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The transient melastatin receptor potential (TRPM) ion channel subfamily functions

as cellular sensors and transducers of critical biological signal pathways by

regulating ion homeostasis. Some members of TRPM have been cloned from

cancerous tissues, and their abnormal expressions in various solid malignancies

have been correlated with cancer cell growth, survival, or death. Recent evidence

also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-

mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming.

These implications support TRPM channels as potential molecular targets and their

modulation as an innovative therapeutic approach against cancer. Here, we

discuss the general characteristics of the different TRPMs, focusing on current

knowledge about the connection between TRPM channels and critical features of

cancer. We also cover TRPMmodulators used as pharmaceutical tools in biological

trials and an indication of the only clinical trial with a TRPM modulator about

cancer. To conclude, the authors describe the prospects for TRPM channels

in oncology.
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Introduction

The TRP melastatin (TRPM) channel family comprises eight members (TRPM1-8),

representing the largest and most diverse subfamily of the TRP channels. TRPMs are very

different in terms of selectivity, activation, and physiological functions. The members of this

family share some common characteristics: 1) they are non-selective calcium-permeable

cation channels, and almost all family-members conduct Ca2+; 2) they are activated by

different temperatures, voltages, ion, and lipids such as phosphatidyl inositol(4,5)

bisphosphate (PIP2); and 3) some of these channels are organized into cytoskeletal

complexes (1–3).
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TRPM proteins are subdivided based on their structural similarity

into four groups: TRPM1/3, TRPM6/7, TRPM4/5, and TRPM2/8 (4)

(Figure 1A). Through cryo-EM techniques, the complete structures of

TRPM2, TRPM4, and TRPM8, and a partial one of TRPM7 have been

determined. This allowed approaching the modality of channel assembly,

ionic permeation, and modulation binding modes (5–18). Briefly

(Figure 1A), TRPM proteins contain an N-terminal melastatin

homology region domain (MHR), which is involved in channel

assembly and external stimuli sensing (9, 13). The transmembrane

domain (TMD) comprises six helices with two functional regions, the

pore-forming loop between helices S5-S6, and a region in S4-S5 involved

in in the activation of these channels. TMD domain is the binding site of

Ca2+ in three of these channels, TRPM2, TRPM4, and TRPM8, as well as

the PIP2 and other pharmacological compounds in TRPM8 (9).

TRPMs’ C-terminal domain varies greatly among members of the

subfamily. C-terminal domains contain a highly conserved sequence,

the TRP box, implicated in channel anchoring to the plasma
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membrane, and a coiled-coiled sequence (CC), which contributes to

the functional tetrameric assembly (19, 20). In addition, the integrity

of these C-terminal domains is required for the cold-induced opening

of the TRPM8 channel (21).

After the CC sequence, TRPM2 includes an additional motif,

NUDT9-H, which has high homology (50% sequence identity) to the

mitochondrial NUDT9 ADPR pyrophosphatase. This region,

indispensable for channel function, does not show enzymatic

activity functioning as an intracellular ligand-binding site for

nucleotides (22, 23). TRPM6 and TRPM7 channels contain a

serine/threonine rich a-kinase substrate (S/T) domain and an a-
kinase domain (KD) with an interesting enzymatic activity (see

below) (24). C-terminal domain of TRPM1/TRPM3, and TRPM4

contains interaction partners for G proteins and ligand-binding sites

for nucleotides, respectively (13, 25, 26).

TRPMs are involved in diversified biological processes based on

regulating Ca2+ signaling, ion homeostasis, interactomes, and/or kinase
B

A

FIGURE 1

(A) Schematic representation of the structural domains of a monomer of the human TRPM family according to the design of Hang et al. (9).
(B). Schematic illustrations of ion permeabilities and regulation processes of TRP channels. Color codes, red: channel inactivators; green: channel
activators. The designs have been made using Chem Draw Professional 16.0.
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activity. Many of the TRPMs are involved in cell/organ sensory

transduction processes, including the perception of temperature

(TRPM2, TRPM3, TRPM4, TRPM5, and TRPM8) and pain

(TRPM2, TRPM3, and TRPM8) (27–32), vision (TRPM1) (33), taste

(TRPM5) (27, 34), and mechanical forces (TRPM2, TRPM4, TRPM7)

(2, 4, 35). Some of them are also involved in ion Mg2+ uptake and

reabsorption (TRPM6 and TRPM7) (36), and besides modulate

secretory processes in various cells all over the body (TRPM3,

TRPM2, TRPM3, TRPM4, TRPM5) (31, 37–40). At the same time,

mutations or anomalies in the expression and function of these

channels could contribute to diverse pathologies, including organ

dysfunction, cardiovascular and neurodegenerative disorders, other

channelopathies, and cancer (41–47). In the following section, we

summarize the functions and characteristics of the channels to

proceed to an in-depth analysis of the main pathways modulated by

the channels during the init iation and progress ion of

neoplastic diseases.
TRPM channels: Characteristics
and functions

TRPM1/TRPM3

TRPM1 and TRPM3 share 75% identical amino acids (9). TRPM1

is a non-selective channel, permeable to Ca2+, Mn2+, and Mg2+.

TRPM3 shows tissue-specific permeability to mono- and divalent

cations related to alternative splicing (48–50).

TRPM1 or melastatin was the first protein of this subfamily to be

identified while searching for loci associated with melanoma (51).

