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Application of machine learning
techniques in real-world
research to predict the risk of
liver metastasis in rectal cancer

Binxu Qiu1, Xiao hu Su2, Xinxin Qin1 and Quan Wang1*

1Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin
University, Changchun, China, 2Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,
Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
Background: The liver is the most common site of distant metastasis in rectal

cancer, and liver metastasis dramatically affects the treatment strategy of

patients. This study aimed to develop and validate a clinical prediction model

based on machine learning algorithms to predict the risk of liver metastasis in

patients with rectal cancer.

Methods: We integrated two rectal cancer cohorts from Surveillance,

Epidemiology, and End Results (SEER) and Chinese multicenter hospitals

from 2010-2017. We also built and validated liver metastasis prediction

models for rectal cancer using six machine learning algorithms, including

random forest (RF), light gradient boosting (LGBM), extreme gradient

boosting (XGB), multilayer perceptron (MLP), logistic regression (LR), and K-

nearest neighbor (KNN). The models were evaluated by combining several

metrics, such as the area under the curve (AUC), accuracy score, sensitivity,

specificity and F1 score. Finally, we created a network calculator using the

best model.

Results: The study cohort consisted of 19,958 patients from the SEER database

and 924 patients from two hospitals in China. The AUC values of the six

prediction models ranged from 0.70 to 0.95. The XGB model showed the best

predictive power, with the following metrics assessed in the internal test set:

AUC (0.918), accuracy (0.884), sensitivity (0.721), and specificity (0.787). The

XGB model was assessed in the outer test set with the following metrics: AUC

(0.926), accuracy (0.919), sensitivity (0.740), and specificity (0.765). The XGB

algorithm also shows a good fit on the calibration decision curves for both the

internal test set and the external validation set. Finally, we constructed an online

web calculator using the XGB model to help generalize the model and to assist

physicians in their decision-making better.
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Conclusion: We successfully developed an XGB-based machine learning

model to predict liver metastasis from rectal cancer, which was also

validated with a real-world dataset. Finally, we developed a web-based

predictor to guide clinical diagnosis and treatment strategies better.
KEYWORDS

rectal cancer, machine learning, liver metastasis, web calculator, real-world research
Introduction

Rectal cancer is the eighth most common malignant tumor

in the world, with a high mortality rate of about 340,000 lives

yearly (1, 2). It has become one of the significant public health

problems threatening human health. Patients with rectal cancer

often have a poor prognosis due to liver metastasis and whose 5-

year survival rate is less than 50% (3, 4). Previous studies have

shown that 20-25% of patients with the initial diagnosis of rectal

cancer develop liver metastasis. Even after radical resection,

rectal cancers still have a 30% probability of liver metastasis

(5, 6). Due to the poor prognosis and high prevalence of liver

metastasis from rectal cancer, there is still more clinical concern

about liver metastasis from rectal cancer (7, 8). Magnetic

resonance imaging (MRI) and positron emission tomography/

computed tomography (PET/CT) are standard techniques for

screening patients with rectal cancer for distant metastasis.

However, given the high cost of MRI and the disadvantages of

PET-CT radiation damage, it is not recommended for all

patients with rectal cancer to be screened for distant

metastasis (9, 10). This imposes a high demand for the

identification and rationalization of screening people at high

risk of liver metastasis from rectal cancer. To address these

issues, we used advanced machine learning algorithms to build a

predictive model to predict liver metastasis in patients with

rectal cancer.

Machine-Learning has become a new type of artificial

intelligence that is beginning to be widely used in healthcare

data analysis and is a powerful tool for improving clinical

strategies (11–15). Machine-learning algorithms can

automatically learn from input data to predict outcome values

acceptable and identify patterns and trends in the data. A

statistical and comprehensive review of machine learning in

medical diagnosis by Bhavsar et al. shows that machine learning

techniques help medical professionals reduce diagnostic errors,

improve healthcare delivery and reduce treatment costs (16).

Many scholars have achieved significant breakthroughs by using

machine-learning algorithms in colorectal cancer, but machine-

learning prediction models for liver metastasis in rectal cancer
02
are not yet available (17, 18). Also, previous studies have limited

constructing models only by using public databases, thus

limiting the extrapolation of models. Therefore, involving real-

world clinical datasets is essential for creating superior

predictive models.

