous tumour, is practically

difficult in metastatic disease and as a repeated measure.

However, liquid biopsy analysis of CTCs offers a minimally

invasive, easily repeatable tool for cancer specific interrogation.

Using the Parsortix® CTC isolation system, we investigated the

potential of using CTCs, including subtype and CTC gene

expression analysis, to predict docetaxel response and survival

benefit in both mCRPC and mHSPC patients.

We found that individual CTC measurements alone showed

some, but limited associations with RECIST response in mCRPC

and mHSPC patients. However, when combined with serum

biomarkers in mCRPC patients, initial progressive disease could

be predicted with high accuracy. Furthermore, combining CTCs

with serum biomarkers efficiently detected mCRPC patients at

risk of shorter OS, supporting the potential use of CTCs to triage

patients for docetaxel treatment. Importantly, we showed that ≥5

pre-docetaxel CTCs/7.5mL were also significantly associated

with poor PFS in mHSPC patients treated with first-line

chemo-hormonal therapy. Additionally, molecular analysis of

CTC samples revealed that the expression of the candidate

docetaxel-resistance gene ADAMTS1, and EMT transcription

factors ZEB1 and SNAI1 along with the PCa specific kallikreins

KLK2 and KLK4 significantly correlated with poor mHSPC

patient outcome.

While the detection of CTCs is now a well-established

marker of aggressive cancer with poor survival outcome, it is

yet to be determined if CTCs have an association with initial

docetaxel response. Immediate radiological or RECIST response

criteria are commonly used to determine a treatment response

upon the completion of a therapeutic regimen. In our study,

although potentially due to the limited cohort sizes, individual

CTC subtypes did not significantly discriminate between

patients with a partial response and those with stable disease

and/or progressive disease. This may suggest that in the pre-

docetaxel setting the CTC subtype has limited relation to

inherent docetaxel sensitivity and RECIST response.

Nevertheless, we found that total CTC numbers showed

potential for predicting initial radiological treatment response

when used in combination with serum biomarkers (PSA and

ALP) in mCRPC patients, with a good AUC of 0.90. Although

we observed a higher number of mesenchymal CTC in mHSPC

patients lacking a partial response to treatment, they did not add

significant predictive value. Newly diagnosed mHSPC patients

are treated with first-line ADT for a short period prior to starting

and throughout docetaxel therapy. Unlike mCRPC patients, all

mHSPC patients should be responsive to ADT at this time.

Therefore, our results indicate that responsiveness to first-line
B

C

A

FIGURE 6

Kaplan Meier analysis of patients expressing multiple poor
prognostic genes. (A) The median PFS for patients with KLK2
+ZEB1hi was 8.13 months, which was significantly shorter than
KLK2-ZEB1low group (36.13 months) with p= 0.0008. Overall
Logrank p= 0.0004. (B) The median PFS for patients with KLK2
+SNAI1hi was 5.9 months. KLK2+SNAI1hi vs. KLK2-SNAI1hi: 5.9 vs.
15.15 months, p= 0.019; KLK2+SNAI1hi vs. KLK2-SNAI1low: 5.9 vs.
34.40 months, p= 0.0083. Logrank p= 0.0019. (C) The median
PFS for patients with KLK2+ADAMTS1hi was 5.9. KLK2
+ADAMTS1hi vs. KLK2+ADAMTS1low: 5.9 vs. 10.73 months, p=
0.28; KLK2+ADAMTS1hi vs. KLK2-ADAMTS1hi: 5.9 vs 15.90
months, p= 0.0015; KLK2+ADAMTS1hi vs. KLK2-ADAMTS1low: 5.9
vs. 36.13 months, p= 0.0007. Logrank p= 0.0004.
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ADT might affect the value of CTCs for the prediction of near-

term clinical response to docetaxel. This is also reflected in the

lack of significant correlations between serum PSA level and

CTC numbers before docetaxel treatment in mHSPC patients. In

summary, CTCs might have a potential value in predicting

docetaxel response, but data here is insufficient to make a

conclusion. Further investigations in larger cohorts are required.

