
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Mohammad Hojjat-Farsangi,
Karolinska Institutet (KI), Sweden

REVIEWED BY

Khalil Ahmed,
University of Minnesota Twin Cities,
United States
Trupti Vardam-Kaur,
Omeros Corporation, United States

*CORRESPONDENCE

Rui Meng
mengruivip@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Oncology

RECEIVED 09 October 2022
ACCEPTED 11 November 2022

PUBLISHED 01 December 2022

CITATION

Chen L, Zhang S, Li Q, Li J, Deng H,
Zhang S and Meng R (2022) Emerging
role of Protein Kinase CK2 in
Tumor immunity.
Front. Oncol. 12:1065027.
doi: 10.3389/fonc.2022.1065027

COPYRIGHT

© 2022 Chen, Zhang, Li, Li, Deng,
Zhang and Meng. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 01 December 2022

DOI 10.3389/fonc.2022.1065027
Emerging role of Protein Kinase
CK2 in Tumor immunity
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Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous

in cells and regulates various intracellular processes, especially in tumor cells.

As one of the earliest discovered protein kinases in humans, CK2 plays a crucial

role in phosphorylating or associating with hundreds of substrates to modulate

several signaling pathways. Excellent reviews have reported that the

overexpression of CK2 could be observed in many cancers and was closely

associated with tumor occurrence and development. The elevation of CK2 is

also an indicator of a poor prognosis. Recently, increasing attention has been

paid to the relationship between CK2 and tumor immunity. However, there is

no comprehensive description of how CK2 regulates the immune cells in the

tumor microenvironment (TME). Also, the underlying mechanisms are still not

very clear. In this review, we systematically summarized the correlation

between CK2 and tumor immunity, primarily the effects on various immune

cells, both in innate and adaptive immunity in the TME. With the comprehensive

development of immunotherapy and the mounting transformation research of

CK2 inhibitors from the bench to the clinic, this review will provide vital

information to find new treatment options for enhancing the efficacy

of immunotherapy.

KEYWORDS

protein kinase CK2, tumor immunity and immunotherapy, tumor microenvirenment,
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1 Introduction

1.1 CK2 structure, functions, and relevance to cancer
development

Protein kinase CK2, formerly known as casein kinase II, is a constitutively active Ser/

Thr protein kinase that exists as a tetramer in cells. It contains two catalytic subunits (a
or a’) and two regulatory subunits (b) which lead to three different conformations:

a2b2,a’2b2, aa’b2 (1). Among these subunits, the two catalytic subunits are encoded by
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CSNK2A1 and CSNK2A2, respectively. The regulatory subunit is

encoded by CSNK2B, which regulates the selection of the

substrates and enhances the catalytic subunit stability (2, 3).

CK2 is commonly expressed in all eukaryotic cells and

phosphorylates hundreds of substrates to modulate the

physiological activities in various cells, including tumor cells (4–

6). Aberrant CK2 activity is related to tumor-promoting responses,

which leads to the activation of various oncogenic signaling

pathways. Also, it can cause multiple typical landmarks of

cancers, including cell proliferation, angiogenesis, invasion, and

metastasis (7–9). CK2 also participates in DNA damage and repair,

the ER-stress response, altering cell morphology and promoting

cellular transformation (10–13). Studies have subsequently revealed

that the elevation of CK2 expression has been observed in most

cancers, such as lung, glioblastoma, breast, ovarian, and melanoma,

as well as in blood cancers (14). And the overexpression of CK2

correlates with tumor invasion and acts as a poor prognosis

indicator (15). These information emphasizes that targeting CK2

is currently receiving more attention as a therapeutic approach for

tumors. CX-4945 (a CK2 inhibitor) is currently approved by FDA

(Food and Drug Administration) for the treatment of

cholangiocarcinoma. And beneficial effects of various CK2

inhibitors have also been observed in vitro experiments, many of

them are currently in clinical trials for solid cancers (16–18).
2 The relationship between CK2 and
immune response in the tumor
microenvironment (TME)

Evidence shows that CK2 has a critical role in innate and

adaptive immune cells in various inflammatory diseases such as

glomerulonephritis (19), autoimmune encephalomyelitis (EAE)

(20) and allergic contact dermatitis (21). E.N. Benveniste et al.

have also conducted numerous studies about the significant role

of CK2 in regulating various immune cells in a variety of

inflammatory diseases (22–24). These excellent findings

provide essential evidence for the importance of CK2 in the

pathogenesis of inflammatory responses.

