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Background: Although rare, ERBB2 exon 16 skipping mutations (ERBB2DEx16)
have been implicated in resistance to anti-HER2 and anti-EGFR targeted

agents. Our study investigated the prevalence and clinical significance of

ERBB2DEx16 in Chinese pan-cancer patients.

Methods: We retrospectively screened 40996 patients, spanning 19 cancer

types, who had available genomic profiles acquired with DNA-based next-

generation sequencing (NGS). We characterized the clinical and molecular

features of the ERBB2DEx16-positive patients. Furthermore, we also analyzed a

pan-cancer dataset from the Cancer Genome Atlas (TCGA; n=8705).

Results: A total of 22 patients were detected with ERBB2DEx16, resulting in an

overall prevalence rate of 0.054% (22/40996). Of them, 16 patients had lung

cancer (LC; 0.05%, 16/30890), five patients had gastric cancer (GC; 0.35%, 5/

1448), and one patient had ovarian cancer (0.12%, 1/826). Among the 16 LC

patients, ERBB2DEx16 was detected in four treatment-naïve EGFR/ALK-

negative patients and 12 EGFR-positive patients after the onset of resistance

to EGFR tyrosine kinase inhibitors (TKIs). The treatment-naïve patients

harbored no LC-associated oncogenic drivers except ERBB2 amplification,

suggesting a potential oncogenic role for ERBB2DEx16. Consistently,

ERBB2DEx16+ patients from TCGA data also carried no known drivers

despite various concurrent alterations. In the 12 EGFR TKI-resistant LC

patients, relative variant frequencies for ERBB2DEx16 were lower than in

untreated patients, suggesting ERBB2DEx16 as secondary alterations

following TKI treatment and thereby implicating ERBB2DEx16 in mediating

therapeutic resistance.
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Conclusions: Our study identified an overall ERBB2DEx16 prevalence rate of

0.054% and provided insights into the clinical implications of ERBB2DEx16 in

Chinese pan-cancer patients.
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Introduction

The Erb-B receptor tyrosine kinase 2 (HER2 or ERBB2) is a

member of the Erb-B family and structurally related to the

epidermal growth factor receptor (EGFR) (1). HER2 is a 185 kDa

transmembrane receptor that lacks a ligand-binding structure

and acts as a co-receptor by forming more potent heterodimers

with HER1/EGFR and HER3/ErbB3 (1–5). Through its critical

role in regulating cell growth and development, dysregulation of

HER2 signaling, particularly HER2 overexpression, is one of the

oncogenic drivers in various solid malignancies (1, 2, 4, 5). In

addition to HER2 overexpression, genetic mutations affecting

the extracellular, transmembrane, and kinase domains of ERBB2

have been reported as alternative mechanisms of HER2

activation in various solid tumors and affect tumor biology

and treatment response (5–8). Genetic alterations affecting the

exon 16 of ERBB2 (ERBB2DEx16) result in alternative splicing,

lead to exon 16 skipping, and produce an altered HER2 protein

that lacks 16 amino acids in the extracellular domain (amino

acid positions 634-649) (5, 9, 10). ERBB2DEx16 is comprised of

short in-frame deletions affecting exon 16 and missense

mutations in splice donor or acceptor sites flanking exon 16.

By altering gene splicing, the ERBB2DEx16 isoform could result

in molecular conformational change by exposing cysteine

residues crucial in intermolecular disulfide bond formation

and lead to the constitutive activation and stable covalent

binding of HER2 homodimers with more enhanced

transformational activity (9–14).

ERBB2DEx16 was first reported in HER2-overexpressed

breast cancer after prolonged targeted treatment with

trastuzumab (5, 10–12). Preclinical studies in cell and mouse

models have demonstrated the constitutive activation of

ERBB2DEx16 and its critical role in tumorigenesis of breast

and lung (9–15). Clinical studies have identified an ERBB2DEx16
; CNV, copy number

BB2 or HER2, Erb-B

16 in-frame deletion

ancer; READ, rectum

t; STAD, stomach

tlas; TKI, tyrosine
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prevalence of 0.01-0.19% in various solid tumor types (16, 17).