Trpm1 maps in chromosome 15 (15q13.3) and encodes five protein

isoforms, containing between 1516 and 1643 amino acids, and an

intronic microRNA (miR-211) co-expressed with TRPM1 proteins

(52). TRPM1 is expressed mainly in melanocytes and in the retina

(33, 53). The TRPM1 channel is negatively coupled to mGluR6/Go,

through direct interaction with the Gbg dimer, which, released by

Ga(o) dissociation upon mGluR6 activation, closes the channel (25,

54) (Figure 1B).

TRPM3 gene, located in chromosome 9 (9q21.12-13), encodes

many protein isoforms, most of which have unknown functionality

yet, and, analogously to TRPM1, also encodes a microRNA (miR-204)

(55–57). TRPM1 and miR-204 are co-expressed in eye cells and

pancreatic bcells and are regulated by transcription factors such as

Pax6 and MITF (57–59). TRPM3 is also expressed in the kidney,

nociceptive neurons, and vasculature muscular layer, as well as in the

brain, prostate, ovary, and in sensory bladder afferents, odontoblasts,

adipocytes, ciliary body, and oral mucosa (47, 60–63).

TRPM3 is activated by natural ligands, such as sphingosine-1

sulfate, pregnenolone sulfate (PS), nifedipine, the synthetic ligand

CIM0216, as well as by noxious heat (29, 31, 40). Combined

stimulation by two of these ligands leads to activation of the central

pore, which is permeable to Ca2+, and an alternative permeation

pathway that mediated monovalent cation current and that involves

the voltage-sensing domain of TRPM3 (64, 65). 17b-estradiol,
progesterone, and its metabolites non-competitively inhibit TRPM3

activation, while dihydrotestosterone behaves as a PS competitive

antagonist. TRPM3 activation increases [Ca2+]i, which induces
Frontiers in Oncology 03
activation of different kinases and transcription factors such

as ERK, Raf, JNK, CREB, AP-1, Elk-1, and Egr-1 (66–69).

Intracellular divalent cations such as cytosolic Ca2+ inhibit

TRPM1 and TRPM3, whereas Zn2+ inhibits TRPM1 but not

TRPM3, and Mg2+ inhibits TRPM3 activity (47, 70). Analogously

to TRPM1, the activation of Gi/o, Gs, or Gq coupled receptors GPCRs

inhibits TRPM3 via Gbg liberation (26, 71) (Figure 1B).
TRPM2/TRPM8

TRPM2 are non-voltage-activated channels, porous to

monovalent and divalent cations, such as Na+, K+, Ba2+, Ca2+, and

Mg2+. TRPM2 gene is positioned on chromosome 21 (21q22.3) and

encodes a 1503 amino acid protein in humans (72). Several alternative

splice variants of this protein include TRPM2-S, TRPM2-DN,

TRPM2-DC, TRPM2-SSF, and TRPM2-TE (73–76). TRPM2-S

overexpression to suppress endogenous TRPM2 formation and

activity has been used to question TRPM2 roles as a regulator of

cellular functions mediated by ROS-induced Ca2+ signaling (77, 78).

TRPM2 is broadly expressed in the brain, including the thalamus,

cerebral cortex, hippocampus, striatum, and microglia (79–81). This

channel is also detected in the heart, lung, bone marrow, liver, spleen,

endometrium, placenta, gastrointestinal tract, and in different

pancreatic b-like cells, the salivary gland, endothelial cells, heart,

vasculature, and in immune cells (80, 82–84).

H2O2 and other agents producing reactive oxygen/nitrogen (ROS/

RNS) species activate TRPM2 (85). TRPM2 promotes Ca2+ influx

after activation by ROS and responds to RNS releasing adenosine

diphosphate ribose (ADPR) from mitochondria and overproducing

TNF-a (85, 86). This activation occurs through the direct binding of

the ADPR to the channel’s enzymatic NUDT9-H domain (5, 87, 88).

ADRP-induced TRPM2 activation is potentiated by [Ca2+]i and

arachidonic acid, allowing TRPM2s’ response to changes in

intracellular stores-released Ca2+ levels, and integrating intracellular

signaling events (23, 89). TRPM2 is negatively regulated by adenosine

monophosphate (AMP) and cellular acidification (85, 87, 90–93).

TRPM2 is inhibited in cells external or internally exposed to pH

values of 5-6 (91, 93), while divalent metal cations, Cu2+, Hg2+, and

Zn2+ also inhibit TRPM2 by blocking its pore domain (94,

95) (Figure 1B).

TRPM8, one of the most studied TRPM channels, was identified

during screening of a prostate cDNA library (96). TRPM8 gene is

located at 2q37 and harbors genetic diversity with potential functional

and phenotypic consequences (97). TRPM8 is a Ca2+-permeant but

non-selective cation channel (Cs+, K+, Na+, Ba2+, Ca2+, and Mg2+)

identified as the physiological sensor of environmental cold (98, 99).

TRPM8 is functionally expressed in dorsal root and trigeminal

ganglia in skin, teeth, the oral cavity, epithelium, tongue, nasal

mucosa, and cornea (100, 101). The channel is also expressed in the

colon, lung, liver, kidney, and pancreas, as well as in the male urinary,

bladder, genital tracts tissues, and sperm (100, 102, 103). These

gender differences in TRPM8 expression in the urinary tract have

also been observed in neutrophils expressing the TRPM2 channel,

which is lower in neutrophils from older women (104). TRPM8 was

also detected in immune system cells, including macrophages (105,

106), bone marrow mesenchymal stem endoplasmic reticulum (ER)
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membranes (107), and in several areas of mouse brain (108). TRPM8,

along with TRPV4, seems also to regulate microglia activities (109).

TRPM8 channels are activated by different stimuli, such as

noxious to innocuous (8- 26°C) cold temperatures (28, 98, 99),

membrane depolarization (110), increased extracellular osmolarity

(111), and in addition by natural and synthetic cooling agents (101).