Based on the increasing evidence highlighting the function of

CK2 in promoting inflammatory diseases, we suggest that CK2

could also have unexpected effects on tumor immunity. Growing

evidence has shown that CK2 also has a practical impact on diverse

immune cells in the tumor microenvironment (TME).

Protein kinase CK2 has been found to be well associated with

several critical oncogenic signaling pathways modulating the

development of immune cells in the tumor microenvironment

(TME) (22, 25). For instance, CK2 activity improved the signals,

including NF-kB, JAK/STAT, COX-2, HIF-1a, ERK, AKT, and
Wnt, and suppressed the Notch and Ikaros pathways (26–32).

Given that these signaling pathways are closely associated with

tumor immunity.CK2 may potentially affect these immune cells’
Frontiers in Oncology 02
growth and development by regulating these critical signaling

pathways in TME. Some of the perspectives have already

been demonstrated.
2.1 The role of CK2 in the innate
immune system

2.1.1 Myeloid-derived suppressor cells (MDSCs)
and tumor-associated macrophages (TAMs).

Several reports have shown that various oncogenic signaling

pathways modulated the development of immune cells in the

TME. The Notch signal pathway is a critical tumor suppressor

and controls diverse cells fate decisions, including immune cells

growth, differentiation, and cell cycle progression (33, 34),

especially in myeloid cells, such as myeloid-derived suppressor

cells (MDSC) and dendritic cells (DCs) in the tumor

microenvironment (35, 36). Once the cognate ligand combines

to the Notch receptor, the Notch signal will be activated after a

sequence of events. The Notch receptor is cleaved by ADAM

metalloproteases and g-secretase complex at specific sites,

respectively, and releases the Notch intracellular domain

(NICD). The NICD will translocate to the nucleus to bind

with CSL(the transcriptional repressor CBF1) and induce the

transcription of Notch (37, 38).

Several CK2 phosphorylation sites of the Notch signal have

been illustrated by Ranganathan et al. (39). Cheng et al. reported

that CK2 downregulated the Notch signal pathway in myeloid

cells in several tumors. They used three cell lines: EL4

(lymphoma), CT26 (colon cancer), and MethA (sarcoma) and

illustrated that CK2 activity phosphorylated the Notch receptor

NICD(Notch intracellular domain)and decreased the binding of

NICD to the transcriptional repressor CSL, which led to a reduced

Notch signal transcriptional activity. And the downregulation of

Notch resulted in defective DC cells differentiation and a

promotion in the accumulation of immunosuppressive cells,

including PMN-MDSC and tumor-associated macrophages

(TAMs) in tumors (35, 40). While a selective CK2 inhibitor,

tetrabromocinnamic acid(TBCA)restored the Notch signal

pathway in myeloid cells to enhance DC cells differentiation and

block the differentiation of PMN-MDSC (35) (Figure 1).

As we all know, the accumulation of immature myeloid cells,

such as MDSCs, promotes the immunosuppression in TME.

And DCs will lose their ability to prime CD8+ T cells in an

immature state. Therefore, CK2 activity has tumor-promoting

properties in TME by regulating the Notch signal in myeloid

cells (41), which suggests that targeting CK2 can be beneficial in

improving anti-tumor immunity to treat cancers.

Also, evidence of the crosstalk between CK2 and

macrophages has also been illustrated by Ayumi et al. They

demonstrated that CK2 inhibitors (BMS-211 and BMS-595)

reduced the population of PMN-MDSC in the spleen and

TAMs in the LLC (lung carcinoma) TB mice. To investigate
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the specific mechanism, they isolated these cells from TB mouse

spleen and found that CK2 inhibitors can block the

differentiation of the precursors of granulocytes and

macrophages and dramatically suppress the proportion of

macrophages generated from monocytic cells (40).
2.1.2 Dendritic cells (DCs)
The crosstalk between CK2 and dendritic cells (DCs) has