Albeit rare, ERBB2DEx16 was implicated mostly in resistance to

anti-HER2 agents in HER2-positive breast tumors and

osimertinib in EGFR-mutant non-small-cell lung cancer

(NSCLC) (5, 12, 16, 18). A deeper molecular understanding of

the underlying pathogenesis of cancers could pave avenues for

improving the treatment and survival outcomes of patients with

ERBB2DEx16-positive (ERBB2DEx16+) tumors. In a large-scale

analysis of Chinese cancer patients, Shi et al. identified 0.046%

ERBB2DEx16+ cases (18/38680) spanning lung, colorectal,

gastric, and ovarian cancers (19). Our study investigated the

prevalence and clinical significance of ERBB2DEx16 in Chinese

pan-cancer patients (n = 40996). To further characterize their

mutational landscape and aberrant pathways, we also analyzed

ERBB2DEx16-positive patients screened from pan-cancer

datasets from the Cancer Genome Atlas (TCGA; n=8705)

(20, 21).
Patients and methods

Patients

We retrospectively screened 40996 Chinese patients,

spanning 19 cancer types, who voluntarily submitted either

tissue or plasma samples for DNA-based next-generation

sequencing (NGS) using either 168- or 520-gene panels

between January 2018 to December 2020. We analyzed the

clinical and molecular profile of the patients detected with

ERBB2DEx16. For comparison, we obtained the molecular and

survival data of a pan-cancer dataset from the TCGA (n=8705)

(20, 21). This study was IRB approved and conducted in

accordance with the ethical guidelines including Declaration of

Helsinki and US Common Rule.
Targeted next-generation sequencing

DNA was isolated from blood and tumor samples and

subjected to NGS in Burning Rock Biotech, a clinical laboratory

accredited by the College of American Pathologists and certified
frontiersin.org
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by the Clinical Laboratory Improvement Amendments, according

to optimized protocols as described previously (22, 23). NGS

library construction required a minimum of 30 ng of DNA. Target

capture was performed using commercial panels consisting of

either 168 or 520 cancer-related genes, which respectively span

0.269 Megabases (Mb) and 1.003 Mb of the human genome

(Burning Rock Biotech, Guangzhou, China) (24, 25). Indexed

samples were sequenced on NovaSeq 6000 (Illumina, Inc., CA,

USA) with 150-bp read lengths and a target sequencing depth of

1,000× for tissue samples and 10,000× for plasma samples.

Maximum allelic frequency (MaxAF) was defined as the

maximum allelic frequency detected from a sample, and relative

allelic frequency (RAF) was calculated as the ratio of the allelic

frequency of a certain variant to MaxAF.
Sequence data analysis

Sequence data were analyzed using the Burning Rock analysis

system as previously described (22, 23, 26). Briefly, sequence data

were mapped to the reference human genome (hg19). Variants

with depth <100 or population frequency >0.1% in major

databases were excluded from further analysis. Copy number

was calculated based on the ratio between the depth of coverage

in tumor samples and average coverage of an adequate number

(n>50) of samples without CNV as references per capture interval.

The cut-offs for copy number variations were 1.5 for copy number

deletion and 2.5 for copy number amplifications.
Statistical analysis

Statistical analyses were performed using the Wilcoxon

signed-rank test or Fisher’s exact test as appropriate in R

software (version 4.0.2). A two-sided P value <0.05 was

considered statistically significant.
Results

Pan-cancer prevalence of
ERBB2DEx16 alterations

Figure 1A illustrates the study design. We started with

screening 40996 Chinese patients spanning 19 cancer types,

most of which were lung cancer (LC; 71.4%), for patients who

harbored ERBB2DEx16 (Table S1). A total of 22 patients were

detected with ERBB2DEx16, resulting in an overall prevalence

rate of 0.054% (22/40996). Table 1 summarizes their clinical

characteristics. The majority were female (54.5%) and had stage

IV disease (60.9%). Most had LC (0.05%, 16/30,890), five

patients had gastric cancer (GC; 0.35%, 5/1,448), and one

patient had ovarian cancer (OC; 0.12%, 1/826). ERBB2DEx16
Frontiers in Oncology 03
was not detected in other cancer types, including colorectal

and breast.

