
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Tonghe Wang,
Emory University, United States

REVIEWED BY

Kevin Camphausen,
National Cancer Institute (NIH),
United States
Jung Hun Oh,
Memorial Sloan Kettering Cancer
Center, United States

*CORRESPONDENCE

Yi Luo
Yi.Luo@moffitt.org

SPECIALTY SECTION

This article was submitted to
Radiation Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 04 October 2022

ACCEPTED 01 November 2022
PUBLISHED 09 December 2022

CITATION

Luo Y, Cuneo KC, Lawrence TS,
Matuszak MM, Dawson LA, Niraula D,
Ten Haken RK and El Naqa I (2022) A
human-in-the-loop based Bayesian
network approach to improve
imbalanced radiation outcomes
prediction for hepatocellular cancer
patients with stereotactic
body radiotherapy.
Front. Oncol. 12:1061024.
doi: 10.3389/fonc.2022.1061024

COPYRIGHT

© 2022 Luo, Cuneo, Lawrence,
Matuszak, Dawson, Niraula, Ten Haken
and El Naqa. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 09 December 2022

DOI 10.3389/fonc.2022.1061024
A human-in-the-loop based
Bayesian network approach to
improve imbalanced radiation
outcomes prediction for
hepatocellular cancer
patients with stereotactic
body radiotherapy

Yi Luo1*, Kyle C. Cuneo2, Theodore S. Lawrence2,
Martha M. Matuszak2, Laura A. Dawson3, Dipesh Niraula1,
Randall K. Ten Haken2 and Issam El Naqa1

1Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, United States, 2Department of
Radiation Oncology, University of Michigan, Ann Arbor, MI, United States, 3Department of Radiation
Oncology, University of Toronto, Toronto, ON, Canada
Background: Imbalanced outcome is one of common characteristics of

oncology datasets. Current machine learning approaches have limitation in

learning from such datasets. Here, we propose to resolve this problem by

utilizing a human-in-the-loop (HITL) approach, which we hypothesize will also

lead to more accurate and explainable outcome prediction models.

Methods: A total of 119 HCC patients with 163 tumors were used in the study.

81 patients with 104 tumors from the University of Michigan Hospital treated

with SBRT were considered as a discovery dataset for radiation outcomes

model building. The external testing dataset included 59 tumors from 38

patients with SBRT from Princess Margaret Hospital. In the discovery dataset,

100 tumors from 77 patients had local control (LC) (96% of 104 tumors) and 23

patients had at least one grade increment of ALBI (I-ALBI) during six-month

follow up (28% of 81 patients). Each patient had a total of 110 features, where 15

or 20 features were identified by physicians as expert knowledge features

(EKFs) for LC or I-ALBI prediction. We proposed a HITL based Bayesian network

(HITL-BN) approach to enhance the capability of selecting important features

from imbalanced data in terms of accuracy and explainability through humans’

participation by integrating feature importance ranking and Markov blanket

algorithms. A pure data-driven Bayesian network (PD-BN) method was applied

to the same discovery dataset of HCC patients as a benchmark.

Results: In the training and testing phases, the areas under receiver operating

characteristic curves of the HITL-BN models for LC or I-ALBI prediction during

SBRT are 0.85 (95% confidence interval: 0.75-0.95) or 0.89 (0.81-0.95) and 0.77
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or 0.78, respectively. They significantly outperformed the during-treatment

PD-BN model in predicting LC or I-ALBI based on the discovery cross-

validation and testing datasets from the Delong tests.

Conclusion: By allowing the human expert to be part of the model building

process, the HITL-BN approach yielded significantly improved accuracy as well

as better explainability when dealing with imbalanced outcomes in the

prediction of post-SBRT treatment response of HCC patients when

compared to the PD-BN method.
KEYWORDS

accuracy and explainability, Bayesian networks, human-in-the-loop, hepatocellular
cancer, outcome prediction, stereotactic body radiotherapy
1 Introduction

Hepatocellular cancer (HCC) is the third leading cause of

cancer death worldwide. In 2020, the American Society of

Clinical Oncology (ASCO) estimated that 830,180 people

around the world died from the disease. While radiotherapy is

designed to achieve tumor local control (LC) in HCC patients, it

may also lead to radiation-induced toxicities (RITs). As a

relatively newer radiation treatment technique, stereotactic

body radiation therapy (SBRT) uses focused beams of

radiation aimed at the tumor from many different angles given

in one to five treatment fractions. Thus, the aim of SBRT is to

cure tumors in the meanwhile decreasing the radiation to nearby

healthy tissues. While it is more effective for tumor LC and RITs

reduction compared to conventional approaches, stringent dose

volume constraints of SBRT require the treatment planning to be

highly personalized to meet its intended goals (1).

In HCC SBRT, LC can be evaluated radiologically from a

lesion that is no longer arterially enhancing and has not spread

to neighboring lymph nodes without any failures within the

irradiated area over long-term follow-up (2). The impact of RITs

to baseline liver function of HCC patients before and after SBRT

can be evaluated by albumin-bilirubin (ALBI) grades for

personalized standard or adaptive implementation (3–5).

Specifically, physicians are concerned whether patients’ ALBI

grades will increase at least by one grade or not during 6-month

follow-up, which is denoted as I-ALBI. Thus, we considered I-

ALBI as another relevant SBRT outcome in addition to tumor

LC in this study. The literature on outcomes prediction models

for HCC patients with SBRT and their explainability capability

remains limited and challenging (6, 7). The purpose of this study

is to fill these gaps by developing accurate and explainable LC or

I-ALBI prediction models for HCC patients with SBRT.

In clinical practice, oncology datasets usually have high

dimensional features with limited sample size making
02
susceptible to spurious correlations including the Simpson

paradox (8). The dataset of HCC patients with SBRT in this

study is not an exception. Machine learning (ML) is defined as

the task of extracting information from possibly high-

dimensional and noisy data to give some guarantees of

performance on unseen data. However, extracting the

structure based on the proximity between empirical and

population densities becomes challenging in the higher

dimensions, since the distance between objects may be heavily

dominated by noise, and the associated optimization process has

an exponential dependency on these dimensions (9). Then,

feature selection is designed to help conventional ML

approaches handle high-dimensional datasets. For example, in

our previous study on personalized adaptive radiotherapy for

non-small-cell lung cancer patients, a pure data-driven Bayesian

network (PD-BN) approach is developed including feature

selection and BN structure building two steps. While Markov

blanket (MB) algorithms were employed in the first step to

identify the most important features from high-dimensional

oncology datasets, Tabu Search was used in the second step to

learn network structure based on the selected features. In

addition to unraveling the biophysical relationships among

lung cancer patients’ personal characteristics, radiation

treatment, and outcomes, the PD-BNs can predict lung tumor

LC or/and RITs and identify the best treatment strategies before

and during the radiotherapy to improve patients’ therapeutic

satisfaction (10–12).