also been illustrated recently. Marisa et al. demonstrated that the

RNA Pol III activation was controlled by CK2, which is required

for DCs to prime T cell (42). In addition, apart from tumor cells,

PD-L1 is also expressed in dendritic cells (DCs) and

macrophages, DCs may be a vital target for PD-L1 antibodies

(43, 44). Zhao et al. demonstrated that CK2 activity played a key

role in targeting PD-L1 expression in DC cells. And CK2

inhibitor (CX-4945) downregulated the expression of PD-L1

on tumor-associated DCs and activated DC cells’ function to

prime T cells (45). These findings suggest that CK2 inhibitors

may exert its anti-tumor effect in various aspects.
2.1.3 NK cells
NK cells can secrete perforin, granzyme, and other cytotoxic

lytic particles as well as express TNF superfamily members, such

as FAS Ligand (FASL) and TNF-related apoptosis-inducing

Ligand (TRAIL), to induce the apoptosis of target cells (46).
Frontiers in Oncology 03
It is reported that the inhibition of CK2 can augment NK

cells antitumor function by enhancing their cytotoxicity. Kim

et al. investigated the effects of TBB (a CK2 inhibitor) on NK

cells in three cancer cell lines, HepG2, Hep3B(Hepatocellular

carcinoma), and HeLa. They showed that the inhibition of CK2

can increase NK cell-mediated cancer-killing through a particle-

dependent process (46, 47). Like NK cells, cytotoxic T cells

(CTL) can use the same way to kill tumor cells. We can therefore

speculate that CK2 inhibitors may also have a vital function in

cytotoxic T cells to improve their anti-tumor ability.
2.2 The Role of CK2 in the adaptive
immune system

2.2.1 CD4+ T cells, CD8+T cells, Treg cells
Reports of the crosstalk between CK2 and adaptive immune

cells have been provided by Nelson N et al. CK2 can affect the

development of CD4+ T cells, CD8+ T cells and Treg cells by

regulating the Ikaros pathway (48). Ikaros is expressed in various

hematopoietic stem cells, lymphoid, and some myeloid cells. It is

essential for the normal development of lymphocytes and other

blood cell lineages (49–51). Evidence shows that CK2 can

phosphorylate the Ikaros signal at multiple sites (52, 53). And

the phosphorylation of the Ikaros signal leads to its ubiquitin-

mediated proteasomal degradation and induces the
BA

FIGURE 1

CK2 can affect the differentiation of myeloid cells by down-regulating the Notch signal pathway. (A) CK2 can phosphorylate the Notch receptor
NICD (Notch intracellular domain)and decrease the binding of NICD to transcriptional repressor CSL, resulting in reduced notch signal
transcriptional activity, which will lead to the defective DC cells differentiation while increasing the accumulation of immunosuppressive cells
including PMN-MDSC and tumor-associated macrophages (TAMs) in tumors. (B) CK2 inhibitor can restore the activation of Notch signal in
myeloid cells and promote NICD to combine with CSL to enhance DC cells differentiation while reducing the production of PMN-MDSCs and
tumor-associated macrophages (TAMs) by blocking their differentiation.
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downregulation of Ikaros activity and expression (48, 54, 55). In

contrast, protein phosphatase 1 (PP1) can dephosphorylate the

Ikaros pathway to maintain its stability and activity (52).

Therefore, the harmony of CK2 and PPI plays an essential role

in the state of the Ikaros signal.

Nelson N et al. showed that in pancreatic cancer mouse models,

CK2 activity phosphorylates the Ikaros signal and leads to an

increase in Tregs while a reduction in effector CD8+T and CD4+

T cells in TME. While Apigenin (API: a CK2 inhibitor) targets and

reduces the activity of CK2 to restore the expression of Ikaros and

increases the effector CD8+T and CD4+ cells while reduces the

production of Tregs to promote the antitumor immunity (48, 56).

(Figure 2). Also, Apigenin increases the function of CD8+ T cells to

release IFN-g and promotes better activation of allogeneic CD8+ T

cell responses in spleen cells (48, 56). Therefore, CK2 inhibitors may

be a potential therapeutic agent for stabilizing the Ikaros signal and

maintaining T cell homeostasis to enhance antitumor immunity.