We also screened 34 TCGA pan-cancer datasets (n = 8705)

and identified nine ERBB2DEx16+ patients (Figure 1B). Of them,

four patients had cervical squamous cell carcinoma and

endocervical adenocarcinoma, two patients had stomach

adenocarcinoma, and a patient each had lung adenocarcinoma,

OC, and rectum adenocarcinoma. Clinical characteristics of the

group and each patient are respectively detailed in Tables S2

and S3.

Of the 21 unique ERBB2DEx16 variants detected from

Chinese patients, 9 involved complete deletion of exon 16, 3

were deletions or point mutations involving splice donors, and 9

deletions or point mutations affecting the splice acceptors

(Figure 1C). ERBB2 c.1899-880_1946+761del was detected from

two patients. The other ERBB2DEx16 variants were unique and

only detected in a patient each (Table 2). We also identified a

novel variant ERBB2 c.1899-2A>G, which was the only mutation

detected from the paired tissue and plasma samples of an OC

patient after treatment (P17; Table 2; Figure 1C).
Genomic profiles of ERBB2DEx16+
patients suggested potential roles in
tumorigenesis and resistance to EGFR
TKI in LC

Next, we characterized the clinical and molecular features of

the 22 Chinese ERBB2DEx16+ patients. Among the 16 LC

patients, 12 were EGFR-positive and had progressed on EGFR

tyrosine kinase inhibitor (TKI) therapy (75.0%) and four were

EGFR/ALK-negative and treatment-naïve (25.0%; Table 2). All

ERBB2DEx16+ patients had concurrent ERBB2 gene

amplification except P08 (94.0%, 15/16; Figure 2A). Among

the four previously untreated patients, three also harbored

ERBB2 amplification or STK11 point mutations, two harbored

SMARCA4 or KEAP1 point mutations, and one carried mutated

TP53, BRAF, or CTNNB1 (Figure 2A). No oncogenic driver gene

mutations were detected from these four patients except ERBB2

amplification, suggesting mutual exclusivity between

ERBB2DEx16 and established drivers, and therefore a potential

oncogenic role of ERBB2DEx16 in LC. This potential tumor-

promoting activity was also supported by higher relative variant

frequencies (RAFs) of ERBB2DEx16 detected in untreated LC

patients than in their EGFR TKI-resistant counterparts or in GC

patients (Figure 2B). The higher RAFs suggested an increased

likelihood for ERBB2DEx16 to be clonal in the untreated lung

tumors and therefore more likely to function as an oncogenic

driver in LC. Consistent with our observation in Chinese

patients, ERBB2DEx16+ patients from TCGA datasets also

harbored no oncogenic drivers despite various concurrent

alterations (Figure S1).
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In addition to RAF, there were differences among the three

patient subgroups in other molecular features. Treatment-naïve

ERBB2DEx16+ LC patients were the least likely to carry concurrent

TP53 alterations (Figure 2C) and had the highest number of

somatic mutations (Figure 2D). Analysis of genomic profiles from

the TCGA data revealed scarce concurrent oncogenic driver

alterations (Figure S1). Consistently, grouping co-occurring

aberrations by pathway revealed likely aberrant signaling cascades

in ERBB2DEx16+ patients, the most frequently of which receptor

tyrosine kinase (RTK)-Ras (7/9 patients), WNT (5/9 patients), and

Hippo (4/9 patients) signaling pathways (Figure 2E). Although their

significance in tumor biology is well documented, the roles of these

cascades in promoting transformation or conferring therapeutic

resistance still await more clinical evidence. Taken together, the

landscape of concomitant genomic alterations implicated

ERBB2DEx16 in mediating oncogenesis and EGFR-TKI resistance

and warrants further clinical evidence for validation.