TRPM8 activation/deactivation processes are regulated by post-

translational modifications (112, 113), splice variants (97, 114), and

modulatory regions (115). Phosphatidylinositol-4,5-bisphosphate

(PIP2) changes the voltage-dependent sensitivity of the channel to

cold and menthol, acting as a positive endogen TRPM8 modulator

(116–118). Nuclear testosterone-androgen receptors (119),

interacting proteins (120, 121), and G protein-coupled receptor

signaling cascades are also involved in these inhibition/

desensitization processes (106, 107). Phospholipase C (PLC)

activation and subsequent hydrolysis and depletion of PIP2, or

channel phosphorylation by protein kinase C (PKC) are other

possible mechanisms of TRPM8 modulation (117, 118, 122, 123).

TRPM8 also is inhibited by some GqPCR activation processes

through the direct binding of Gaq protein to the channel (116,

124) (Figure 1B).
TRPM4/TRPM5

TRPM4 and TRPM5 are only permeable to monovalent cations

and do not conduct Ca2+ (125, 126), thus differing from the other

TRPM channels. TRPM4 gene is in chromosome 19 (19q13.33), and

encodes a 1214 amino acid protein, which works as a voltage-

modulated Ca2+-activated channel (125, 127, 128). TRPM4 is vastly

expressed in the heart, colon, and prostate (125, 128), but also in the

central nervous system (129), and in cells of the immunes system

(130–132).

Direct activation of TRPM4 by intracellular Ca2+ leads to an

influx of Na+ (133), while ATP, calmodulin, IP3, and protein kinase

C-dependent phosphorylation can modify the Ca2+-induced TRPM4

activation (134, 135). TRPM4 and TRPM5 gating is also regulated by

transmembrane voltage, so that depolarization causes the channel’s

activation, whereas hyperpolarization deactivates it (128, 133, 136).

H2O2 induces TRPM4 sustained activation resulting in an increased

cell vulnerability to necrotic death (137) (Figure 1B).

TRPM5 gene, carried on chromosome 11 (11p15.5), encodes

an 1165 amino acids protein (138). TRPM5 is a voltage-modulated

Ca2+-activated channel that carries monovalent Na+, K+, and Cs+

ions, mediating transient membrane depolarization (127, 136). The

TRPM5 channel is expressed in fetal liver, brain, and kidney, and in

adult testis, prostate, colon, ovary peripheral blood leukocytes, and taste

buds (79, 138). TRPM5 is likewise expressed in insulin-secreting b-cells
and in the central nervous system (34, 139, 140).

TRPM5 is physiologically activated by intracellular calcium and

heat (136, 141–143). Increasing temperature in the 15-35°C range

greatly potentiates TRPM5 inward currents (27). TRPM5 is blocked

by extracellular acidification at pH 6.2-5.9 intervals (144).

Structurally, residues E830 and H934 in the S5-S6 and S3-S4 linkers

are involved in the extracellular pH sensitivity of TRPM5.
Frontiers in Oncology 04
Interestingly, these residues are not conserved in TRPM4

(144) (Figure 1B).
TRPM6/TRPM7

TRPM6 and TRPM7 exhibit a unique dual functionality within

the TRP family, acting as ion channels and kinases (145–147).

TRPM6 gene, located on chromosome 9 (9q21.13) codifies for a

protein of 2022 amino acids. TRPM6 is permeable to Ca2+ and Mg2+

and regulated by intracellular levels of Mg2+ (148). In this channel, the

selectivity filter seems regulated by the amino acid sequence
1028GEIDVC1033, where the two negative-charged residues D1031

and E1024, are determinants for cation permeation through TRPM6

(149). TRPM6 is expressed in the intestine’s epithelial cells and in the

nephron’s distal convoluted tubule (DCT) consistent with its central

role in controlling Mg2+ homeostasis (79, 124, 148). TRPM6

expression is regulated by hormones such as estrogen, Ang II, and

insulin (36, 150–152). Epidermal growth factor (EGF) amplifies the

TRPM6 expression and activity, through the signaling pathway ERK/

AP-1 (153), while uromodulin increases TRPM6 activity during Mg2+

deficiency periods (154). TRPM6-negative endogenous regulators are

H2O2 and ATP-mediated P2X4 receptor signaling (155,

156) (Figure 1B).

TRPM7, also named TRP-PLIK, LTRPC7, and ChaK1, was

identified by three different groups (145, 157, 158). TRPM7 gene is

located on chromosome 15 (15q21.2), encoding an 1863-amino acid

protein. TRPM7 is constitutively active and selectively permeable to

divalent ions Mg2+, Ca2+, and traces of Zn2+ (157–160). Amino acid

residues 1047EVY1049 in the pore loop provide the TRPM7 selectivity

filter (161, 162). Under physiological conditions, TRPM7 inward

currents are weak due to substantial downregulation of these

channels by high Mg2+ or Mg·ATP concentrations. The decrease in

intracellular [Mg2+]i, free or bound to ATP, increases the current

carried by TRPM7 channels (158, 163). The gating of TRPM7 and

TRPM6 is controlled by PIP2 (164, 165). Depletion of PIP2 after

activation of PLC-linked GPCRs results in the inactivation of both

channels. TRPM6 interacts with PIP2 at the TRP domain through the

basic residue R1088, while in TRPM7, the specific contact residues

have not been identified yet (164). However, TRPM7 is activated and

not inhibited by PLC-coupled GPCR agonists (166). Takezawa et al.

reported that GPCR-coupled adenylyl cyclase also enhances TRPM7

activity, and this effect is arbitrated by protein kinase A and

cAMP (167).