Initially proposed by Pearl (13), the concept of variable X’s

MB is to identify its optimal feature subset containing strongly

relevant and non-redundant features, such as the variable’s

parents, children, and spouses as shown in the shadow area of

Figure 1. Given these features in the subset, the variable is

independent to other features outside it. Due to its capability

of fully explaining a target variable, the MB has the potential of

selecting the features that have strong relevance to an outcome
frontiersin.org
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for building its prediction models. Then the MB algorithms such

as incremental association MB (14) and its variants (15) were

successfully employed in the feature selection process of our

previous PD-BN approach to develop accurate and interpretable

outcome prediction models.

However, in addition to high dimensional features with

limited sample size, oncology datasets usually have imbalanced

outcomes, such as HCC patients’ LC or I-ALBI in this study. The

prediction of these treatment outcomes can be modeled as a

binary classification problem under supervised machine

learning. Class imbalance occurs when the minority group,

such as non-LC or I-ALBI, contains significantly fewer events

samples than the majority group, such as LC or non-I-ALBI.

Learning these imbalanced outcomes from high-dimensional

datasets can be very difficult (15, 16), and non-standard machine

learning methods are often guaranteed to achieve desirable

results (14). Moreover, features selected from the above

theoretically sound MB algorithms to have a strong relevance

with an outcome may not be able to build the BN-based outcome

prediction model with high accuracy, since accuracy and

explainability are two different criteria for feature selection

(17). Then, the PD-BN based outcome prediction models have

a limited prediction performance in this case. Furthermore, the

developed PD-BNs are not necessarily following physicians’

common practice knowledge, and unconfirmed biophysical

interactions explored from the PD-BN approach can barely

gain physicians’ trust for application in routine clinical

decision making. Therefore, the goal of this study is to develop

a new ML approach in handling imbalanced oncology data to

improve the accuracy and explainability of predicting HCC

patients’ outcomes with SBRT.

Building accurate and explainable outcome prediction models

from high-dimensional imbalanced data is a complex process that

requires nontrivial understanding of complex ML algorithms (18).

Humans are typically involved in unstructured manner at various

points in the processes of the model development, model training,
03
and testing of the underlying ML algorithm implementation.

Human-in-the-loop ML (HITL-ML) approaches are proposed

to rather define a new type of structured interactions between

humans and machine learning algorithms. Being developed

initially from reinforcement learning, preference learning, and

active learning, the HITL-ML is a hybrid of data-driven and

knowledge-driven approach that integrates a priori expert

knowledge (EK) into ML frameworks to overcome issues related

to model bias and uncertainty (19). In addition to making ML

more accurate or to obtain the desired accuracy faster, the HITL-

ML approach makes humans more effective and efficient (18).

Especially, it is useful in handling imbalanced data (20, 21). Due to

the transparency of the BN for potential clinical causal inferences,

in this study we develop an HITL-BN approach to build HCC

SBRT outcome prediction models from imbalanced oncology data

by incorporating EK features and allowing human agents to

participate in the BN feature selection process. The accuracy

and explainability of HITL-BN based outcome prediction

models are evaluated and compared to the PD-BN based

models that do not involve human agents.

The rest of paper is organized as follows. Section 2

introduces the properties of our dataset and the details of the

HITL-BN approach. Section 3 shows and compares outcome

prediction models developed from the PD-BN and HITL-BN

approaches. Section 4 discusses the accuracy and explainability

of our new approach and verifies the relationships among

biophysical features in developed HITL-BNs based on related

literatures. Section 5 concludes our paper.
2 Material and methods

2.1 Participation and data collection

Our study uses 81 HCC patients with SBRT on prospective

protocols under institutional review board (IRB) approval from

University of Michigan Hospital (Michigan Medicine). Since

each patient may have one or more tumors, there are totally 104

tumors in our discovery dataset. In this study, two or more

tumors in an HCC patient are assumed to be independent from

each other for the sake of simplicity. There are 23 patients with I-

ALBI during six-month follow up, and 100 tumors from 77

patients achieved LC. Each patient has 97 features, including

dosimetric information, clinical factors, pre- and during-

treatment labs and cytokines as summarized in Table 1. The

change of a lab or cytokine value during treatment was

calculated from the difference between its post treatment (or

three months after treatment) and pre-treatment (or baseline)

values, and it is formulated by adding prefix “D_” to its name in

our study. To avoid confusion in outcome prediction,

biophysical features related to LC or I-ALBI were specified

and manually designated by a human expert. For example,

“gross tumor volume (GTV)” is considered for predicting LC
FIGURE 1

Markov blanket of variable X.
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instead of I-ALBI. The number of features for LC or I-ALBI

prediction before and during SBRT are listed in Table 2. For

independent external validation, we tested our developed models

on a dataset from the Princess Margaret Hospital, which

included 59 tumors from 38 HCC patients.

Physicians’ acquired knowledge and experience from treating

HCC SBRT patients were collected and treated as expert

knowledge (EK) for SBRT outcomes prediction in this study.

The EK features (EKFs) related to I-ALBI prediction comprise

“LIVER_GTV_Mean_Dose”, “pre_ICGR15”, “D_ICGR15”,

“Child_Pugh”, “Cirrhosis”, “Liver_GTV_Volume”, “pre_HGF”,

“D_HGF”, “Age”, “Sex”, “pre_CD40_L”, “D_CD40_L”. The EKFs

for LC prediction include “Child_Pugh”, “GTV”, “Total_BED”,

“LIVER_GTV_Mean_Dose”, “Prior_Liver_Occurrences”,

“pre_MELD”, “pre_Bilirubin”, “pre_Albumin”, “Tumor_Size”,

“GTV_Mean_Dose_LQ”, “pre_ICGR15”, “pre_HGF”, and

“pre_TGF_Beta”. Except the above EKFs related to two different

outcomes, the rest of features in Table 1 were denoted as non-EK

features (non-EKFs) in this study.
2.2 Human-in-the-loop to handle
imbalanced data in feature selection

Gained from many years of experience, reading articles,

training, peers’ interaction, EK has a potential of bypassing
Frontiers in Oncology 04
otherwise complex systems and providing parsimonious solutions

that focus on key aspects of a given situation. By incorporating

EKFs into the feature selection of the PD-BN approach, we

previously developed a situational awareness BN (SA-BN)

method to predict the radiation outcomes of lung cancer patients

(29). With the SA-BNs, the physicians not only are able to know

patients’ situation and predict LC and potential RITs starting from

their acquired knowledge, but also can evaluate the best treatment

strategies to maximize the LC and minimize the RITs before and

during the course of radiotherapy. Focusing on improving the PD-

BN basedmodels’ explainability, the SA-BNmethod has limitations

in alleviating the impact of high-dimensional imbalanced data on

the PD-BN approach’s feature selection process to improve the

accuracy of its associated outcome prediction models (29).