While pre-docetaxel CTC measurements showed limitations

in the prediction of initial radiological response, we showed that
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CTCs were associated with OS and PFS subsequent to docetaxel

treatment. The significant correlation of epithelial CTCs with

shorter OS and/or PFS confirmed previous research findings in

mCRPC patients to be treated with docetaxel (19, 23, 24, 26, 27,

51). However, by using the epitope independent Partsortix®

isolation system, we were able to capture and analyse three

different CTC subtypes. Interestingly, in the mCRPC patient

cohort, the detection of ≥1 EMTing-CTCs (p= 0.0001) and a

positive CTC-score (p= 0.0005) were the most significant

predictors of shorter OS among the different CTC

measurements. Our previous studies have demonstrated both

to be valuable PCa biomarkers, and associated with increased

metastatic burden (32, 38). Patients with a positive-CTC score

and/or ≥1 EMTing-CTC present in 7.5mL of pre-docetaxel

blood experienced an approximate three-fold reduction in

median OS time compared to those with a negative CTC-score

or no EMTing-CTCs. This demonstrates the value of analysing

different subtypes of CTCs and the good prognostic value of the

CTC score, in which mesenchymal CTCs were a component. A

positive CTC-score combined with serum PSA (AUC= 0.96 for

OS <24 months) may flag high-risk mCRPC patients with high

sensitivity (88.89%) and specificity (100%) and facilitate timely

therapeutic intervention post-docetaxel, such as Cabazitaxel

administration, which has been shown to retain activity in

patients after docetaxel treatment (52).

To date, reports on the use of CTCs as a prognostic biomarker

in mHSPC patients treated with ADT plus docetaxel are limited.

The prediction of significantly shorter OS by ≥5 total-CTCs in

mHSPC patients may be useful for treatment stratification in this

cohort. In this study, CTCs expressing cytokeratin alone did not

significantly differentiate mHSPC patients with shorter OS from

those with a good response and prolonged OS after docetaxel

treatment. Again, these findings highlight the advantage of epitope

independent CTC isolation, which allows for the capture and

analysis of multiple CTC subtypes.

We showed that the RNA expression of certain genes in CTCs

correlated with shorter OS and/or PFS in mHSPC patients. These

poor prognostic genes included the EMT transcription factors

ZEB1 and SNAI1. EMT is responsible for tumour cell migration

and metastasis, and is associated with drug resistance in multiple

solid tumour types (53). In docetaxel resistance, upregulation of

EMT genes has been shown to mediate resistance emergence in

PCa cell line models (36, 54, 55) and increased expression in

primary tumours prior to therapy has been correlated with

radiological relapse (36). Several EMT genes have been assessed

in CTCs, the most common being Vimentin, for detection of a

mesenchymal subtypes which have been linked to higher

metastatic burden, a more aggressive phenotype and disease

progression in PCa (32, 56, 57). The shorter OS and/or PFS

associated with the RNA expression of ZEB1 and SNAI1 by CTCs

may indicate a more aggressive and potentially docetaxel resistant

phenotype being present in the primary or metastatic tumour

sites, which may promote disease progression in mHSPC patients.
B

A

FIGURE 7

The association and predictive value of CTC gene expression
with OS and PFS in mHSPC patients. (A) ROC analysis for OS:
High expression of ADAMTS1 had an AUC of 0.73, p= 0.043 for
the prediction of OS. Neither serum PSA or ALP levels
significantly differentiated patients based on OS, although ALP
showed a trend towards significance (AUC= 0.55, p= 0.66;
AUC= 0.73, p= 0.072, respectively). Combining ADAMTS1, ALP
and ≥5 CTCs as CRS-AA5o= 0.06386*ADAMTS1 +
0.001465*ALP + 2.169*≥5CTCs, increased the AUC to 0.83, p=
0.0070. (B) ROC analysis for <24 months PFS: High expression
of ZEB1, SNAI1 and ADAMTS1 was significantly predictive of <24
months PFS (AUC= 0.77, p= 0.0092; AUC= 0.71, p= 0.039;
AUC= 0.71, p= 0.043, respectively). Additionally, ALP but not
serum PSA levels showed significant AUCs (AUC= 0.86, p=
0.0015; AUC= 0.52, p= 0.86, respectively).
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Additionally, these findings highlight the importance of