TRPM7 activity is sensitive to pH (168), polyamines (169),

mechanical stretch (170–174), osmotic gradients (175), and chloride

and related halides (176). TRPM7 regulates the increase in cytosolic

Zn2+ efflux induced by increased ROS, as well as blockade of cytosolic

Zn2+ influx due to decreased glutathione. Oxidative stress perception

as well as the release of Zn2+ from intracellular storing compartments

are also TRPM7-dependent process (160).

TRPM7’s catalytic activity required Mg2+ or Mn2+ (177). In vitro,

TRPM7 phosphorylates myosin II isoforms, annexin A1,

tropomodulin, eukaryotic elongation factor-2 kinase (eEF2-k),

phospholipase C gamma 2 (PLCg2), and stromal interaction
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molecule 2 (STIM2) (178–182). TRPM7 kinase auto-phosphorylates

threonine and serine residues located in its kinase substrate domain

(147, 179, 183, 184). Proteolytic cleavage by caspase results in the

release of the kinase domain, which potentiates T cells apoptosis

induced by Fas (185). In addition, circulating kinase can translocate to

the cell nucleus, where it can phosphorylate histones, thus modulating

the chromatin epigenetic landscape, likely in a Zn2+-dependent mode

(160, 186).

Contingent to the tissue, the structural similarity between TRPM6

and TRPM7 allows the formation of heterotetrametric complexes

after the phosphorylation of TRPM7 by TRPM6 (148, 187–189). The

TRPM6/7 complex differs from the homomeric TRPM6 and TRPM7

in their permeability to Ni2+, conductance, and pore structure. In

these channels, the different sensitivity to low pH depends on the

difference between the number of negatively charged residues in the

pore domain, 7 in TRPM7 and 8 in TRPM6 (36, 157, 162). These

assembled channels can modulate the pathophysiological role of both

channels (43, 190) (Figure 1B).
TRPM and cancer

In this section, we discuss recent results involving TRPM

channels in oncologic processes, the signaling pathways modulated

by these proteins, their mechanisms, and their functions. To facilitate

reading, we have summarized in Figure 2 the cancer types/TRPM
Frontiers in Oncology 05
channel expression (potential effects of agonists or antagonists)

relationships and in Table 1 the pro/suppressive oncological

functions of these channels in certain cell lines, where TRPM

modulators have been used as anti-cancer pharmacological tools.
TRPM 1

Melanoma
Since its discovery, TRPM1 has been associated with malignant skin

pathologies (47, 51). In normal melanocytes, TRPM1 knockdown

resulted in reduced [Ca2+]i, tyrosinase activity, and intracellular

melanin pigment, showing that TRPM1 is involved in Ca2+

homeostasis and melanogenesis. Induction of the p53 tumor

suppressor by transfection or UVB radiation triggered inhibition of

TRPM1 expression and a diminution in both intracellular Ca2+

mobilization, and extracellular Ca2+ uptake (209). TRPM1 is highly

expressed in dysplastic and benign nevi, as well as in cutaneous

melanomas, and variably extracted from invasive melanoma, while

reduced expression was found in more advanced melanomas (210–

212). According to Levi et al., the increase in the miR-211 expression

reduces the invasion activity of several cutaneous malignant melanoma

cell lines, by decreasing the expression of growth factor receptors IGF2R

and TGFBR2, and nuclear factor of activated T-cells 5 (NFAT5) genes

(213). Vemurafenib, a BRAF inhibitor, significantly augments the

expression of miR-211-5p in tumor-derived extracellular vesicles (EVs)
FIGURE 2

Relation between cancer types and TRPM channel expression. Overexpressed channels with the potential beneficial role of antagonists are indicated in
red; down-regulated channels with a possible beneficial effect of agonists are in green; the controversial role of channel according to similar benefits of
agonists and antagonists are in grey.
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by increasing MIFT expression. Regulation of the TRPM1 gene by MIFT

triggers the activation of the survival pathway (214). In melanoma cells,

miR-211 transfection decreases sensitivity to vemurafenib, while in a

vemurafenib-resistant cell line, inhibiting the mature form of miR-211

(miR-211-5p), diminishes cell prolifer (214). However, in patients with

acral melanoma, the increased TRPM1 expression was associated with

shorter survival due to tumor progression (215). TRPM1 elevates [Ca2

+]-cytosolic levels and activates Ca2+/calmodulin-dependent protein

kinase IId (CaMKIId), promoting AKT activation after CaMKIId/AKT
interaction, cell mobility, colony formation, and tumor growth in an in

vivo (xenograft) melanoma cell model (215).
TRPM2

TRPM2 has been implicated in several pathological pathways

engaging oxidative stress (41, 89, 216–218). After activation of

TRPM2 by oxidative stress, the resulting ADPR production can

increase [Ca2+]i, leading to cell death by enhanced cytokines

production, aggravating inflammation and tissue injury (219–223).

Other authors suggested that TRPM2-induced Ca2+ entry may have a

protective role for injured tissues (224, 225).
Frontiers in Oncology 06
Neuroblastoma and glioblastoma
In neuroblastoma tumor cells and xenograft mice model, TRPM2

modulates both antioxidant response and ROS production,

prompting cell survival (78, 216, 226, 227). TRPM2 activation

results in the expression of transcription factors and kinases such as

HIF-1/2a, CREB, Nrf2, Pyk2, and Src, which contribute to cell

survival and proliferation (226–228). TRPM2 inhibition or

depletion induces an increase in ROS by mitochondrial

dysfunction, while antioxidant diminution results in cell death.