However, the tighter confidence intervals of prediction

performance and well-known biophysical relationships in the SA-

BNs indicated that the EK has potential to improve the accuracy

and explainability of outcome prediction models. Then, the EK

methodology was employed in the HITL-BN approach to guide

feature selection from imbalanced HCC SBRT data.

Selecting an ML approach for outcome prediction often

involves a trade-off between prediction accuracy and

explainability (30). While some ML approaches may lead to

relatively more accurate outcome prediction models, other ML

methods can result in more explainable ones. According to the

explainability of their associated outcome prediction models, the
TABLE 1 Features of HCC patients with SBRT in the discovery dataset.

Categories Names

Clinical Factors
(25 features)

Sex, Age, pre-treatment_Cirrhosis (pre_Cirrhosis), Portal_Vein_Thrombosis, pre_SBRT, pre_SBRT_Liver, Active_Extrahepatic_Disease,
Prior_Liver_Occurrences, Previously_Treated, Active_Liver_Lesions, Tumor_Size, gross tumor volume (GTV), planning target volume (PTV), Fiducials,
Initial_Fraction, treatment break (Tx_Break) (22), Adapted, Total_Time, Break_Period, Number_of_Initial_Fractions (N_Initial_Fractions),
N_Final_Fractions, Total_N_Fractions, Liver_GTV_Volume, pre-treatment eastern cooperative oncology group performance status (pre_ECOG_PS),
D_ECOG_PS

Dosimetric
Information
(35 features)

Initial_Dose, biologically effective dose (BED)_Initial_Dose, equivalent dose in 2 Gy fractions (EQD2)_Initial_Dose, Total_SBRT_Dose, Total_BED,
Total_EQD2, BED_Manual (23), dose that covers 98% of GTV (GTV_D98), generalized equivalent uniform dose of GTV (GTV_gEUD),
GTV_Min_Dose, dose that covers 98% of GTV using linear-quadratic (LQ) model (GTV_D98_LQ), GTV_gEUD_LQ, GTV_Mean_Dose_LQ,
GTV_Min_Dose_LQ, dose that covers 98% of GTV using linear-quadratic-linear (LQL) model with threshold dose 20Gy (GTV_D98_LQL_DT20),
gEUD of GTV with a= -20 using LQL model with a/b=10 (GTV_gEUD_N20_LQL_10), GTV_Mean_Dose_LQL_DT20,
GTV_Min_Dose_LQL_DT20, PTV_Mean_Dose, dose that covers 98% of PTV (PTV_D98), PTV_gEUD, PTV_Min_Dose, PTV_D98_LQ,
PTV_gEUD_LQ, PTV_Mean_Dose_LQ, PTV_Min_Dose_LQ, PTV_D98_LQL_DT20, PTV_gEUD_LQL_DT20, PTV_Mean_Dose_LQL_DT20,
PTV_Min_Dose_LQL_DT20, mean dose of total liver excluding gross tumor volume (LIVER_GTV_Mean_Dose), LIVER_GTV_Mean_Dose_LQ,
LIVER_GTV_Mean_Dose_LQL, the 700 cm3 subvolume EQD2 of LIVER_GTV using LQ model with a/b = 2.5 Gy (LIVER_GTV_DC_LQ_EQD2)
(24), the ≤ 15 Gy cold volume EQD2 of LIVER_GTV using LQ model with a/b = 2.5 Gy (LIVER_GTV_CV_EQD2_LQ) (24)

Pre- and During-
Treatment Labs
(27 features)

pre_Na, D_Na*, pre_Creatinine, D_Creatinine, pre_Albumin, D_Albumin, pre-treatment aspartate aminotransferase (pre_AST), D_AST, pre-
treatment alanine transaminase (pre_ALT), D_ALT, pre_Alkphos, D_Alkphos, pre_Bilirubin, D_Bilirubin, pre-treatment international normalized
ratio (pre_INR), D_INR, pre_Protime_INR, D_Protime_INR, pre-treatment alpha fetoprotein (pre_AFP), D_AFP, baseline model for end-stage
liver disease (MELD_baseline), D_MELD, MELD_Na_baseline, D_MELD_Na, Child_Pugh, D_Child_Pugh, Barcelona_Score

Pre- and During-
Treatment
Cytokines
(10 features)

pre-treatment indocyanine green after 15 minutes (pre_ICGR15) (25, 26), D_ICGR15, pre-treatment transforming growth factor beta
(pre_TGF_Beta), D_TGF_Beta, pre-treatment CD40 ligand (pre_CD40_L) (27, 28), D_CD40_L, pre-treatment hepatocyte growth factor (pre_HGF)
(28), D_HGF, pre_Eotaxin, D_Eotaxin
*”D_” is a prefix to indicate the change of during-treatment labs or cytokines, which was calculated from the difference of their values between post-treatment (or three months after
treatment) and pre-treatment (or baseline).
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ML approaches can be generally classified into explainable ML

(EML) and unexplainable ML (UML) methods. The former

includes Decision Trees, Logistic Regression and its variants,

Naïve BNs, BNs, etc., and the latter comprises Random Forests

(RFs), Support Vector Machines (SVMs), Gradient Boosting

Machines (GBMs), Deep Learning (DL), etc. Although the EML-

based outcome prediction models generally have relatively lower

prediction accuracy compared to the UML-based models, they

can be used to identify the most relevant features in explaining

an outcome. On the other hand, while the UML-based outcome

prediction models have difficulties in interpreting the

relationships between specific features and the outcome, a list

of ranked features can be generated from each of them based on

features’ importance in terms of outcome prediction (31).

However, the ranking lists generated from different UML

approaches may not be the same, resulting in different

important features selected from the top rank of these lists for

outcome prediction. An integrated feature ranking list is

developed in this study by combining these lists based on the

performance of its associated UML-based outcome prediction

models to achieve robust feature selection as introduced in the

next section.