Among the Chinese ERBB2DEx16+ patients, 12 had EGFR-

positive LC and had been previously treated with EGFR TKI(s),

accounting for 0.068% of the patients carrying EGFR sensitizing

mutations (n = 17753). The lower RAFs suggested ERBB2DEx16 as
a subclonal and/or secondary aberration in these EGFR TKI-

resistant patients (Figure 2B). All 12 harbored concurrent ERBB2
Frontiers in Oncology 04
amplification and one had MET amplification and fusion

(Figure 2A). The predominant majority (91.7%, 11/12) also

harbored TP53 mutations, which was in stark contrast with the

treatment-naïve LC patients (Figure 2C). While ERBB2 and MET

amplification had been reported to confer resistance to EGFR TKI,

their activities do not exclude the possibility of ERBB2DEx16
contributing to therapeutic resistance.
Case vignettes

P03 was a female patient with EGFR L858R-mutant advanced

LUADwith bonemetastasis. ERBB2DEx16was detected after disease
progression with osimertinib using her plasma samples but not in

the paired tissue rebiopsy (Table 2; Figure 3A). Prior to fourth-line

osimertinib, the patient had received first-line chemotherapy,

followed by sequential EGFR TKIs, including second-line gefitinib

and third-line afatinib monotherapies. In addition to EGFR L858R,

her plasma sample collected after osimertinib progression was also

detected with other concurrent ERBB2 alterations, including

ERBB2DEx16 (c.1899-32_1909del), gene amplification (copy

number: 32.32), and L755S and D769Y (27), suggesting one or

more of these alterations as resistance mechanisms.
A B

C

FIGURE 1

Study design and somatic ERBB2 exon 16 skipping (ERBB2DEx16) analyzed in this study. (A) A diagram of study workflow. (B) Number of
ERBB2DEx16+ patients from Cohorts 1 (upper panel) and 2 (lower panel) per tumor type, shown above the bars are the tumor type-specific
prevalence (number of ERBB2DEx16+ patients/number of screened patients). (C) Diagram of the 22 unique sequence variants detected in the
Chinese cancer patients cohort. The exon 16 (between nucleotides 1899 to 1946) and the flanking regions are shown, in which the gray bars
correspond to each unique ERBB2DEx16 isoform as shown by the sequence variant on the right column.
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P05 was a female patient with EGFR exon 19 deletion-

mutant stage IV LUAD with bone metastasis , and

ERBB2DEx16 was identified from her plasma sample after

progression on osimertinib plus crizotinib (Table 2;

Figure 3B). She had received first-line gefitinib and second-line

osimertinib and was subsequently detected with MET

amplification after the second disease progression. After onset

of resistance to third-line osimertinib plus crizotinib, her plasma

sample was detected with EGFR exon 19 deletion, ERBB2DEx16
(c.1899-936_1946+520del), and ERBB2 amplification. She was

then treated with afatinib and crizotinib but with no clinical

benefit, and bevacizumab was subsequently added to the

regimen. Upon progression, molecular testing revealed

increased levels of ERBB2 amplification (copy number: 2.6 to

5.4) and ERBB2DEx16 (VAF from 13.2% to 48.8%) as well as

various MET alterations, including amplification, Y1230H,

D1288N L1195I, and L1195V, the latter four of which are

known secondary mutations associated with MET TKI

resistance (28, 29). Similar to patient P03, one or more of

these genetic abnormalities may have conferred resistance to

the targeted agents. Together, these cases illustrate the potential
Frontiers in Oncology 05
role of ERBB2DEx16 in mediating EGFR TKI resistance and

disease progression in LC.
Discussion

Through screening a large real-world population, our

findings demonstrated an overall ERBB2DEx16 prevalence of

0.054% (22/40996) among Chinese cancer patients. Our findings

were consistent with another real-world study that reported a

prevalence of 0.046% (18/38,680) (19). Importantly, almost all

the in-frame deletions identified in our study were unique and

were absent from the Catalogue of Somatic Mutations in Cancer

(COSMIC) database. Of the 21 unique ERBB2DEx16 from our

cohort, ERBB2 c.1899-1G>A was detected from a patient each

with LC and GC. ERBB2 c.1899-1G>A was previously reported

in breast, lung, and gastric cancer (16, 30). Moreover, ERBB2

c.1899-2A>T with concurrent ERBB2 gene amplification were

the mutations detected from baseline tumor and plasma samples

of a stage IV LC patient (P07). This variant was also identified in

an LC patient in the TCGA datasets and a previous study (16).
TABLE 1 Clinical characteristics of the 22 patients detected with ERBB2 exon 16 mutations in Cohort 1.