This study aims to develop machine-learning models

that use clinicopathology features to predict the risk of liver

metastasis from rectal cancer and suggest individual prevention

strategies to help clinicians make treatment decisions.
Materials and methods

Study population

A retrospective analysis of the SEER (Surveillance,

Epidemiology, and End Results) database and data from

patients admitted to the First Affiliated Hospital of Jilin

University and Shanxi Bethune Hospital was conducted. SEER

is an authoritative source for cancer statistics in the United

States. The Surveillance provides information on cancer statistics

to reduce the cancer burden among the U.S. population. The

inclusion criteria for the rectal cancer cohort from SEER were

demonstrated as follows:(1) the primary pathological diagnosis

was rectal cancer, (2) patients without concurrent malignancies,

and (3) patients with complete clinical information, including

age, gender, race, marital status, histological grade, tumor size,

T-stage, N-stage, carcinoembryonic antigen (CEA), diagnostic

information, and first site. In addition, the exclusivity criteria

were shown as follows: (1) no complete clinical information, (2)

another primary neoplastic disease, and (3) unknown liver

metastatic status. The inclusion criteria for the external

validation set were (1) metachronous liver metastasis (after

diagnosis) and (2) patients not undergoing preoperative

neoadjuvant therapy. All aspects of the clinical cohort study

were approved for inclusion by the Institutional Ethics

Committee of the First Hospital of Jilin University and Shanxi

Bethune Hospital and were performed in adherence to the

Declaration of Helsinki.
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Data collection and data processing

SEER patient data were obtained from “SEER Research Plus

Data, 18 Registries, Nov 2020 Sub (2000-2018)” and extracted

using SEER * STAT (8.4.0) software. Patients diagnosed with

rectal cancer from 2010-2017 were included in this study.

Patients with rectal cancer from multiple centers in China

were included in the external validation. The entire workflow

is demonstrated in detail in Figure 1. In addition, patient data

from multicenter hospitals were processed according to SEER

database standards (Supplement Table 1). We transformed the

clinical information into numbers to make it easy to compute in

the model (Supplement Table 2).
Construction of the predictive model

In this study, we used six machine learning algorithms to

predict liver metastasis of rectal cancer, including random forest

(RF), Light Gradient Boosting (LGBM), extreme gradient

boosting (XGB), multilayer perceptron (MLP), logistic

regression (LR) and K-Nearest Neighbor (KNN). RF is a

machine learning algorithm that deals with classification and

regression problems by building multiple decision tree methods

(19). LGBM is a gradient-boosting framework using a tree-based
Frontiers in Oncology 03
learning algorithm that has been successfully applied to the

construction of medical models in recent years (20). XGB is a

classical decision tree algorithm applied to classification or

regression prediction models (21). MLP is a feedforward

neural network model used in different prediction models

(22). LR algorithm is a classification algorithm commonly used

for dichotomous variables and is widely used in data mining due

to its simplicity, parallelizability, and explanatory power (23).

KNN algorithm is identified as an essential classification

algorithm in the supervised machine-learning domain and is

widely used in pattern recognition, data mining, and intrusion

detection (24).

Patients from the SEER database were randomly partitioned

into a training set and an internal test set using python with a

ratio of 8:2. To improve the model’s effectiveness while ensuring

the data’s authenticity, we use a synthetic minority oversampling

technique (SMOTE) for the SEER database to solve the data

imbalance problem (25). The training set was used to build the

model, and the internal test set was used for model validation

and evaluation. In the training set, k-fold cross-validation (k =

10) is performed, and a grid search is used to find the best

combination of parameters. Subsequently, the model

performance is initially evaluated in the internal test set.

Finally, a rectal cancer cohort from two hospitals was used to

validate the model’s generalization capability and efficiency.
FIGURE 1

The workflow of the selection procedure for rectal cancer patients. Abbreviations: LGBM, light gradient boosting; XGB, extreme gradient
boosting; RF, random forest; LR, logistic regression; KNN, K-nearest neighbor; MLP, multilayer perceptron.
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Model performance
and feature importance

Model performance is evaluated by area under the curve

(AUC), predictive accuracy, sensitivity, specificity, and F1-score.