The selected features from the EML and UML approaches

are generally different, even though they are evaluated from one

single dataset. The former and latter have the potential of

improving an outcome prediction model’s explainability and

accuracy respectively. While the MB algorithm and network

structure learning were considered as a computational agent to

improve the prediction model’s explainability by exploring EKFs

and non-EKFs that have strong relevance to an outcome, the

integrated feature ranking list was treated as another

computational agent to enhance the prediction model’s

accuracy by investigating each feature’s importance in terms of

outcome prediction. Then, the HITL-BN approach can improve

its capability of learning from the imbalanced HCC SBRT data

by allowing human agents to interact these two computational

agents during the process of feature selection.
2.3 The human-in-the-loop
BN approach

As stated previously, the UML approaches include RF, SVM,

GBM, DL, etc., and each of them can generate a feature ranking
Frontiers in Oncology 05
list in terms of importance in outcome prediction from all

features including EKFs and non-EKFs in a dataset. Let K be

the total kinds of these UML approaches, k be the index of these

approaches (k =1, 2, 3, …, K), Lk be a feature ranking list

obtained from UML approach k (k =1, 2, 3,…, K) with the most

important feature for outcome prediction at the top of the list,

and AUCk be the performance of an outcome prediction model

developed from UML approach k based on cross validation in

the discovery dataset (k =1, 2, 3,…, K). Let J be the total number

of features in the discovery dataset, j be the index randomly

assigned to them (j = 1, 2, 3,…, J), Nj(L
k) be the rank of feature j

in ranking list Lk (j = 1, 2, 3,…, J, k =1, 2, 3,…, K). The rankings

Nj(L
k) of the feature in different lists Lkmay not be the same, and

the performance AUCk of UML approaches for outcome

prediction could be different. It is assumed that a robust

feature ranking list can be developed by integrating all these

ranking lists based on their corresponding UML approaches’

prediction performance. Let L* be an integrated feature ranking

list based on K UML approaches, be the weighted ranking score

(WRS) of feature j to determine its ranking in list L* , and its

value can be evaluated from the following equation by

integrating its ranks Nj(L
k) in different ranking lists Lk

WRSj =oK
k=1

Nj L
k

� �
*oK

k=1AUC
k

AUCk j ¼ 1; 2; 3; …; J (1)

Then, the ranking list L* in terms of features’ importance in

outcome prediction can be obtained from sorting all the features

based on their WRSj , where the feature with the minimal score

value is ranked at the top of the list.

Including feature selection and BN structure learning

processes, HITL-BN based outcome prediction models are

mainly developed based on the integrated ranking list. Let I be

the total number of EKFs in list L* with I<J , i represent the order
of an EKF within all EKFs (i = 1, 2, 3,…, I). An initial HITL-BN

is developed from the top n percent of features in the list. The

value of n depends on the total number N of features in a dataset

and appropriate feature dimension D to satisfy the MB

algorithms’ faithfulness assumption, and we assumed n = 100*
D

N= . Suppose the top n percent of features in list includes i EKFs

(i≤D ), an initial HITL-BN based outcome prediction model can

be denoted as HITL-BN(i). Since some EKFs in the top rank of

list L* may be redundant or less relevance to an outcome

compared to other ones, the most relevant EKFs can be

identified from the outcome’s MB. Given the selected EKFs,
TABLE 2 The number of features associated with each of 104 tumors before and during treatment for I-ALBI or LC prediction.

Outcome I-ALBI LC

Time Pre- Treatment During Treatment Pre- Treatment During Treatment

# of features associated with each tumor 45 69 68 93
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important non-EKFs in the top rank of the list to improve the

outcome prediction should also be strongly related to these

EKFs, which can be identified from each of their MBs. Thus,

important EKFs and non-EKFs can be selected from the top rank

of the list with balanced accuracy and explainability for HITL-

BN(i) development. Note that the structure learning of HITL-

BN(i) is the same as that of PD-BNs, where less important EKFs

and non-EKFs are eliminated from the network to maximize its

prediction performance. The rest of our HITL-BN approach is to

repeatedly evaluate whether a next EKF and additional non-

EKFs before it in list L* can improve the accuracy of previous

outcome prediction models or not.

Let ri be the rank of i-th EKF in list L* (i =1, 2, 3, …, I). As

the evaluation moves from i-th EKF to i+1-th EKF in the

integrated feature ranking list, the set of additional indices

between them is denoted as ri, i+1 . Let S(ri, i+1) represents the

set of non-EKFs associated with ri, i+1 , and the number of non-

EKFs in the set could be zero when two EKFs are consecutive in

the list. If set S(ri, i+1) is not empty, the importance of these non-

EKFs for the outcome prediction depends on whether they have

strong relevance with selected EKFs, including the EKFs in

HITL-BN(i) and i+1-th EKF. Let MBs (S(ri,i+1) ) be these

EKFs’ MBs based on non-EKFs in S(ri,i+1) , and the set of

selected non-EKFs from these MBs is indicated as S(r*i,i+1).

Then HITL-BN(i+1) can be developed based on i+1-th EKF,

non-EKFs in S(r*i,i+1) together with all the features in HITL-BN

(i) by employing PD-BN’s structure learning process. The

process continues along list until the performance of

prediction model cannot be improved or meet a target
Frontiers in Oncology 06
prediction performance. The details of the HITL-BN approach

to generate an accurate and explainable outcome prediction

model are described in Figure 2.
3 Results

3.1 PD-BN models for I-ALBI or
LC prediction

As a comparison of the HITL-BN approach, PD-BNmodels for

I-ALBI or LC prediction were developed based on our HCC SBRT

patients as shown in Figures 3 or 4. Numerical experiments in this

study were conducted in an R environment, where function “inter-

MB” in R package “bnlearn”was employed as the MB algorithm for

feature selection and function “boot.strength” in the same R

package was used for BN structure learning. Figures 3A or 3D

shows pre- or during-treatment PD-BN model for I-ALBI

prediction developed from the discovery dataset. While the PD-

BN method selected biophysical features “pre_Bilirubin”,

“pre_Cirrhosis”, “Portal_Vein_Thrombosis”, “pre_Creatinie”,

“pre_CD40_L”, “pre_HGF”, and “Liver_GTV_DC_LQ_EQD2” for

pre-treatment I-ALBI prediction, additional variables

“D_Protime_INR”, “D_Bilirubin”, and “D_ICGR15” were chosen

for during-treatment I-ALBI prediction. The prediction

performances of the former and the latter based on the discovery

dataset are 0.78 (95%CI: 0.67-0.83) and 0.82 (95%CI: 0.74-0.88) as

described in Figures 3B and 3E respectively. The prediction
FIGURE 2

The flow chart of the HITL-BN approach.
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performance of the former or the latter based on the testing dataset

is 0.68 or 0.73 as illustrated by Figures 3C or 3F.