Characteristics Overall (n = 22); n(%) Lung (n = 16), n(%) Non-lung (n = 6), n(%)

Age

Median [interquartile range] 63.0 [51.0, 71.0] 65.5 [59.3, 71.0] 46.0 [41.0, 62.0]

Stage

II 1 (4.5) 1 (6.2) 0 (0.0)

III 5 (22.7) 5 (31.2) 0 (0.0)

IV 13 (59.1) 10 (62.5) 3 (50.0)

NA 3 (13.6) 0 (0.0) 3 (50.0)

Sex

Female 12 (54.5) 10 (62.5) 2 (33.3)

Male 9 (40.9) 6 (37.5) 3 (50.0)

NA 1 (4.5) 0 (0.0) 1 (16.7)

ERBB2 exon16 mutation type

Exon 16 deletion 9 (40.9) 4 (25.0) 5 (83.3)

Splice site deletion 10 (45.5) 10 (62.5) 0 (0.0)

Splice site mutation 3 (13.6) 2 (12.5) 1 (16.7)

Treatment status

Post-TKIs 12 (54.5) 12 (75.0) 0 (0.0)

Post-treatment 2 (9.1) 0 (0.0) 2 (33.3)

Primary 4 (18.2) 4 (25.0) 0 (0.0)

NA 4 (18.2) 0 (0.0) 4 (66.7)

NA, data not available.
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TABLE 2 Detailed clinical and mutational profile of the 22 patients detected with ERBB2 exon 16 alterations in Cohort 1.

Patient
ID

Age Sex Clinical
stage

Sample
type

Cancer
type

Treatment
status

NGS
capture
panel

TMB ERBB2 exon
16 altera-
tions

ERBB2
exon16
mutation
type

ERBB2
exon16
mutant
AF

ERBB2
amp
CN

Concurrent oncogenic
mutations (AF or CN)

P01 70 Male IV Plasma Lung Post-TKIs 168-
panel

NA c.1898
+1069_1947-

50del #

exon 16
deletion

0.74% 9.5 EGFR L858R(4.53%)

P02 57 Male IV Plasma Lung Post-TKIs 168-
panel

NA c.1913_1946
+555del #

splice site
deletion

99.00% 7 EGFR L858R(5.42%)

P03 71 Female IV Plasma Lung Post-TKIs 520-
panel

14.3 c.1899-
32_1909del #

splice site
deletion

2.40% 32.32 EGFR L858R(43.08%);
EGFR T790M(0.15%);
ERBB2 D769Y(2.02%);
ERBB2 L755S(1.63%)

P04 77 Female III Tissue Lung Primary 520-
panel

3.99 c.1899-
6_1917del #

splice site
deletion

2.94% 4.1 NA

P05 62 Female IV Plasma Lung Post-TKIs 168-
panel

NA c.1899-
936_1946
+520del #

exon 16
deletion

13.20% 5.4 EGFR 19del(15.99%);
MET_amp (CN 4.9); MET
Y1230H(4.45%); MET
D1228N(1.90%); MET
L1195I(1.31%); MET

L1195V(0.83%)

P06 74 Female IV Plasma Lung Post-TKIs 168-
panel

NA c.1899-
271_1940del

#

splice site
deletion

0.41% 4.2 EGFR L858R(12.01%);
EGFR T725M(5.61%); EGFR

R776C(12.88%)

P07 71 Male IV Tissue Lung Primary 520-
panel

12 c.1899-2A>T splice site
mutation

49.11% 3.2 NA

Plasma 1 c.1899-2A>T 0.91% NA NA

P08 64 Male III Tissue Lung Primary 520-
panel

19.1 c.1899-
7_1904del #

splice site
deletion

27.14% 3 NA

P09 63 Female II Plasma Lung Post-TKIs 168-
panel

NA c.1899-
641_1926del

#

splice site
deletion

5.31% 2.7 EGFR 19del(14.77%); EGFR
T790M(2.24%); EGFR

C797S(1.82%)

P10 68 Female IV Plasma Lung Post-TKIs 168-
panel

NA c.1939_1946
+7del #

splice site
deletion

0.98% 2.7 EGFR L858R(34.39%);
EGFR T790M(9.64%);
EGFR_amp(CN 2.6):