Treatment of TRPM2-knockout neuroblastoma cells with

doxorubicin decreased cell viability, RNAs encoding for

transcription factors, E2F1/2 and FOXM1, and cell cycle regulators,

including CDK1, Cyclin B1, CKS1, and PLK (229). Wild-type TRPM2

reestablished the number of living cells, as well as the expression of

FOXM1, E2F1, and DNA repair proteins. On the other hand,

treatment of DBTRG glioblastoma cells with selenium (Se) and

docetaxel (DTX) increases markers involved in ROS production,

mitochondrial membrane depolarization, and apoptosis (230).

Additive therapy prompted cell death in the glioblastoma cells, via

TRPM2-mediated increases in oxidative stress and [Ca2+]i. These

effects were reverted after treatment with N-(p-amyl cinnamoyl)

anthranilic acid (ACA, Table 1), a TRPM2 antagonist.
TABLE 1 TRPM functions and their pharmacological modulators in cancer cells.

Channel Cancer/Cell Channel Function Modulators In vivo model Reference

TRPM2

Breast/MCF-7 and
MDA-MB-231

↑ [Ca2+]I
Promotes integrity DNA

2-APB
Hopkins
et al. (191)

Prostate
PC-3

Promote viability
Inhibits apoptosis and autophagy

8-Br-ADPR
Tektemur
et al. (192)

TRPM3
Renal carcinoma/786-
O and A498

↑ [Ca2+]I
stimulates pro-survival autophagy

Mefenamic acid
Hall et al.
(59)

TRPM4 Prostate/DU145 ↓SOCE CBA, NBA, and LBA
Borgström
et al. (193)

TRPM5
Lung/
BL6

Promotes migration and metastasis by
increased MM9 activity
Modulates pHe

Triphenylphosphine
oxide (TPPO)

Xenograftnmetastatic
melanoma mice
model

Maeda et al.
(194)

TRPM7

Ovarian cancer/
SKOV3, OVCAR3
HO8910

↑ [Ca2+]i
Promotes glucose metabolic
reprogramming through
TRPM7/AMPK/HIF-1a
Induces epithelial-mesenchymal
transition

Carvacrol
Xenograft ovarian
cancer mice

Chen et al.
(195)

Non-small cell lung
cancer/
A549 and 95D

Promotes metastasis Waixenicin A
Liu et al.
(196)

Hepatocellular
carcinoma/
HuH6
HuH7

Mg2+ influx and phosphorylation of G-
protein
Prevents
replicative senescence

NS8593
Xenograft HCC mice
bearing (HuH7)

Mittermeier
et al. (197)

Glioblastoma/
U87, U251
A172

Modulates Ca2+ influx
Proliferation and invasion
Mediates activation of lncHOTAIR

Naltriben
Carvacrol

Xenograft GBM
mouse models
(U87or U251)

Wong et al.
(198)
Chen et al.
(199)

Bladder/
T24 UMUC3

Promote proliferation, motility
Oridonin
Carvacrol

Xenograft model
Che et al.
(200)

(Continued)
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Leukemia
In in vitro and in vivo models of acute myeloid leukemia (AML),

TRPM2 showed a mechanism of action similar to that observed in

neuroblastoma. TRPM2 deletion in cells provokes a decrease in

mitochondrial potential and calcium uptake, with a reduced

antioxidant response (enhanced mitochondrial ROS levels and

decreased Nrf2), autophagy inhibition (decreased ULK1, Atg7, and

Atg5 protein levels), and bioenergetic modifications (reduced ATF4

and CREB levels). These effects inhibited leukemia proliferation and

increased sensitivity to doxorubicin, an effect that was reversed after

reconstitution with TRPM2 (231).

In a Trpm2(-/-) mouse model of AML driven by MLL-AF9, the

loss of TRPM2 had neither a substantial effect on the progression of

leukemic disease nor a synergistic effect with the cytotoxic therapy

(232). These divergent results could be attributed to the models used

in both experiments.

In Jurkat lymphohematopoietic cancer cells, stably expressing

apoptosis-resistant Bcl-2, treatment with N-(p-amylcinnamoyl)

anthranilic acid (ACA), a TRPM2 inhibitor, followed by irradiation

(IR), reduced the CAMKII phosphorylation and hampered the

radiation-assisted inactivation of cdc2, which is dependent on the

indicated phosphorylation (233). IR stimulated a TRPM2-mediated

Ca2+-entry that resulted in cell cycle arrest in G2/M, while inhibition

of this channel induced cell release from the G2/M phase, promoting

cell death (233).
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Pancreatic cancer
The mutated TRPM2 gene is strongly associated with the survival

of patients with pancreatic ductal adenocarcinoma (PDAC),

compared to the standard control group. Upregulation of TRPM2

channels could stimulate pancreatic cancer processes (proliferation,

migration, and invasion), independently of the tumor cell type

(PANC-1, BxPC-3), and of the tumor-bearing mice model. TRPM2

level is significantly increased in PA tissues and negatively correlated

to overall survival (234, 235). The action of TRPM2 may be directly

due to the activation of PKCa by calcium or indirectly triggered by

PKCϵ and PKCd, through increased DAG, which most likely activates

the downstream MAPK/MEK pathway, stimulating cel l

survival (235).
Prostate cancer
TRPM2 is markedly expressed in prostate cancer cells (PCa)

compared to the normal prostate epithelium, and its expression fuels

in parallel with increasing clinical tumor grade (192, 236). In PC3

cells, H2O2 addition triggers intracellular Ca2+ increase, decreased

autophagy marker LC3-II, and induced apoptotic cell death (237).