Figures 4A or 4D shows pre- or during-treatment PD-BN for

LC prediction generated from the discovery dataset. While the

PD-BN method se lec ted f ea tures “pre_Albumin ” ,

“Active_Liver_Les ions” , “Porta l_Vein_Thrombosis” ,

“pre_ECOG_PS” , “pre_TGF_Beta” , “pre_HGF” , and

“GTV_gEUD_N20_LQL_10” for pre-treatment LC prediction,

additional variables “pre_Cirrhosis”, “Adapted”, “D_CD40_L”,

and “D_TGF_Beta” were chosen for during-treatment LC

prediction. The prediction performances of the former and the

latter based on the discovery dataset are 0.75 (95%CI: 0.60-0.86)

and 0.79 (95%CI: 0.69-0.89) as shown in Figures 4B and 4E

respectively. The prediction performance of the former or the

latter based on the testing dataset is 0.66 or 0.72 as illustrated by

Figures 4C and 4F.
3.2 HITL-BN models for HCC SBRT
patients’ outcomes prediction

We conducted numerical experiments to develop or test

HITL-BN models for I-ALBI or LC prediction based on the

discovery and testing datasets in the same R environment as that

of developing or testing the PD-BN models. Two UML

approaches, the RF and GBM (K=2), were employed in this

study to generate an integrated feature ranking list for a HITL-

BN based outcome prediction model development before or

during treatment. RF and GBM share similar tree/graph
Frontiers in Oncology 07
structure learning to BN. Packages ‘randomForestSRC’ and

‘gbm’ were used to identify feature ranking lists from the

former and latter approaches based on the discovery dataset

respectively. After evaluating the two UML approaches’

prediction performances, each feature’s WRS was computed

based on its ranks in two different ranking lists and the

corresponding UML approaches’ prediction performances from

Equation (1). Then, an integrated feature ranking list to rank all

the features in the discovery dataset for I-ALBI or LC prediction

before or during SBRT can be generated from their WRSs.

3.2.1 HCC SBRT patients’ I-ALBI prediction
Figures 5A or 5D shows pre- or during-treatment HITL-BN

for I-ALBI prediction developed from the discovery dataset.

While the HITL-BN approach selected features “Sex”, “Age”,

“pre_Na”, “pre_Cirrhosis”, “pre_Alkphos”, “pre_Billirubin”,

“pre_ICGR15”, and “LIVER_GTV_DC_LQ_EQD2” for pre-

treatment I-ALBI prediction, additional variables “D_MELD”,

“D_Albumin”, and “D_ICGR15” were chosen for during-

treatment I-ALBI prediction. Tables 3 and 4 show the

integrated feature ranking lists of all features according to

their WRSs for I-ALBI prediction before and during SBRT

respectively. The features in PD-BNs as shown in Figure 3 are

highlighted with italic font in these tables, and the features in

HITL-BNs as illustrated in Figure 5 are emphasized with bold

font in them. Especially, the features marked with italic and bold

fonts come from both the PD-BN and HITL-BN.

The performances AUCs of pre- and during-treatment

HITL-BNs for I-ALBI prediction based on the discovery
B C

D

E F

A

FIGURE 3

Pre- (A) and during-treatment (D) PD-BNs for I-ALBI prediction. The prediction performance of pre- (B) and during-treatment (E) PD-BNs
based on the discovery dataset. The prediction performance of pre- (C) and during-treatment (F) PD-BNs based on the testing dataset.
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B C
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E F
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FIGURE 5

Pre- (A) and during-treatment (D) HITL-BNs for I-ALBI prediction. The prediction performance of pre- (B) and during-treatment (E) HITL-BNs
based on the discovery dataset. The prediction performance of pre- (C) and during-treatment (F) HITL-BNs based on the testing dataset.
B C

D

E F

A

FIGURE 4

Pre- (A) and during-treatment (D) PD-BNs for LC prediction. The prediction performance of pre- (B) and during-treatment (E) PD-BNs based on
the discovery dataset. The prediction performance of pre- (C) and during-treatment (F) PD-BNs based on the testing dataset.
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dataset are 0.83 (95%CI: 0.75-0.89) and 0.89 (95%CI: 0.81-0.95)

as shown in Figures 5B, E respectively. While the performance of

the former is not significantly better than that of pre-treatment

PD-BN as illustrated in Figure 3A, the latter significantly

outperforms during-treatment PD-BN as shown in Figure 3D
Frontiers in Oncology 09
based on the DeLong test with p-value=0.0253. For the testing

dataset, the performance of pre- or during-treatment HITL-BN

for I-ALBI prediction is 0.72 or 0.78 as illustrated by Figures 5C

or 5F, and the latter significantly outperforms during-treatment

PD-BN from the Delong test with p-value=0.0318.
TABLE 4 The rank of features in an integrated feature ranking list for during-treatment I-ALBI prediction.

Rank Feature Name Rank Feature Name Rank Feature Name

1 pre_Alkphos 24 pre_Creatinine 47 pre_ALT

2 pre_ICGR15 25 pre_HGF 48 Prior_Liver_Occurences

3 pre_Albumin 26 pre_TGF_Beta 49 Break_Period

4 D_MELD 27 pre_AST 50 LIVER_GTV_Mean_Dose_LQL

5 D_ICGR15 28 D_INR 51 Child_Pugh

6 pre_Na 29 D_ALT 52 Barcelona_Score

7 D_Creatinine 30 MELD_Na_baseline 53 Portal_Vein_Thrombosis

8 pre_Bilirubin 31 D_TGF_Beta 54 Total_Time

9 D_HGF 32 D_Bilirubin 55 Total_EQD2

10 D_Eotaxin 33 MELD_baseline 56 D_ECOG_PS

11 LIVER_GTV_DC_LQ_EQD2 34 Total_SBRT_Dose 57 Total_N_Fractions

12 pre_Protime_INR 35 Liver_GTV_Volumn 58 D_Child_Pugh

13 D_Alkphos 36 pre_Eotaxin 59 N_Final_Fractions

14 D_CD40_L 37 D_Na 60 Tx_Break

15 D_AFP 38 Initial_Fraction 61 Sex

16 D_MELD_Na 39 Total_BED 62 Active_Extrahepatic_Disease

17 pre_AFP 40 Initial_Dose 63 Fiducials

18 D_Albumin 41 BED_Manual 64 pre_SBRT

19 D_Protime_INR 42 LIVER_GTV_Mean_Dose_LQ 65 pre_ECOG_PS

20 Age 43 BED_Initial_Dose 66 Active_Liver_Lesions

21 LIVER_GTV_CV_EQD2_LQ 44 LIVER_GTV_Mean_Dose 67 pre_INR

22 pre_CD40_L 45 EQD2_Initial_Dose 68 Previously_Treated

23 D_AST 46 pre_Cirrhosis 69 pre_SBRT_Liver
TABLE 3 The rank of features in an integrated feature ranking list for pre-treatment I-ALBI prediction.