Tissue NA c.1939_1946
+7del #

11.86% 3.8 EGFR L858R(62.81%);
EGFR T790M(16.47%);
EGFR_amp(CN 3.3):

P11 51 Female III Tissue Lung Post-TKIs 168-
panel

NA c.1898
+301_1946
+146del #

exon 16
deletion

99.00% 52.2 EGFR L858R(89.25%);
EGFR L62R(89.56%)

P12 74 Male IV Tissue Lung Post-TKIs 520-
panel

11 c.1899-
16_1946
+1345del #

exon 16
deletion

6.05% 37.8 EGFR L858R(66.14%);
EGFR_amp (CN 3.6);
ROS1_fusion(37.65%)

P13 67 Female III Tissue Lung Primary 168-
panel

NA c.1899-
18_1899-

2delinsTG #

splice site
deletion

5.94% NA NA

P14 46 Male IV Plasma Lung Post-TKIs 168-
panel

NA c.1899-1G>A splice site
mutation

0.54% 2.7 EGFR 19del(1.17%)

P15 60 Female III Plasma Lung Post-TKIs 168-
panel

NA c.1899-
10_1900del #

splice site
deletion

0.49% 3.19 EGFR_amp(CN 2.53); EGFR
19del(16.76%)

P16 49 Female IV Plasma Lung Post-TKIs 168-
panel

NA c.1930_1946
+127del #

splice site
deletion

11.25% 3.1 EGFR L858R(67.39%);
EGFR T790M(4.33%); EGFR
E709K(66.23%); EGFR_amp
(CN 3.5); MET_amp(CN
4.3); RET_fusion(1.67%);
ALK_fusion(8.74%); BRAF

V600E(0.68%)

P17 62 Female IV Plasma Ovary Post-
treatment

520-
panel

1 c.1899-2A>G
#

splice site
mutation

2.06% NA NA

Tissue 1 36.72% NA NA

(Continued)
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Contrastingly, ERBB2 c.1899-2A>G, a different transition

located at the same splice site, is absent from the COSMIC

database. We identified this variant from an OC patient (P17) as

the only potentially oncogenic mutation in paired tumor (520-

gene panel) and plasma (168-gene panel) samples, which

suggested a tumorigenic role for this ERBB2DEx16 variant.

The oncogenic activity of ERBB2DEx16 was first suggested in

breast tumors (10). Compared with ERBB2 wild-type tumors,

ERBB2DEx16+ mammary tumors exhibit a higher degree of

intratumoral heterogeneity as shown by distinct signaling and

gene expression profiles associated with the activation of tumor

initiation and progression (14, 31). Subsequent preclinical studies

have established the critical role of ERBB2DEx16 in the increased

aggressiveness of HER2-positive breast tumors (9–14, 31). Turpin

et al. also demonstrated intrinsic resistance of ERBB2DEx16+ breast

cancer cell lines to the antibody-drug conjugate ado-trastuzumab

emtansine (T-DM1) due to the lack of internalization of the T-

DM1-ERBB2DEx16 complex, which is crucial for T-DM1 efficacy

(14). Although ERBB2DEx16 has been implicated in trastuzumab

resistance in breast cancer, the role of ERBB2DEx16 in mediating

inhibitor resistance remains controversial (32). Numerous studies

have also reported trastuzumab sensitivity of cell samples from

patients with HER2-positive breast and gastrointestinal cancer that

express ERBB2DEx16 (9, 17, 31, 33). In our cohort, ERBB2DEx16
was not detected among the 778 women with breast cancer

included in the screening population. We speculate that

ERBB2DEx16 is rare in Chinese women with breast cancer and

requires a larger cohort for its detection.

In LC, Smith et al. have also demonstrated the transforming

activity of ERBB2DEx16 in vitro and in vivo (15). ERBB2DEx16
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has been implicated in osimertinib resistance in vitro (18).