In addition, E.N. Benveniste et al. also demonstrated the

critical role of CK2a in regulating the activation, proliferation,

differentiation and function of normal CD8+T cells. CK2 is

required for the glycolysis and oxidative respiration of CD8+T

cells (57). However, the role of CK2 in the cytotoxic effect of

CD8 +T cells in tumor microenvironment has still not very clear.
2.2.2 B cells
The function of protein kinase CK2 in the development and

differentiation of normal B cells has also been illustrated by E.N.

Benveniste et al. They found that CK2a deficiency in B cells causes

the abnormal accumulation of MZB cells (marginal zone B cells),

which was associated with the reduction of BCR signaling and

increased Notch2 signaling (58). While the CK2 activation

promotes the differentiation of MZB cells into plasma cells (58).

In addition, CK2 is significantly upregulated in a variety of

hematological neoplasms, particularly in multiple myeloma
Frontiers in Oncology 04
(MM) (59). Francesco et al. illustrate that CK2 regulates the

transcriptional activity of NF-kB signal by degrading its IkBa
subunits in multiple myeloma cells. Also, TBB (a CK2 inhibitor)

attenuates the activation of the IL-6-dependent STAT3 pathway

in MM cells (60). Similarly, Zhao et al. reported that apigenin (a

CK2 inhibitor) suppressed the transcriptional activity of several

signal pathways, such as AKT, ERK, STAT3 and NF-kB and

downregulated the expression of several anti-apoptotic proteins,

to induce tumor cells apoptosis in multiple myeloma cells (61).

Multiple myeloma (MM) is characterized by the accumulation

of malignant plasma cells in the bone marrow. Studies have shown

that CK2 can regulate the proliferation and differentiation of

normal B cells and promote the differentiation of MZB cells

(marginal zone B cells) into plasma cells (58). Here, we speculate

that CK2 inhibitor/knockout CK2 may also have a potential role in

inhibiting the differentiation of MZB cells into plasma cells to

suppress the malignant proliferation of MM cells. That is worthy of

further study and may provide novel ideas for treating

multiple myeloma.
3 The relationship between CK2 and
the cytokines released by tumor
cells or immune cells in TME

Inflammation plays a vital role in carcinogenesis. Evidence

has shown that a variety of tumors can be caused by long-term

chronic inflammation. And immune cells can release cytokines

to induce the inflammatory microenvironment which can

produce carcinogenesis (62). Apart from immune cells, tumor

cells also secrete various cytokines such as TNF、GM-CSF、IL-

6、IFN-gand MCP-1. These tumor-derived factors(TDF)

establish an inflammatory microenvironment and modulate

multiple immune cells in the TME, especially the expansion
BA

FIGURE 2

CK2 activity decreases the effector CD4+and CD8+T cells and increases Tregs by regulating the Ikaros signal. (A) Pancreatic Tumor Microenvironment
without Apigenin (API): CK2 activity phosphorylates the Ikaros signal and promotes its degradation, leading to the downregulation of Ikaros expression.
The reduction in Ikaros expression causes an increase in Tregs and a decrease of effector CD8+T and CD4+ T cells. This leads to a decreased antitumor
effect. (B) Pancreatic Tumor Microenvironment with API: API targets and reduces the activity of CK2 and restores the expression of Ikaros, increasing the
effector CD8+T and CD4+ cells while reducing Tregs to promote antitumor immunity.
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and recruitment of MDSC into the TME (63–65). And it will

predispose to tumorigenesis and promote tumor progression

(63, 66–68).

Krystal et al. illustrated that in mouse pancreatic tumor cells,

apigenin(API: a CK2 inhibitor) could suppress the production of

tumor-derived factors (TDF), including GM-CSF、IL-6、IFN-g
and MCP-1 to modulate immune cells development and promote

tumor regression through enhancing the SHIP-1 expression (69).

SH2-containing inositol phosphatase-1(SHIP-1) is mainly

expressed in hematopoietic cells. And it is reported that SHIP-1

can also regulate immune cells differentiation, proliferation and

migration by modulating many signaling pathways, especially for

MDSCs, macrophages, DCs, and T cells (69–72).