Rank Feature Names Rank Feature Names Rank Feature Names

1 pre_Albumin 16 Total_SBRT_Dose 31 Prior_Liver_Occurences

2 pre_ICGR15 17 Total_EQD2 32 EQD2_Initial_Dose

3 pre_Alkphos 18 LIVER_GTV_Mean_Dose_LQ 33 MELD_baseline

4 pre_Na 19 BED_Manual 34 Initial_Dose

5 Age 20 pre_AST 35 Sex

6 LIVER_GTV_DC_LQ_EQD2 21 pre_Eotaxin 36 Active_Liver_Lesions

7 LIVER_GTV_CV_EQD2_LQ 22 Liver_GTV_Volumn 37 Barcelona_Score

8 pre_Bilirubin 23 pre_Protime_INR 38 Child_Pugh

9 pre_AFP 24 LIVER_GTV_Mean_Dose 39 Fiducials

10 pre_Creatinine 25 BED_Initial_Dose 40 pre_INR

11 Total_BED 26 LIVER_GTV_Mean_Dose_LQL 41 pre_ECOG_PS

12 pre_CD40_L 27 pre_Cirrhosis 42 Active_Extrahepatic_Disease

13 pre_TGF_Beta 28 Initial_Fraction 43 pre_SBRT

14 pre_HGF 29 Portal_Vein_Thrombosis 44 Previously_Treated

15 MELD_Na_baseline 30 pre_ALT 45 pre_SBRT_Liver
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3.2.2 HCC SBRT patients’ LC prediction
Figures 6A or 6D shows pre- or during-treatment HITL-BN for

LC prediction developed from the discovery dataset.While theHITL-

BN for LC predict ion approach selected features

“Prior_Liver_Occurences” , “GTV” , “MELD_baseline” ,

“pre_TGF_Beta” , “pre_HGF” , “GTV_gEUD_LQ” , and

“LIVER_GTV_Mean_Dose” for pre-treatment LC prediction,

additional variables “MELD_Na_baseline”, “pre_Billirubin”,

“pre_ICGR15”, “GTV_Mean_Dose_LQ”, “D_Protime_INR”, and

“D_TGF_Beta” were chosen for during-treatment LC prediction.

Tables 5 and 6 show the ranking lists of all features according to their

WRSs for LC prediction before and during SBRT respectively. The

features from the PD-BNs as shown in Figure 4 are highlighted with

italic font in these tables, and the features from the HITL-BNs are

emphasized with bold font in them. Especially, the features marked

with italic and bold fonts come fromboth the PD-BNandHITL-BN.

The performances of pre- and during-treatment HITL-BNs

for LC prediction based on the discovery dataset are 0.82 (95%

CI: 0.67-0.93) and 0.85 (95%CI: 0.75-0.95) as shown in

Figures 6B and 6E and 6E respectively. While the performance

of the former is not significantly better than that of pre-

treatment PD-BN as illustrated in Figure 4A, the latter

significantly outperforms the during-treatment PD-BN as

shown in Figure 4D based on the DeLong test with p-

value=0.0367. For the testing dataset, the performance of pre-

or during-treatment HITL-BN for LC prediction is 0.71 or 0.77

as illustrated by Figure 6C or 6F, and the latter significantly
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outperforms the during-treatment PD-BN from the Delong test

with p-value=0.0406. The results of our numerical experiments

are summarized in Table 7.
4 Discussion

4.1 Comparison of the PD-BN and
the HITL-BN approaches for
class imbalance

Developed from our previous PD-BN method, the HITL-BN

approach also includes feature selection and BN structure

learning. To handle imbalanced data, the HITL-BN approach

allows human agents to integrate the EML-based and UML-

based feature selections in identifying important EKFs and non-

EKFs in terms of outcome prediction. Tables 3 and 4 show that

EKFs and non-EKFs obtained from the HITL-BNs (highlighted

by bold font) for I-ALBI prediction are generally ranking higher

than those from the PD-BNs (emphasized by italic font) before

and during SBRT respectively. Also, a similar situation can be

found from Tables 5 and 6 for LC prediction. These findings not

only echo that the HITL-BNs outperform the PD-BNs for I-

ALBI or LC prediction before and during SBRT as shown in

Figures 3 and 5 or Figures 4 and 6, but also indicate that the

HITL-BN approach can increase the capability of feature

selection from imbalanced data. Since the properties of
B C

D

E F

A

FIGURE 6

Pre- (A) and during-treatment (D) HITL-BNs for LC prediction. The prediction performance of pre- (B) and during-treatment (E) HITL-BNs
based on the discovery dataset. The prediction performance of pre- (C) and during-treatment (F) HITL-BNs based on the testing dataset.
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imbalanced outcomes in the testing dataset are not the same as

those of the training dataset, the prediction performance of the

HITL-BN based outcome prediction models of the former is

expectedly less than that of the latter.

The reasons for the improvement of accuracy and

explainability of HITL-BN based outcome prediction models

in handling the imbalanced proportion of tumors with and

without LC or I-ALBI in our HCC SBRT patient dataset could

be twofold. First, since traditional ML approaches for

crowdsourcing labeled training examples are not effective at

locating the scarce minority class examples (32), they have

difficulties in handling the high-skewed domain in the real-

world, and their associated outcome prediction models may have

low accuracy. Active learning is designed to select representative

subsets of unlabeled datasets for manual labeling, and an ML

algorithm can achieve accuracy with fewer training labels if it is

allowed to choose the data from which it learns (14, 33).

Originating from active learning, our HITL-BN approach

intends to manually label important EKFs and non-EKFs

based on their strong relevance to an outcome or/and their

importance in the outcome prediction, which is intended to

improve the prediction of the imbalanced LC classes and I-ALBI

classes. Secondly, while EKFs play an important role in the

HITL-BN approach due to its explainability to gain physicians’

trust in clinical decision making, not all of them are ranked at the
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top of an integrated feature ranking list. They are evenly

distributed into the ranking list as shown in Tables 3-6. Only

the top-ranked EKFs that are strongly related to the outcome

were selected to build an initial HITL-BN. In the meantime, top-

ranked non-EKFs have potential to improve the accuracy of the

initial HITL-BN model as well. However, given the selected

EKFs in the initial model, only the non-EKFs with strong

relevance to these EKFs can improve its prediction

performance. Our HITL-BN approach is designed to

determine the important EKFs or/and non-EKFs from

integrating the EML-based and UML-based feature selection

methods and maximizing the prediction performance of the

developed BNs through feedback. The focused, interactive,

incremental process to improve the accuracy and

explainability of an outcome prediction model can be

considered as an extension of cost-sensitive learning, which is

one of traditional methods for class imbalance (14, 34, 35).