Interestingly, we also observed that all but one ERBB2DEx16+
patients also had concurrent ERBB2 gene amplification (95.5%,

21/22). All 12 EGFR-positive LC patients detected with

ERBB2DEx16 at progression on EGFR-targeted therapy also

harbored concurrent ERBB2 amplification. As a well-

documented resistance mechanism of EGFR inhibitors, ERBB2

amplification was found in 10-15% patients with acquired

resistance to first- or second-generation EGFR-TKIs (34) and 2-

5% of patients with acquired resistance to first- (35) or second-line

osimertinib (36). In the study by Shi et al, 10 of the 12

ERBB2DEx16+ LC patients also harbored ERBB2 amplification,

and although it was unknown whether 2 wild-type patients had

been treated (19). Despite its presence, ERBB2 amplification

(present in 2.9% patients with sensitizing EGFR mutations, 508/

17753) did not exclude potential roles of the DEx16 mutant in

mediating drug resistance. Moreover, the allele frequencies (AFs)

of the DEx16 allele were both 99.0% in patients P02 and P11

(Table 2), both of whomwere LC patients with acquired resistance

to EGFR-TKI. These findings were consistent with a tumor-

promoting role for the ERBB2DEx16 mutant. For the remaining

patients, it is still possible that the DEx16 allele was the

predominantly amplified allele, although the low AFs and

amount of the wild-type allele from the non-malignant cells

present in the sequenced samples did not allow for a definitive

conclusion. Further research, including those using preclinical

models that express abnormally high copies of ERBB2DEx16 and
those analyzing the AFs for the DEx16 allele from circulating

tumor cells, may unravel the significance of concurrent ERBB2

amplification and exon 16 skipping in conferring TKI resistance.
TABLE 2 Continued

Patient
ID

Age Sex Clinical
stage

Sample
type

Cancer
type

Treatment
status

NGS
capture
panel

TMB ERBB2 exon
16 altera-
tions

ERBB2
exon16
mutation
type

ERBB2
exon16
mutant
AF

ERBB2
amp
CN

Concurrent oncogenic
mutations (AF or CN)

c.1899-2A>G
#

P18 46 Female NA Plasma Gastric NA 168-
panel

NA c.1899-
880_1946
+761del #

exon 16
deletion

0.98% 11.4 NA

P19 74 Male NA Tissue Gastric NA 520-
panel

14 c.1899-
760_1946
+606del #

exon 16
deletion

48.81% 12.1 NA

P20 34 Male IV Plasma Gastric Post-
treatment

520-
panel

23.9 c.1898
+1058_1946
+412del #

exon 16
deletion

0.94% 25 NA

P21 41 Male IV Tissue Gastric NA 520-
panel

4.99 c.1899-
71_1947-
972del #

exon 16
deletion

2.21% 15.7 NA

P22 NA NA NA Tissue Gastric NA 168-
panel

NA c.1899-
880_1946
+761del #

exon 16
deletion

6.64% 18.7 NA

Pound signs (#) denote previously unreported sequence variants. Abbreviations: NA, data not available or not applicable; AF, allele frequency; amp, amplification; CN, copy number;
19del exon 19 deletion; TKI, tyrosine kinase inhibitor; TMB, tumor mutation burden (mutations/Mb of panel).
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D

A

B

E

C

FIGURE 2

Molecular characteristics of patients harboring ERBB2 exon 16 skipping (ERBB2DEx16). (A) An oncoprint of somatic mutation landscape of
ERBB2DEx16+ patients from Cohort 1. Each row represents a gene indicated on the left, with the mutation rate indicated on the right. Each
column represents a patient. Different colors denote the mutation types. Bar plots on top of the oncoprint summarize the number of mutations
each patient carries. The cancer type, ERBB2DEx16 variant type, and patient ID of each patient were indicated by various colors at the bottom.
(B) Relative allele frequency (RAF), (C) mutation frequencies of TP53, and (D) number of somatic mutations in lung cancer (LC) patients before
systemic therapy, LC patients after progression on EGFR tyrosine kinase inhibitors (TKIs), and in gastric cancer (GC) patients. (E) Genomic
alterations harbored by ERBB2DEx16+ patients from TCGA were categorized by pathway and analyzed for the proportion of mutated among all
pathway-related genes and the corresponding mutation frequency in patients. Number pairs in the middle (e.g. “10/85” for the RTK-RAS
pathway), indicate the number of genes encoding for members of the indicated pathway that were found altered in ERBB2DEx16+ patients and
number of genes encoding for members of the pathway, respectively. Number pairs at the rightmost (e.g. “7/9” for the RTK-RAS pathway),
indicate the number of ERBB2DEx16+ patients carrying ≥1 alteration in genes in the indicated pathway and the number of ERBB2DEx16+
patients, respectively.
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Additionally, ERBB2DEx16 was also detected without ERBB2