Our primary evaluation metric for machine-learning models is

AUC, calculated from ROC curves, which are graphical plots

showing the diagnostic power of binary classifiers as their

discriminative thresholds change (26). It is also combined with

other metrics for a comprehensive evaluation to determine the

best model. To further explore the degree of importance of

incorporated features in all algorithms, we used the Permutation

Importance principle for feature importance analysis of

variables. The Permutation Importance approach assesses the

effect of model construction on the remaining features by

treating an incorporated feature as a random number. If the

model performance decreases significantly, the feature is shown

to have a more critical role (27). Finally, model performance was

then further assessed by calibration curves.
Interpretability of the model and
construction of the web calculator

The Shapley Additive explanation (SHAP) method is used in

the article to interpret the constructed model. It allows for the

calculation of precisely the contribution of each variable to the final

prediction. In addition, each observation in the dataset can be

interpreted by a specific set of SHAP values (28). We created a web

calculator to make the model clinically easy to use and generalize.
Statistical analysis

All statistical analyses were performed in Python (version 3.8,

Python Software Foundation) and R software (version 4.1.0). All

machine learning algorithms were built based on scikit-learn

(version 0.24.1). Categorical variables were expressed as totals and

percentages, and differences between groups were compared using

the c2 test or Fisher’s exact test. Continuous variables were

expressed as median and Standard Deviation (SD), and the

Wilcoxon rank sum test was used to compare groups. The results

were considered statistically significant when the two-sided P<0.05.
Result

Patient components and clinical
baseline information

Our study included rectal cancer data from the SEER

database, ranging from 2010 to 2017. A total of 152,199
Frontiers in Oncology 04
patients with rectal cancer were initially included. Based on

established inclusion and exclusion criteria, the final number of

patients included in the SEER database was 19,957, 1,712

patients (8.58%) had liver metastasis, and 18,246 patients

(91.42%) had no liver metastasis. Outer validation was

performed using a total of 924 patients from two centers in

China. Patient data from SEER and the two centers in China are

presented in Table 1.

Seven clinicopathological factors were included in our

established model: age at diagnosis, gender, T-stage, N-stage,

CEA, grade of differentiation, and tumor size (Table 2). Patients

in the SEER database were divided into liver metastasis (LM)

and non-liver metastasis groups (NLM). For age at diagnosis, we

found that the mean age at diagnosis was significantly more

extensive in the NLM group (58.89) than in the LM group

(62.01; P<0.001). Notably, the proportion of male patients in the

LM group (1119/1712;65.4%) was significantly higher than that

in the NLM group (10762/18246; 59%; P<0.001). Unexpectedly,

we found no difference between the two subgroups regarding

race and married status. According to our assumptions, the LM

group showed higher T-stage and N-stage patients (P<0.001). In

terms of tumor progression, we found that patients in the LM

group (5.70cm) had significantly larger tumor sizes than patients

in the NLM group (4.25cm; P<0.001). In addition, we found that

patients in the LM group (1070/1712;62.50%) had a higher

percentage of positive CEA expression than the NLM group

(4627/18246;25.40%;P<0.001).
Correlation of variables and feature
importance of prediction

Seven selected variables were analyzed according to the

spearman correlation test, and the heatmap results showed no

significant correlation between the variables, andmulticollinearity is

unlikely (Figure 2). The importance ranking of features in the six

machine-learning models is shown in Figure 3. The relative

importance of the variables in the six machine learning models

was analyzed using the permutation importance principle.

Although the six machine learning algorithms ranked differently

regarding the importance, CEA and tumor size ranked in the top

two of most models. They may have a more critical predictive role

for rectal cancer liver metastasis. In contrast, sex and grade ranked

lower but contributed to rectal cancer liver metastasis. In the XGB

model, the importance of features were ranked in descending order

by tumor size, CEA, age, T-stage, N-stage, sex, and grade.
Model performance
and model explainability

Ten-fold cross-validation of the training set data using six

machine learning algorithms shows that the XGB model has an
frontiersin.org
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TABLE 1 Clinical baseline features of SEER and multiple centers hospital database.