As some EKFs may be missing or not available in clinical

practice, the HITL-BN approach can skip these EKFs or

investigate the EKFs that physicians are most interested in

along the integrated ranking list for the outcome prediction

model development. The purpose of this study is to verify

whether the HITL-BN approach can significantly improve the

performance of HCC SBRT patients’ outcome prediction models

or not based on imbalanced data compared to the PD-BN
TABLE 5 The rank of features in an integrated feature ranking list for pre-treatment LC prediction.

Rank Feature Names Rank Feature Names Rank Feature Names

1 pre_AST 24 GTV_D98_LQ 47 GTV_Mean_Dose_LQ

2 PTV 25 pre_ICGR15 48 GTV_gEUD

3 pre_Protime_INR 26 PTV_D98 49 pre_SBRT

4 MELD_Na_baseline 27 GTV_Min_Dose_LQ 50 EQD2_Initial_Dose

5 pre_TGF_Beta 28 GTV_Mean_Dose 51 BED_Initial_Dose

6 PTV_gEUD_LQ 29 GTV_Min_Dose 52 Sex

7 MELD_baseline 30 pre_Eotaxin 53 Initial_Fraction

8 PTV_Min_Dose 31 GTV_gEUD_LQ 54 Age

9 LIVER_GTV_Mean_Dose 32 GTV_Mean_Dose_LQL_DT20 55 Barcelona_Score

10 GTV 33 pre_Albumin 56 pre_ALT

11 pre_INR 34 Prior_Liver_Occurences 57 pre_ECOG_PS

12 pre_HGF 35 PTV_D98_LQL_DT20 58 Fiducials

13 pre_AFP 36 GTV_gEUD_N20_LQL_10 59 Previously_Treated

14 PTV_Min_Dose_LQL_DT20 37 PTV_D98_LQ 60 Active_Extrahepatic_Disease

15 PTV_gEUD 38 PTV_Mean_Dose_LQL_DT20 61 GTV_D98

16 PTV_Min_Dose_LQ 39 pre_Na 62 Portal_Vein_Thrombosis

17 PTV_gEUD_LQL_DT20 40 pre_Bilirubin 63 pre_Cirrhosis

18 BED_Manual 41 Child_Pugh 64 Initial_Dose

19 pre_CD40_L 42 Active_Liver_Lesions 65 pre_SBRT_Liver

20 LIVER_GTV_CV_EQD2_LQ 43 PTV_Mean_Dose_LQ 66 Tumor_Size

21 Total_EQD2 44 PTV_Mean_Dose 67 pre_Alkphos

22 Total_BED 45 GTV_Min_Dose_LQL_DT20 68 pre_Creatinine

23 Total_SBRT_Dose 46 GTV_D98_LQL_DT20
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TABLE 6 The rank of features in an integrated feature ranking list for during-treatment LC prediction.

Rank Feature Names Rank Feature Names Rank Feature Names

1 pre_AST 32 Total_EQD2 63 D_Albumin

2 PTV 33 GTV_Min_Dose_LQL_DT20 64 D_ECOG_PS

3 MELD_Na_baseline 34 PTV_D98_LQL_DT20 65 Initial_Dose

4 pre_Protime_INR 35 D_Bilirubin 66 Barcelona_Score

5 D_TGF_Beta 36 D_Eotaxin 67 Child_Pugh

6 LIVER_GTV_Mean_Dose 37 PTV_D98 68 D_ALT

7 PTV_Min_Dose 38 Total_BED 69 pre_Na

8 MELD_baseline 39 GTV_Min_Dose_LQ 70 BED_Initial_Dose

9 pre_TGF_Beta 40 D_AST 71 pre_ECOG_PS

10 GTV 41 GTV_Mean_Dose 72 Fiducials

11 D_HGF 42 D_Creatinine 73 N_Final_Fractions

12 PTV_gEUD 43 D_MELD 74 Total_N_Fractions

13 pre_AFP 44 GTV_Mean_Dose_LQL_DT20 75 N_Initial_Fractions

14 Total_Time 45 pre_Albumin 76 Active_Liver_Lesions

15 D_ICGR15 46 pre_Alkphos 77 Prior_Liver_Occurences

16 D_AFP 47 pre_ALT 78 Previously_Treated

17 PTV_Min_Dose_LQL_DT20 48 D_Na 79 Active_Extrahepatic_Disease

18 D_Protime_INR 49 BED_Manual 80 Adapted

19 PTV_gEUD_LQ 50 pre_Creatinine 81 Break_Period

20 D_MELD_Na 51 PTV_Mean_Dose_LQL_DT20 82 Age

21 pre_HGF 52 PTV_D98_LQ 83 pre_SBRT

22 pre_CD40_L 53 PTV_Mean_Dose 84 Portal_Vein_Thrombosis

23 pre_INR 54 GTV_gEUD_N20_LQL_10 85 pre_Cirrhosis

24 LIVER_GTV_CV_EQD2_LQ 55 GTV_D98_LQL_DT20 86 Sex

25 GTV_Min_Dose 56 pre_Bilirubin 87 D_CD40_L

26 PTV_Min_Dose_LQ 57 GTV_gEUD_LQ 88 pre_SBRT_Liver

27 pre_ICGR15 58 GTV_D98_LQ 89 Initial_Fraction

28 D_INR 59 GTV_gEUD 90 D_Child_Pugh

29 PTV_gEUD_LQL_DT20 60 GTV_D98 91 D_Alkphos

30 GTV_Mean_Dose_LQ 61 Tumor_Size 92 PTV_Mean_Dose_LQ

31 pre_Eotaxin 62 Tx_Break 93
Frontiers in Onc
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TABLE 7 The results of numerical experiments.

Dataset Treatment Performance PD-BN HITL-BN Delong Test

I-ALBI LC I-ALBI LC I-ALBI LC

Training Pre AUC 0.78 0.75 0.83 0.82 0.0654 0.0875

95% CI 0.67-0.83 0.60-0.86 0.75-0.89 0.67-0.93 NA NA

During AUC 0.82 0.79 0.89 0.85 0.0253 0.0367

95% CI 0.74-0.88 0.69-0.89 0.81-0.95 0.75-0.95 NA NA

Testing Pre AUC 0.68 0.66 0.72 0.71 0.0921 0.1063

During AUC 0.73 0.72 0.78 0.77 0.0318 0.0406
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method. The HITL-BN approach based on two UML

approaches with RF and GBM had been implemented in our

numerical experiments to test the hypophysis. Our choices of

these two because they resemble BN in terms of graph/tree

structures. However, if the number of UML algorithms

increases, whether the predictive power of the HITL-BN based

outcome prediction models could be improved or not and how

much it can be improved are interesting research topics that

beyond our current scope and we would like to explore in the

next step.