amplification in a treatment-naïve LC patient and an OC patient,

neither of whom carrying LC-associated oncogenic driver

alterations. ERBB2DEx16 has been previously found in a patient

with low grade serous ovarian tumor (37) and one OC patient

(19). In the latter patient, no mutations in known cancer driver

genes were detected. Together, these and our findings supported

tumor-promoting roles of ERBB2DEx16 in LC and OC.

Preclinical and clinical investigations have shown the

differential activity of some irreversible pan-HER TKIs such as

afatinib, dacomitinib, and neratinib in targeting various ERBB2

mutant alleles across cancer types (6–8, 38, 39). A subset of patients

with breast, lung, or cervical cancer demonstrated promising

clinical outcomes with pan-HER TKIs; however, the same

inhibitors were inefficacious in other tumor types, including

colorectal and bladder cancer (8). Various treatment strategies for

HER2-mutant cancers are actively investigated in different phases of

clinical trials (8). Since ERBB2DEx16 only affects the extracellular

domain, resulting in a protein product with an intact tyrosine kinase

domain, pan-HER TKIs could be efficacious. Tilio et al. reported

that the ERBB2DEx16+ breast cancer cell lines were resistant to

lapatinib but were sensitive to dacomitinib (40). Hsu et al. also

reported a patient with EGFR L858R/T790M-positive advanced LC

who acquired ERBB2DEx16 during osimertinib therapy (18). The

authors also reported that afatinib was able to reverse ERBB2DEx16-
mediated osimertinib resistance in EGFR L858R/T790M double

mutant LC cell line (18). Our patient (P05) received afatinib
Frontiers in Oncology 09
combined with crizotinib after the emergence of ERBB2DEx16.
However, no clinical benefit was observed, which may have been

due to the intratumoral genetic heterogeneity. The clinical efficacy

of pan-HER inhibitors and other novel treatment strategies in

inhibiting ERBB2DEx16-mediated signaling in a certain subset of

patients with ERBB2DEx16+ tumors deserves further investigation.

It also remains to be explored whether other concurrent genomic

alterations, such as TP53 mutations, could affect treatment

response. TP53 is the most commonly co-mutated gene in

ERBB2DEx16+ tumors in our cohort. The presence of co-

occurring genetic alterations that affect treatment responses, such

as ERBB2DEx16, ERBB2 gene amplification, or TP53 mutations,

highlights the importance of elucidating the molecular profile of

baseline and multiple rebiopsy samples to monitor treatment-

related mutational changes and optimize treatment decisions.

Due to the retrospective nature of our study, clinical,

treatment, and survival outcomes for some patients are not

available, which severely limits our analysis. Our study did not

use RNA-based analysis to investigate whether the ERBB2DEx16
va r i an t s de t e c t ed in our cohor t cou ld re su l t in

alternative splicing.
Conclusion

Our study identified an overall ERBB2DEx16 prevalence rate
of 0.054% and provided an insight into the rarity of
A

B

FIGURE 3

Schematic presentation of the courses of management for two ERBB2DEx16+ lung cancer patients (A) P03 and (B) P05 from Cohort 1. CN, copy
number. NSCLC, non-small cell lung cancer. PD, progressive disease.
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ERBB2DEx16 in Chinese pan-cancer patients. Among patients

with LC, ERBB2DEx16 was detected before receiving treatment

and after developing resistance from EGFR TKIs, suggesting its

potential role in inhibitor resistance. Our study also raises the

need to develop novel drugs and implement novel therapeutic

strategies to improve the survival outcomes of patients

with ERBB2DEx16.
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An oncoprint summarizing the somatic mutation landscape of the nine
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sixth row at the bottom of the gray border). Each row represents a gene or
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on the right. Each column represents a patient. The bar plot on top of the

oncoprint summarizes the number of mutations each patient carries.
Different colors denote the alteration types. Dark gray denotes mutated

signaling pathways. The tumor type was indicated by various colors at the
bottom of the oncoprint.
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