The TRPM2-Ca2+-CaMKII cascade is activated by oxidative stress,

intensifying the production of intracellular ROS radicals, which are

responsible for mitochondrial fragmentation and modification of the

mitochondrial membrane potential. The inhibition of early autophagy
TABLE 1 Continued

Channel Cancer/Cell Channel Function Modulators In vivo model Reference

Lee et al.
(201)

TRPM8 antagonists and their functions in cancer cells

TRPM8

Prostate/LNCaP, Cos-
7, 22Rv1, C4-2B,
PNT-2

Inhibits growth, migration, and invasion
of tumor cells in androgen-dependent
PCa

2-(5-(benzyloxy)-1H-indol-3-yl)-N-(4-
phenoxybenzyl)ethanamine Di Donato

et al. (202)(S)-methyl 2-(dibenzylamino)-3-(1H-indol-3-
yl)propanoate

Prostate/LNCaP,
22Rv1, C4-2B
PNT2

Inhibits growth, migration, and invasion
of tumor cells in androgen-dependent
PCa

Methyl (S)-2-(dibenzylamino)-3-(4-
nitrophenyl) propanoate

Di Sarno
et al. (203)

Methyl (S)-2-(dibenzylamino)-3-(3,4-
dihydroxyphenyl) propanoate

Methyl (S)-3-(4-aminophenyl)-2-
(dibenzylamino) propanoate

Prostate/LNCaP,
22Rv1

Reduces growth of LNCaP prostate
cancer cells

(±)-(R,R)-Bis(1-(4-fluorophenyl)-6,7-
dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)
methanone

De Petrocelli
et al. (204)

Prostate/LNCaP,
DU145, PNT1A

Anti-proliferative activity
N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-
yl)tetrahydropyrazine-1(2H)-carbox-amide
(BCTC)

Liu et al.
(205)

Squamous carcinoma/
HSC3 and HSC4

Augments migration and invasion
abilities

RQ-00203078 (RQ)
Okamoto
et al. (206)

Osteosarcoma/U-2
OS, 143B, MG-63,
HOS

Promotes growth and metastasis
through activation of TGFb signaling
pathway

N-(3-aminopropyl)-2-[(3-methylphenyl)
methoxy]-N-(2-thienylmethyl) benzamide
(AMTB)

Xenograft tumor of
sarcoma cells

Liu et al.
(207)

TRPM8 agonists and their functions in cancer cells

TRPM8 Prostate/LNCaP
Anti-proliferative effects,
Inhibits migration

WS-12
Alaimo et al.
(208)
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induction was also observed, managing cell death in TRPM2-

expressing tumor cells. Under oxidative stress pressure, TRPM2

knockdown cells shift from cell death to autophagy to help in cell

survival (237). Silencing of TRPM2 by siRNA transfection causes a

significant increase in autophagic and apoptotic gene expression

(ULK1/2, AMBRA1, ATG5/10, BECN1, BAX) at the mRNA level

(192). Also, the inhibition of TRPM2 by 8-Br-ADPR led to a

significant reduction in the cell viability of PC3 cells (Table 1).

Breast cancer
TRPM2 was also identified in the foci of human breast cancers

(MDA-MB-231 and MCF-7 cells), and inhibition with 2-APB, or

silencing through RNAi, reduced tumor cell multiplication (191;

Table 1). Compared to normal breast cells, TRPM2 inhibition in

tumor breast cells produces a significant increase in damaged DNA

levels, hypothesizing that TRPM2 activity in the nucleus could

facilitate the integrity of genomic DNA, by promoting nuclear

calcium influx. In MDA-MB-231 cells, TRPM2 inhibition led to cell

death after treatment with doxorubicin or N-methyl-N’-nitro-N-

nitrosoguanidine. Silencing TRPM2 selectively increases cell death

in both MDA-MB-231 and MCF-7 cells after tamoxifen and

doxorubicin treatment, respectively (191, 238). In another appealing

work, Gershkovitz et al. demonstrated that the neutrophil cytotoxicity

induced by H2O2 is Ca
2+- and TRPM2-dependent in several tumor

cell lines (239). Silencing TRPM2 in MDA-MB-231 cells showed

growth retardation, utter resistance to H2O2 and neutrophil

cytotoxicity, seeding metastatic tumors more efficiently.

Gastric cancers and other cancers
The survival of gastric cancer (GS) patients has negatively been

correlated to the TRPM2 expression (240). In MKN-45 and AGS cells,

TRPM2 knockdown increases apoptosis, and reduces cell growth and

mitochondrial metabolism, as denoted by the reduction of both ATP

production and mitochondrial oxygen consumption. Concomitantly,

a decrease in autophagy and mitophagy-induced proteins (ATG,

LC3A/B II, BNIP3) downregulated the c-Jun N- terminal kinase

(JNK) pathway, causing accumulation of damaged mitochondria

and gastric cancer cell’s death. Downregulation of TRPM2 also

sensitized these tumor cells to chemotherapeutic agents, like

doxorubicin and paclitaxel (240). These findings are consistent with

earlier observations by Wang et al., which demonstrated that the

activation of the TRPM2-Ca2+-CAMK2 cascade by oxidative stress

resulted in phosphorylation of the BECN1 protein, which ultimately

inhibited autophagy in liver cells and promotes cell death (241).

TRPM2, via AKT-mediated epithelial-mesenchymal transition

(EMT), also contributes to GC cell invasion and metastasis (242).

TRPM2 channel silencing considerably reduced the expression of

EMT markers (N- and E-cadherin, twist, and snail), while increasing

tumor suppressor PTEN activities. In a mice model, the TRPM2

knockdown eradicated AGS’s tumor proliferation capacity, and

produced deregulation of metastatic markers. The same results were

obtained in non-small lung cancer (NSCLC) cell lines, A549 and

H1299, and in a human lung tumor xenograft SCID mice

model (243).