Variables
SEER database Multiple centers

Training set (N=15966) Testing set (N=3992) Outer validation set (N=924)

Age [mean (SD)] 61.74 (13.18) 61.72 (13.39) 61.72 (13.31)

Gender, n (%)

Male 9471 (59.3) 2410 (60.4) 556 (60.2)

Female 6495 (40.7) 1582 (39.6) 368 (39.8)

Race, n (%)

White 12969 (81.2) 3241 (81.2) 0

Black 1324 (8.3) 310 (7.8) 0

Asian or Pacific Islander 1532 (9.6) 402 (10.1) 924

American Indian/Alaska Native 141 (0.9) 39 (1.0) 0

T_stage, n (%)

T1 2909 (18.2) 695 (17.4) 151 (16.3)

T2 2661 (16.7) 669 (16.8) 140 (15.2)

T3 8870 (55.6) 2236 (56.0) 509 (55.1)

T4 1526 (9.6) 392 (9.8) 124 (13.4)

N_ stage, n (%)

N0 8604 (53.9) 2159 (54.1) 430 (46.5)

N1 5433 (34.0) 1372 (34.4) 376 (40.7)

N2 1929 (12.1) 461 (11.5) 118 (12.8)

Grade, n (%)

Grade I 1380 (8.6) 344 (8.6) 53 (5.7)

Grade II 12393 (77.6) 3114 (78.0) 726 (78.6)

GradeI III 1926 (12.1) 471 (11.8) 109 (11.8)

GradeI IV 267 (1.7) 63 (1.6) 36 (3.9)

CEA, n (%)

Negative 5763 (36.1) 1412 (35.4) 412 (44.6)

Borderline 61 (0.4) 15 (0.4) 75 (8.1)

Positive 4534 (28.4) 1163 (29.1) 242 (26.2)

Unknown 5608 (35.1) 1402 (35.1) 195 (21.1)

Marital, n (%)

Married 9371 (58.7) 2381 (59.6) 622 (67.3)

Unmarried 4615 (28.9) 1151 (28.8) 231 (25.0)

Other 1980 (12.4) 460 (11.5) 71 (7.7)

Tumor. size (mean (SD)) 4.37 (3.55) 4.38 (3.86) 4.34 (4.00)

Liver.Met, n (%)

No 14592 (91.4) 3654 (91.5) 770 (83.3)

Yes 1374 (8.6) 338 (8.5) 154 (16.7)
F
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TABLE 2 Distributions of clinicopathological characteristics in two groups.

Variables
LM NLM P value

N=1712 N=18246

Age [mean (SD)] 58.89 (12.99) 62.01 (13.21) <0.001

Gender, n (%)

Male 1119 (65.4) 10762 (59) <0.001

Female 593 (34.6) 7484 (41.0)

Race, n (%)

White 14840 (81.3) 1370 (80.0) 0.080

Black 1466 (8.0) 168 (9.8)

Asian or Pacific Islander 1774 (9.7) 160 (9.3)

American Indian/Alaska Native 166 (0.9) 14 (0.8)

T-stage (%)

T1 246 (14.4) 3358 (18.4) <0.001

T2 84 (4.9) 3246 (17.8)

T3 1067 (62.3) 10039 (55.0)

T4 315 (18.4) 1603 (8.8)

N_ stage (%)

N0 486 (28.4) 10277 (56.3) <0.001

N1 811 (47.4) 5994 (32.9)

N2 415 (24.2) 1975 (10.8)

Grade

Grade I 89 (5.2) 1635 (9.0) <0.001

Grade II 1298 (75.8) 14209 (77.9)

Grade III 280 (16.4) 2117 (11.6)

Grade IV 45 (2.6) 285 (1.6)

CEA

Negative 232 (13.6) 6943 (38.1) <0.001

Borderline 3 (0.2) 73 (0.4)

Positive 1070 (62.5) 4627 (25.4)

Unknown 407 (23.8) 6603 (36.2)

Marital

Married 965 (56.4) 10787 (59.1) 0.063

Unmarried 516 (30.1) 5250 (28.8)

Other 231 (13.5) 2209 (12.1)

Tumor size (mean (SD)) 4.25 (3.46) 5.70 (4.84) <0.001

CEA, carcinoembryonic antigen; LM, liver metastasis; NLM, non-liver metastasis.
F
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average AUC value of 0.993, indicating the best predictive power

among all models (Figure 4). In the internal test set, XGB

obtained an AUC of 0.918, an accuracy of 0.884, a sensitivity

of 0.721, and a specificity of 0.787(Figure 5; Table 3). In the outer

test set, the XGB model also showed excellent performance with

an AUC of 0.926, an accuracy of 0.919, a sensitivity of 0.740, and

a specificity of 0.765 (Figure 5; Table 3). The calibration curves

for the internal and outer validation sets also demonstrate that

the model has a reasonable degree of fit (Supplementary

Table 3). Finally, to detect positive and negative correlations
Frontiers in Oncology 07
between characteristics and liver metastasis of rectal cancer, we