Our numerical experiments on developing the HITL-BN

based outcome prediction models for HCC SBRT patients have

shown that human intelligence can positively augment machine

intelligence, and the assistance of human agents involved in the

learning phase can enhance the capability of learning from

imbalanced data. However, our study still has limitations in

terms of small sample size and the assumption of two or more

independent lesions in an HCC patient. In the next steps, in

addition to developing more robust HITL-BN approaches by

removing the within patient tumor independence assumption

and conducting further external independent validations, we

plan to explore an interactive human-computer interface via the

HITL-BN approach to conduct prospective personalized SBRT

trials for improving HCC patients’ radiation treatment outcomes.
4.2 The explainability of the HITL-BNs for
HCC SBRT patient outcomes prediction

In addition to outperforming the PD-BN based outcome

prediction models in terms of accuracy, the HITL-BN based

outcome prediction models also have a better explainability due

to the incorporation of the EKFs in their model buildings. The

biophysical pathways displayed in our HITL-BNs for I-ALBI

prediction before SBRT are supported by cited literatures. Since a

longitudinal increase in the ALBI score is closely associated with

non-malignancy-related mortality and quality of life (36), the

incorporation of mid-treatment change in ALBI in addition to

baseline ALBI improves the ability to predict treatment-related

toxicity in patients withHCC receiving SBRT (13). Then change in

albumin–bilirubin score (ALBI) score at three months after SBRT

were used in many studies to capture acute toxicity occurring <90

days after SBRT (37). Studies showed that repeated SBRT in

patients with advanced liver cirrhosis seems to exhibit higher

hepatic toxicity (38), and the severity of hepatic cirrhosis is a

major prognostic factor for radiation induced liver disease (39).

Also, researchers found out that direct total bilirubin and total

bilirubin are not related to delivery dose, and age is a significant

predictive factor for radiation-induced liver injury based on

univariate analysis of clinical factors (39). Moreover, an elevation

in alkaline phosphatase (alkphos) of at least 5-fold and/or that of
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bilirubinof at least 3-fold compared toeither theuppernormal limit

or thepretreatment level corresponding tograde3orhigherhepatic

toxicity without disease progression within 3months after SBRT is

one of the conditions to define radiation-induced liver disease (40).

The following findings from literatures support the biophysical

pathways displayed in the HITL-BN for I-ALBI prediction during

SBRT. Increasingmean liver dosewas associatedwith larger increases

in toxicities (41). As the percentage of retained ICG at 15 minutes,

ICGR15’s normal value would be in the range of 4–10% (42). While

baseline values of ICGR15 may be associated with the development

of radiation induced liver disease, the change of ICGR15 after

radiation therapy appears to be most indication of the toxicity (43,

44). There may exist prognostic significance of baseline serum

sodium value (pre_Na) in HCC patients complicating with liver

cirrhosis, and lower serum sodium concentration is a useful

predictor for these patients (45). The time course of changes of the

liver function after SBRT was analyzed in patients treated for non-

resectable HCC. Albumin was the only blood test that changed

systematically during a three-month period, and it stabilized

thereafter, which indicates the decrease in albumin reflects a minor

radiation-induced liver disease (46). Model for end-stage liver

disease (MELD) is a scoring system used to predict three-month

mortality in patients with advanced liver disease (47). An increase in

MELD score is associatedwith a decrease in residual liver function or

deterioration in liver function (48).

Moreover, our HITL-BNs to predict LC before and during

SBRT are endorsed by the following recorded observations. Higher

treatment dose was associated with improved freedom from local

progression (41) (49). Larger GTV volume was significantly

associated with a higher risk of death (39). While increased TGF-

beta signaling has demonstrated radiation resistance (50), study

shows that inhibition ofTGF-beta stops disease progression in liver

metastases from colon cancer (51) (52). Incorporation of ICGR15

variables significantly improves the prediction of post-SBRT liver

function. The use of ICGR15 can facilitate the delivery of the

maximum safe dose of radiation for patients with hepatocellular

carcinoma and has the potential to improve uncomplicated tumor

control and survival (43). Prolongedprothrombin time (Protime) is

the most important score when determining the incidence of

radiation-induced liver disease during SBRT in patients with CP-

A score 6 (53). International Normalized Ratio (INR) is derived

from Protime which is calculated as a ratio of the patient’s Protime

to a control Protime standardized for the potency of the

thromboplastin reagent developed by the World Health

Organization. The MELD is used to prioritize patients for liver

transplantation and includes results for creatinine, bilirubin, and

Protime expressed as international normalized ratio (Protime-INR)

(54). Evidencewas provided that the Protime-INRwas identified as

the most important methodologies may influence the MELD (54).

While lower MELD scores were associated with improved survival

followingSBRT (55), amathematical equationbased onMELDand
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sodium, named theMELD-Na score, is a feasible and independent

prognostic predictor for both short- and long-term outcome

predictions in patients with hepatocellular carcinoma (56). It

turns out that some features related to radiation induced liver

disease suchasTGF-Beta,MELD-Na,Bilirubin, etc. appeared in the

HITL-BN for LC prediction, and its reason may be related to the

fact that liver SBRT was conducted by limiting the toxicity from

therapy and not compromising the primary objective of

local control.
5 Conclusions

In this study, we have developed a newHITL-BN approach for

HCC patients’ I-ALBI or LC prediction before and during SBRT

based onpreviousPD-BNmethod. In addition to incorporatingEK

into its feature selection process, the HITL-BN approach allows

humans to participate in an outcome prediction model building

process for better handling of imbalanced HCC SBRT data.

Especially, we created a novel feature selection mechanism for the

HITL-BN approach by integrating the prediction strength of

multiple UML methods and the explainable capability of the

theoretically sound MB algorithms. Numerical experiments show

that the HITL-BN based outcome prediction models significantly

outperform the PD-BN based models during SBRT in terms of

accuracy and explainability. In addition to gaining physicians’ trust

in clinical decision making, the HITL-BN approach has the

potential of becoming an important component of future human-

computer interface to bridge physicians and advanced ML

techniques in improving HCC patients’ treatment outcomes. Our

approach canbe applied to the outcomepredictionof treating other

types of cancer, but it still needs to be validated in external further

independent datasets.
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