In the tongue carcinoma (SCC) cell line SCC9, it was observed an

enhanced expression of TRPM2 located at the nucleus of cancer cells,
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in contrast with non-malignant human tongue samples. Treatment of

SCC9 with H2O2 for 24 hours induced an increased number of

apoptotic cells, while TRPM2 knockdown inhibited SCC9 survival

and migration, independently of the apoptotic p53-p21

pathway (244).
TRPM3

TRPM3 is connected to the control of renal Ca2+ ion homeostasis

(60), and its expression is upregulated in a type of renal cell carcinoma

(ccRCC), with loss mutation of von Hippel-Lindau ligase (VHL, 59).

VHL mutation induces a state of pseudohypoxia in the cells due to an

increase in the cytoplasmic levels of hypoxia-inducible factor (HIF),

which triggers autophagy (245). In human ccRCC cell lines (A498 and

786-O), TRPM3 silencing or treatment with mefenamic acid, a

TRPM3 inhibitor, disrupted the formation and growth of tumors

(Table 1). Mechanistically, Ca2+ influx through TRPM3 channels

stimulates pro-survival autophagy, with upstream stimulation of Atg-

related ULK1 protein, an essential pathway for autophagosome

biogenesis, but without mTOR involvement (59). This process was

negatively controlled by two VHL-regulated microRNA types (mir-

204 and mir-214). VHL loss results in both miR’s lack and autophagy

pathway activation (59).
TRPM4

Reduced expression of the TRPM4 channel drops the

proliferation of a cervical cancer-derived HeLa cell line (246). In

these cells, TRPM4 suppression stimulated the degradation of b-
catenin by GSK-3b, lowering the transcription process dependent on

the b-catenin/Tcf/Lef system. Compared to control transfected cells,

reduced expression of TRPM4 correlates with a decrease in the

number of cells in S phase, and a more significant number of cells

in the G1 phase. TRPM4 knockdown reduced the expression levels of

survivin and cyclin D1, while TRPM4 overexpression in T-REx 293

cells led to high b-catenin levels and increased cell proliferation (246).

Endometrial cancer
TRPM4 has been identified as a protective prognostic gene in

endometrial cancer (EC) (247). Low TRPM4 expression in EC patient

tissues s was associated with both worse recurrence-free survival and

overall survival (248). In AN3CA cells, TRPM4 silencing significantly

increases EC progression by up-regulation of mesenchymal markers,

N-cadherin, and vimentin. and by decreasing cytokeratin expression,

inducing cell proliferation and migration. TRPM4 silencing also leads

to reduced p53 and PI3K/AKT/mTOR signaling pathways, strongly

implicated in EC pathogenesis.

Prostate cancer
TRPM4 channel is among the five candidate driver genes

implicated in non-hormonal prostate cancer (PCa) (249). Increased

expression of TRPM4 was found in prostate cancer and prostatic

intraepithelial neoplasia tissues, compared to non-malignant tissues.

In fact, a higher risk of recurrence in PCa patients was associated to
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this TRPM4 overexpression (249–251). In prostate epithelial (PEC)

and prostate cancer (DU145) cells, TRPM4 knockdown significantly

increased store-operated Ca2+ entry (SOCE). In PC3 and DUA145

androgen-insensitive PCa cell lines, silencing the TRPM4 ion channel

decreased cell migration, but not proliferation. Stable CRISPR/Cas9-

mediated TRPM4 knockdown DU145 cells showed a rounder shape,

lower proliferation, migration, and viability, as well as reduced cell

adhesion. However, current TRPM4 inhibitors (CBA, LBA and NBA)

did not elicit specific TRPM4 effects in DU145 cells, questioning the

function of the ion conductivity of TRPM4 in PCa. In line with the

HeLa study (246), decreased TRPM4 levels lead to decreased Akt1

phosphoactivation, probably impaired by an alteration in the EGFR-

calcium/calmodulin axis, and by reduced GSK-3b activity. Therefore,

the total levels of b-catenin protein are reduced, which, together with

a decrease in the transcriptional activity of Tcf/Tcf, induces a

diminished proliferation of PC3 cells (252). TRPM4 overexpression

in androgen-sensitive LNCaP cells enhances the total levels of b-
catenin and the phosphorylation of GSK-3b. Silencing TRPM4 in PC3

cells also decreased migration/invasion ability, via a partial reversion

of the EMT process, including a decrease in the expression of Snail1,

and a substantial change in the MMP9, E-cadherin/N-cadherin, and

vimentin expression. Overexpressing TRPM4 in LNCaP cells

increases the transcription factor Snail, promoting the repression of

E-cadherin and an augment in their migration potential (253).

In PCa tissues, Hong and Yu observed higher and lower TRPM4

and miR-150 expression, respectively, EMT stimulation, as well as b-
catenin signaling pathway activation. In PC-3, DU-145, BPH-1, PC-

3M-2B4 and LNCaP cells, the upregulation of miR-150 led to the

inactivation of the b-catenin signaling pathway (254). Furthermore,

either upregulation of miR-150 or knockdown of TRPM4 suppresses

proliferation, migration, invasion and EMT in vitro, while in vivo

restrains tumor growth and metastasis (254).