Krystal et al. demonstrated that the significant increase of

SHIP-1 expression could be found in mouse spleen cells after

CK2 inhibitor treatment. And the CK2 inhibitor suppressed the

amplification of MDSCs and Tregs and enhanced the proportion of

M1-like TAM (anti-tumor effect). Also, it promoted the percentage

of CD8+ T cells and its function to release IFN-g in the TME to

induce antitumor immunity and tumor regression (69) (Figure 3).

Other reports of the crosstalk between CK2 and the cytokines in

the tumor microenvironment have also been provided by Hagen

Kulbe et al. It was reported that CK2 regulated the release of

inflammatory cytokines to modulate the immune cells and the

angiogenesis in ovarian cancer (73). They demonstrated that CK2

was associated with the TNF network, a network consisting of TNF-

a and other cytokines which was released by ovarian cancer cells.

The TNF network acts in a paracrine manner in the tumor

microenvironment to affect the angiogenesis and immune cells

infiltration (74, 75). Reports show that the CK2a knockdown or

inhibition of CK2 (CX-4945) can significantly reduce the release of

TNF, IL-6 and VEGF cytokines in ovarian cancer cells by

suppressing the JAK/STAT3 and NOTCH signal pathway (73).

And the levels of these cytokines are the key factors to affect tumor

angiogenesis and immune cells infiltration in the TME (67, 76). In

addition, reports have shown that the expression of IL-6 can be

regulated by CK2 in inflammatory breast cancer (77), and IL-6 is an

indicator of a poor prognosis (78). Also, recent findings have shown

that IL-6 blockade promotes anti-CTLA-4 therapeutic role in the

colon carcinoma model (79).

From the above, we can conclude that CK2 also has a critical

effect on regulating the production of cytokines to modulate the

function of immune cells in the tumor microenvironment

(TME). Therefore targeting CK2 is a promising way to

enhance antitumor immunity.
4 The relationship between CK2 and
immune checkpoint receptor

The emergence of immune checkpoint inhibitors has

significantly changed the cancer treatment paradigm and
Frontiers in Oncology 05
has achieved significant therapeutic effects in a variety of

tumors. However, many patients still fail to respond to

immunotherapy. A large number of literatures have

reported that PD-L1 modulation is vital to improve the

clinical response to anti–PD-1/PD-L1 treatment. Reports

show that the inhibition of EGFR and/or CK2a can

significantly reduce the expression of PD-L1 (80). Zhao

et al. demonstrated that CK2 phosphorylated PD-L1 and

prevented its ubiquitinated degradation to stabilize it on

tumor cell. In contrast, CK2 inhibitors (CX-4945) can

promote the degradation of PD-L1 reduce its level on tumor

cells (45). They did a pan-cancer research, including lung

cancer, breast cancer, prostate cancer, lymphoma, and so on.

Apart from tumor cells, CK2 also regulates PD-L1 expression

on dendritic cells. We know that CD80 on DC cells can

interact with CD28 on T cells to initiate T cell activity. CK2

inhibitor can downregulate PD-L1 expression and enhance

the level of CD80 on tumor-associated DCs and promote the

CD80/CD28 interaction to enhance T-cell priming to inhibit

tumor progression (45). Also, the combination treatment of

CK2 inhibitors and immune checkpoint inhibitors can

synergistically impede tumor growth, such as CTLA-4 and

TIM-3 (40, 45).

These findings suggest that the inhibition of CK2 can

enhance antitumor immunity by downregulating the

expression of PD-L1 on multiple tumor cells or DCs. Apart

from PD-L1, the relationship between CK2 activity and other

immune checkpoints needs further investigation.
5 Discussion

This review article comprehensively expounded the

correlation between CK2 and tumor-immunity. The

upregulation of CK2 can be found in many tumors and is

closely related to the prognosis. By consulting relevant

literature, we conclude that ①CK2 can regulate the growth

and development of the immune cells in the tumor

microenvironment (TME) both in innate and adaptive

immunity.②CK2 also plays an essential role in regulating the

production of cytokines to modulate the function of immune

cells in the tumor microenvironment.③CK2 may also have a

potential role in regulating oncogenic signaling pathways to

affect these immune cells in TME. ④CK2 activity can regulate the

expression of PD-L1 on tumor cells and DC cells, and the

combination of CK2 inhibitors and immune checkpoint

inhibitors can synergistically inhibit tumor growth. We also

collated these conclusions (Table 1). Therefore, we can conclude

that CK2 plays a vital role in tumor immunity at multiple sites,

and targeting CK2 can significantly improve the anti-tumor

immune effect.