used SHAP to reveal risk factors for liver metastasis of rectal

cancer. The related results are presented in Figure 6.
Web predictor

Although XGB has shown excellent predictive ability in liver

metastasis from rectal cancer, it is intricate and complex, which

is not conducive to clinical dissemination. Therefore, this study

developed an online web calculator for predicting liver

metastasis risk in patients with rectal cancer. The calculator

can be easily extended clinically and only requires inputting

patient clinicopathological information to derive the probability

of obtaining liver metastasis in patients with rectal cancer while

stratifying patients into high and low risk. (https://share.

streamlit.io/woshiwz/rectal_cancer/main/rectal.py) (Figure 7).
Discussion

In this study, we constructed a model for predicting liver

metastasis from rectal cancer using popular machine-learning

algorithms combining seven clinical and pathological features.

To the best of our knowledge, this study is the first article on the

prediction of liver metastasis in rectal cancer combined with

machine learning algorithms while using real-world data for

outer validation. The AUC performance of these models is

mostly more extensive than 0.85 (Figure 5; Table 3), while the

accuracy is mostly above 0.80 (Figure 5; Table 3); therefore, we
FIGURE 2

Results of the correlation heatmap between all variables. The
graph shows the correlations between all variables.
FIGURE 3

Feature importance of six models. The plot shows the ranking of six models’ relevant volume of features. Abbreviations: LGBM, light gradient
boosting; XGB, extreme gradient boosting; RF, random forest; LR, logistic regression; KNN, K-nearest neighbor; MLP, multilayer perceptron.
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believe that the developed models are robust and reliable while

allowing for more significant clinical benefits. Comparing the

prediction performance of six machine-learning algorithms, we

found that the model based on the XGB algorithm performed

the best. Finally, to make the model clinically applicable and

generalizable, we developed an online web calculator based on

the XGB model to calculate the probability of liver metastasis

from rectal cancer and thus screen patients at high risk for

liver metastasis.
Frontiers in Oncology 08
In addition, machine learning’s clinical importance is reflected

in identifying important risk factors associated with liver metastasis

from rectal cancer (29). In this study, tumor size, CEA, age, T-stage

and N-stage were critical for liver metastasis from rectal cancer

based on XGB algorithms’ ranking of feature importance. In the

present study, tumor size showed the best predictor in numerous

models. Large tumor size indicates a long growth cycle, leading to a

more proliferative and aggressive state of tumor cells, which

increases liver metastasis (29, 30). CEA is the standard tumor
FIGURE 4

The training set has ten-fold cross-validation results of different machine learning models. Abbreviations: LGBM, light gradient boosting; XGB,
extreme gradient boosting; RF, random forest; LR, logistic regression; KNN, K-nearest neighbor; MLP, multilayer perceptron.
A B

FIGURE 5

The roc curves of different machine learning models: (A) The roc curves of other machine learning models in the internal test set; (B) The roc
curves of other machine learning models external test set. Abbreviations: LGBM, light gradient boosting; XGB, extreme gradient boosting; RF,
random forest; LR, logistic regression; KNN, K-nearest neighbor; MLP multilayer perceptron; roc, receiver operating characteristic.
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marker on colorectal cancer cell membranes and embryonic

mucosal cells. An increasing number of studies have shown that

pretreatment CEA levels are considered to be associated with tumor

stage and metastasis, with studies showing that CEA is elevated in

45% of patients with stage B and 76% of patients with distal

metastasis (31–34). Therefore, it is unsurprising that the

preoperative serum CEA levels of patients with rectal cancer liver

metastasis in this study were higher than those of non-liver

metastasis. Although the proportion of young rectal cancer

patients is increasing yearly, there is convincing evidence that

younger people can achieve better outcomes than older patients
Frontiers in Oncology 09
(35).Interestingly, this study showed that the younger the patient,

the higher the risk of liver metastasis from rectal cancer. The reason

may be that younger patients’ tumor cells often undergo mismatch

repair and thus upregulate the tumor’s aggressiveness (36–38). T-

stage is an essential indicator of tumor progression and positively

correlates with tumor metastasis in most tumors. Our results

demonstrate that patients with rectal liver metastasis have a more

advanced T-stage than those with non-rectal liver metastasis.