considering multiple different markers corresponding to the

same cellular phenotype, as genes may be exhibiting different

patterns of spatial–temporal expression under pathological

conditions, yet could be controlled by different upstream signals.

Patients with mHSPC who had detectable KLK2 RNA

expression in CTCs were more likely to suffer shorter PFS

compared to patients with KLK3 (PSA) expression. The

protein encoded by KLK2, hK2, has been utilised in the

4Kscore® Test to predict risk of aggressive PCa (58). Our

findings suggest that KLK2/hK2 may also be used as

biomarker to identify mHSPC patients who are likely to

progress under chemo-hormonal treatment.

The metalloprotease, ADAMTS1, was upregulated in

docetaxel-resistant cells in microarray analysis and was

associated with both PFS and OS. Combining ADAMTS1

expression with ALP levels and ≥5 CTCs predicted shorter

median OS with high sensitivity and specificity. For PFS, ALP

was highly predictive, with an AUC of 0.86, leaving little margin for

improvement, so combined biomarker analysis was not performed.

The variety of CTC derived genes that were identified as

biomarkers of poor prognosis indicates the heterogeneity of CTCs

between patients. CTC heterogeneity may be the result of a spatio-

temporally different microenvironment surrounding the tumour

lesions, in the circulation, as well as differences in therapy response

(14, 59). In the case of the mHSPC patient cohort, differing levels of

response to initial ADT may alter tumour biology, influence CTC

gene expression and fitness, and subsequent response to docetaxel

therapy, such as induction of EMT machinery (60–62). To explore

this, further analysis of CTC gene expression changes over multiple

time points during therapy in warranted.

The limitations of this study include: 1. Small patient cohort,

particularly for the mCRPC patients, although we observed several

significant corrrelations. The small sample size was due to the

several effective therapies been devloped in recently years for PCa,

leading to competing treatment options. 2. The candidate CTC

genes were selected based on the microarray dataset gene

expression profile from 2D-cultured docetaxel-resistance cell line

models, as currently, datasets from better models for docetaxel

resistant versus sensitive samples are not available. It is well-known

that 2D-induced resistance creates artificial resistance mechanisms.

Therefore, validation of these candidate genes in clinically relevant

samples is critical. 3. As the harvested CTC samples that we used

for gene expression analysis were not pure CTCs (with

predominantly leucocyte contamination), we had to exclude a

large number of candidate docetaxel resistance genes which were

expressed in leucocyte. This led to only 23 selected from the initial

237 candidate genes, thus potentially missing genes with good

docetaxel therapeutic response prediction value. Further pure CTC

selection (although a challenging task) or single cell RNA

sequencing may be explored in the future to address this issue.

In summay, our study demonstrated that in mCRPC,

elevated numbers of CTCs were inidcators of poor initial
Frontiers in Oncology 15
response when combined with serum biomarkers, and CTC

measurements could be used to predict short OS and/or PFS in

mCRPC and mHSPC patients. Addtionally, we showed that

measuring RNA expression of candidate docetaxel-resistance

and PCa related genes from CTC samples increased our ability to

predict patient outcome in the mHSPC patient cohort.

Importantly, we found that combining CTC data with clinical

serum biomarkers has the potential to predict poor docetaxel

treatment response, although this should be confirmed in a large

series of samples.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

access ion number(s) can be found in the art ic le/

Supplementary Material.
Ethics statement

The studies involving human participants were reviewed and

approved by UK Research Ethics Committee: London - City &

East Research Ethics Committee. The patients/participants

provided their written informed consent to participate in

this study.
Author contributions

Conceptualization: CD, PR, AG, GSh, JS, and Y-JL.