Considering that CK2 has a huge regulatory effect on a

variety of immune cells in multiple inflammatory diseases.
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B

A

FIGURE 3

CK2 can regulate the production of tumor-derived cytokines to modulate antitumor immune responses in mouse pancreatic cancer cells. (A) without
Apigenin (API: a CK2 inhibitor): Pancreatic cancer cells release tumor-derived factors (TDF), leading to a reduction of SHIP-1 expression, which causes
hematopoietic stem cells (HSC) to become immature myeloid cells. The result is that the expansion of MDSCs, Tregs, and M2 phenotype TAM (pro-
tumor) in the TME, on the contrary, the reduction of effector CD8 +T cells to inhibit antitumor immunity. (B) with Apigenin: apigenin can suppress the
production of tumor-derived factors (TDF) produced by pancreatic cancer cells and enhance the SHIP-1 expression to reduce MDSCs and Tregs
expansion, induce TAM to an M1 phenotype(antitumor) and increase the function of CD8+T cells in the TME to enhance antitumor immunity.
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Above all, the most striking function of CK2 is to modulate the

Th17/Treg axis in CD4+ T cells in the model of autoimmune

encephalomyelitis (24, 81). E.N. Benveniste et al. show that

CK2 inhibitor CX-4945 treatment can suppress the maturation

of Th17 cel ls , CK2a deplet ion impaires Th17 cel l

d i ff e r en t i a t i on and promote s th e p roduc t i on o f

Foxp3Tregs in vitro (81). However, we know that Tregs are

immunosuppressive cells and play a negative regulatory role in

antitumor immunity. The above findings suggest that CK2

inhibitors cause the accumulation of Tregs in the inflammatory

microenvironment, which would seem to be detrimental to

anti-tumor immunity and is contrary to the CK2 inhibitors’

anti-tumor immune effect that we discussed. Therefore,

whether CK2 inhibitors have a “double-edged sword effect”

on the tumor immune microenvironment deserves

further exploration.

In this review, we only introduce the effects of CK2 on the

part of the immune cells in the TME in current research

progress, while its effects on other cells and the specific

regulatory mechanisms involved need to be further studied.

In addition, the specific mechanism of how CK2 regulates the

expression of immune checkpoints, such as PD-1/TIGIT/

CTLA-4 in tumors, has not very clear. The biological

function of CK2 is complex, and a deeper understanding of

its function in immune and tumor cells will give more

evidence to determine the effective CK2 inhibitors to treat

solid and hematological tumors.

Nevertheless, this review still provides us with good evidence for

the relationship between CK2 and tumor immunity. It offers more

theoretical basis for targeting CK2 to improve the anti-tumor

immune effect and promote the efficacy of immunotherapy to

treat cancers.
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TABLE 1 Protein kinase CK2 and tumor immunity.

Tumor immunity Signal pathway Function

MDSCs and TAMs Notch signal CK2 activity leads to defective DC cells differentiation and increased production of PMN-MDSC and tumor-
associated macrophages (TAMs) in tumors (35, 40).
CK2 can regulate the differentiation of the precursors of granulocytes and macrophages (40).

DC cells - CK2 can regulate the expression of PD-L1 on tumor-associated DCs and affect DC cells’ function to prime T cells
(45).

NK cells - CK2 inhibitors can augment the cytotoxicity of NK cells (46, 47).

CD4+ T cells, CD8+T
cells, Treg cells

Ikaros signal CK2 activity increases Tregs and reduces the effector CD8+T and CD4+ T cells (48, 56).

B cells BCR signal and
Notch2 signal

CK2 in the development and differentiation of normal B cells (58).

cytokines JAK/STAT3 and
Notch signal
The SHIP-1
expression

CK2 inhibitors can reduce the release of TNF, IL-6, and VEGF cytokine in cancer cells (73).
CK2 inhibitors can suppress the production of tumor-derived factors (TDF) to modulate immune cells
development and promote tumor regression (69).

PD-L1 - CK2 activity can regulate the expression of PD-L1 on tumor cells (45).
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