Considerable research suggests that the reason may be due to the

progressive increase in lymphatic vessels from the mucosal to the

plasma layer of the rectal wall structure and the abundance of

lymphatic reflux, which in turn increases the risk of liver metastasis

from rectal cancer (39, 40). Several studies have shown that patients

with regional lymph node metastasis are likelier to develop liver

metastasis from rectal cancer (41–43). The liver is one of the organs

with the most abundant lymphatic tissue in the body. Therefore,

tumors are more likely to metastasize when local lymph nodes are

metastatic. Although gender and differentiation grades did not

perform well in the XGB model in this study, they still played a

role in model construction. Tang et al. found that men and poorly

differentiated patients were more likely to develop liver metastasis

from rectal cancer, in concurrence with the results of this study (44,

45). Our model sufficiently integrates various risk factors that could

affect liver metastasis from rectal cancer and achieves outstanding

predictive performance.

Most traditional statistical methods are based on parametric

regression models that assume a linear relationship between

variables and outcomes (29, 46). However, we should know that
TABLE 3 Comparison prediction performances of different models for liver metastasis.

model AUC Accuracy Sensitivity Speciality F1-score

Internal test set

XGB 0.918 0.884 0.721 0.787 0.733

LGBM 0.906 0.879 0.622 0.746 0.695

RF 0.862 0.824 0.460 0.644 0.537

KNN 0.871 0.840 0.561 0.665 0.608

LR 0.725 0.774 0.081 0.440 0.137

MLP 0.810 0.806 0.390 0.591 0.470

Outer validation set

XGB 0.926 0.919 0.740 0.765 0.752

LGBM 0.903 0.903 0.610 0.758 0.676

RF 0.807 0.825 0.318 0.462 0.377

KNN 0.745 0.845 0.300 0.568 0.391

LR 0.674 0.824 0.032 0.263 0.058

MLP 0.708 0.803 0.156 0.316 0.209

LGBM, light gradient boosting; XGB, extreme gradient boosting; RF, random forest; LR, logistic regression; KNN, K-nearest neighbor; MLP, multilayer perceptron; AUC, area under the
curve.
fro
FIGURE 6

The Shapley Additive explanation (SHAP) values.
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most variables and results are more than just linearly related. With

the rapid development of artificial intelligence, machine-learning

algorithms play an increasing role in tumor diagnosis and prognosis

assessment. Machine-learning algorithms have many advantages,

including preventing overfitting and handling unbalanced data (47).

In this study, XGB performed better than other algorithms because

it added a regular term to the objective function to control the

complexity of the model and avoid overfitting while supporting

column sampling to enhance the stability of the model (21, 48).

Until now, only surgical resection has proven to be a curative

treatment for patients with early resectable rectal cancer liver

metastasis (49). Early systemic chemotherapy may improve

prognosis and increase median survival in patients with

undetectable rectal cancer liver metastasis (50). Combining all

these results, we believe that further use of the rectal cancer liver

metastasis model will aid clinical decision-making and improve the

current treatment status.

The strengths of this study are the use of large-scale data

from the SEER database for modeling and the use of real-world

clinical data for outer validation, which prevents the overfitting

of the data and ensures extrapolation of the model. However,

this study also has some limitations. Firstly, the study is a

retrospective study, and there may be selection bias in the

sample selection. Secondly, there are limitations in the data

available in the SEER database, such as the unavailability of

crucial information on chemotherapy regimens, radiotherapy

doses, and vascular infiltration, which limits the predictive value

of our model. Finally, only two outer validation sets were used to

validate the model, and further efforts are needed to validate the

model’s performance on a more diverse population. These

reasons may lead to a limited verification effect of our model.

For future work, we will focus on prospective and diverse

population validation of the models to verify their performance and

stability. These models are then expected to be integrated into

applications that assist clinicians in medical decision-making. This
Frontiers in Oncology 10
can be a step toward a semi-autonomous diagnostic system that can

assist clinicians in making individualized diagnoses of liver

metastasis for patients with rectal cancer.
Conclusion

In conclusion, we developed a prediction model for liver

metastasis from rectal cancer, which uses machine-learning

algorithms to predict liver metastasis from rectal cancer. A web

calculator has also been designed to facilitate the screening of

patients at high risk of liver metastasis from rectal cancer by

inputting some parameters, which may help physicians to

individualize the treatment of rectal cancer patients.
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