Validation: CD and LX. Formal analysis: CD and Y-JL.

Investigation: CD, TG, EB, ES, LX, and XM. Data Curation:

CD, EB, ES, XM, and GSc. Writing – Original Draft: CD.

Visualization: CD. Writing – Review and Editing: TG, ES, XM,

PR, AG, TO, JS, and Y-JL. Methodology: XM, Y-JL, LX.

Resources: GSh, PR, KT, CA, AW, MG, SC, TP, AG, SK, GSc,

DB, and JS. Supervision: JS and Y-JL. Project administration: Y-

JL. Funding: Y-JL. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the Medical Research Council,

Orchid Cancer Appeal, Cancer Research UK (grant number:

C16420/A18066). ANGLE plc, which holds the marketing rights

of the Parsortix® system, partially supported this study by

providing research funds and free-loan Parsortix® to Y-JL.

The funding source had no role in the study design, the

collection, analysis, or interpretation of the data or the writing

of the manuscript.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1060864
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Davies et al. 10.3389/fonc.2022.1060864
Acknowledgments

We thank Dr. Adam Brentnall for statistical analysis advice,

Eva Wozniak, Anna Terry, and Charles Mein at QMUL Genome

Center for the technical assistance with Fluidigm multiplex RT-

qPCR, and Dr. Maximilian Mossner for reviewing the

manuscript. We also thank all patients participating in

this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Oncology 16
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1060864/full#supplementary-material
References
1. SEER. Cancer stat facts: Prostate cancer. (2018). Available at: https://seer.
cancer.gov/statfacts/html/prost.html

2. Chandrasekar T, et al. Mechanisms of resistance in castration-resistant
prostate cancer (CRPC). Transl Androl Urol (2015) 4(3):365–80. doi: 10.3978/
j.issn.2223-4683.2015.05.02

3. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al.
Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced
prostate cancer. N Engl J Med (2004) 351(15):1502–12. doi: 10.1056/
NEJMoa040720

4. Sweeney CJ, Chen Y, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al.
Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J
Med (2015) 373(8):737–46. doi: 10.1056/NEJMoa1503747

5. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR,
et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term
hormone therapy in prostate cancer (STAMPEDE): survival results from an
adaptive, multiarm, multistage, platform randomised controlled trial. Lancet
(2016) 387(10024):1163–77. doi: 10.1016/S0140-6736(15)01037-5

6. Kyriakopoulos CE, Chen Y, Carducci MA, Liu G, Jarrard DF, Hahn NM, et al.
Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: Long-
term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin
Oncol (2018) 36(11):1080–7. doi: 10.1200/JCO.2017.75.3657

7. Varnai R, Koskinen LM, Mäntylä LE, Szabo I, FitzGerald LM, Sipeky C, et al.
Pharmacogenomic biomarkers in docetaxel treatment of prostate cancer: From
discovery to implementation. Genes (2019) 10(8):0599. doi: 10.3390/
genes10080599

8. Zhao L, Lee BY, Brown DA, Molloy MP, Marx GM, Pavlakis N, et al.
Identification of candidate biomarkers of therapeutic response to docetaxel by
proteomic profiling. Cancer Res (2009) 69(19):7696–703. doi: 10.1158/0008-
5472.CAN-08-4901

9. Sekino Y, Teishima J. Molecular mechanisms of docetaxel resistance in
prostate cancer. Cancer Drug Resist (2020) 3(4):676–85. doi: 10.20517/cdr.2020.37

10. O'Neill AJ, Prencipe M, Dowling C, Fan Y, Mulrane L, Gallagher WM, et al.
Characterisation and manipulation of docetaxel resistant prostate cancer cell lines.
Mol Cancer (2011) 10(1):126. doi: 10.1186/1476-4598-10-126
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