The TRPM4 ion channel is recognized as part of the adhesoma,

the protein machinery involved in focal adhesions (FAs) necessary for

contractility and migration (255). Blanco et al. propose the interaction

of TRPM4 with the microtubule plus-end tracking EB1 and EB2

proteins, which are required for TRPM4 trafficking and functional

activity (256). Mutations or inhibition of the TRPM4-EB interaction

reduced TRPM4 expression in the plasma membrane and the

distribution of channels in ER. In a B16-F10 melanoma model,

these mutations diminishes TRPM4-dependent focal adhesion,

disassembly rates and cell invasion effects, confirming the TRPM4

channel as an adhesome component (255, 256). The effects of TRPM4

on cell migration are partially mediated by the activation of a GTPase,

Rac1. Upon silencing of TRPM4, the serum-induced activation of

Rac1 was significantly reduced, diminishing cellular spreading (256).

Breast cancer
TRPM4 channel is overexpressed in breast cancer. This

expression was associated with EMT and estrogen response gene

sets (257), and correlated to negative clinical evolution (257, 258).

TRPM4 and K+ channel tetramerization domain 5 (KCTD5) protein

expressions are increased in different breast cancer samples. KCTD5

positively regulates TRPM4 activity by enhancing its Ca2+ sensitivity

and promoting cell migration and contractility (258). In addition,

KCTD5, as a putative adaptor for the ubiquitin ligase Cullin3-E3,

could also promote TRPM4 turnover through ubiquitination (259,
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260). In breast cancer stem cells, Verigos et al. hypothesize the

involvement of TRPM4 in cell chemoresistance, tumor recurrence,

and metastasis. TRPM4 gene was overexpressed in tumorspheres

enriched in breast cancer stem cells (bCSCs), and the TRPM4 gene

knock-down revealed potential anti-tumor effects by directly reducing

stemness properties of bCSCs in vitro (261).
Colorectal cancer
In colorectal cancer (CRC), the overexpression of TRPM4 has

been related to characteristic adverse tumor patterns, such as

epithelial-mesenchymal transition and hence infiltrative growth

(262). In HCT116 cells, lacking p53 expression, TRPM4 acts as the

primary CAN current source conducting large Na+ currents.

Transient overexpression of p53 reverses this phenotype (263).

Silencing TRPM4 in HCT116 resulted in an increased store-

operated Ca2+ entry as well as in reduced cell viability,

proliferation, and invasion, with respect to normal HCT116 cells.

Knockout of TRPM4 in the same cells, also induced a shift in the cell

cycle towards G1 phase, which seems to be dependent on p53

expression (262, 263). Furthermore, in prostate cells expressing

endogenous p53, LNCaPs, a p53 overexpression diminished the

currents mediated by TRPM4 channels (263). These authors also

observed that the silencing TRPM4-mediated cell cycle switch is

abolished in the event of p53 loss, indicating that TRPM4

expression is repressed by p53 (262, 263). TRPM4 regulates Ca2

+-induced exocytosis in HCT116 cells. which depends on TRPM4 ion

conductivity in TRPM4-containing vesicles. Both exocytosis and the

delivery of TRPM4 channels to the plasma membrane are mediated

by SNARE proteins (264–266). Genome sequencing of affected

individuals in different families, non-bearing known CRC

predisposing genes mutations, identified variants in the CYBA gene

and the TRPM4 gene, leading to a premature stop codon and

truncated protein (267). Functional characterization of these

variants revealed that TRPM4 knockdown reduced the generation

of radical oxygen species in HT-29 and LS174T cell lines, and

decreased the production of MUC2 protein, an important

component of the intestinal mucus barrier (267).
Leukemia
Transcriptome analysis on the impact of azacitidine treatment on

four acute myeloid leukemia cell lines identified five up-regulated

coding genes, among which TRPM4 is the only surface protein up-

regulated (268). In MLL-rearranged leukemia cells, the knockdown of

TRPM4 arrested the cell cycle at the G0/G1 phase, impairing tumoral

cell growth and proliferation. The authors suggested that this channel

could be involved in the regulation of the AKT/GLI1/Cyclin D1

pathway, and that it is behind the pathogenesis of this leukemia (269).

In patients with CD5+ subtypes of diffuse large B-cell lymphoma

(DLBCL), the upregulation of TRPM4 mRNA was related to a poorer

prognosis compared to CD5− patients (270). The TRPM4 protein was

detected in epithelial cells of reactive tonsils, hyperplastic prostates

(luminal epithelial cells), kidney distal tubules, and endometrial

glands, but was not identified in normal B cells located in lymphoid

tissues (271). In activated B cell-like of non-Hodgkin lymphoma
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DLBCL subtype, the TRPM4 overexpression was linked to reduced

overall and progression-free survival (271).
TRPM5

Single nucleotide polymorphisms (SNP) present in TRPM5 (CG

or GG genotype) have been associated with a reduced risk of suffering

childhood leukemia compared to the CC genotype (272). In contrast

to normal bladder, TRPM5 mRNA is considerably lower in bladder

cancer tissues (273). However, TRPM5 protein was not identified in

bladder tissues from cancer patients or control subjects. In public-

available databanks, the increased TRPM5 mRNA expression was

linked to shorter survival in gastric and melanoma cancer patients,

but this type of correlation was not found in patients with colorectal,

ovarian, breast, or lung cancers (194). TRPM5 protein is highly

expressed in BL6 cells, a metastatic B16 melanoma variant. In

silencing TRPM5 B16 melanoma cells, these authors observed a

reduction of MMP-9 expression, a hallmark of solid tumors

associated with EMT, induced by the acidic extracellular pH (194).

Mice injected with TRMP5-overexpressed B16-BL6 cells showed an

increased degree of acidic pHe-induced MMP-9 expression and lung

metastasis. The crucial pHe for MMP-9 induction was not modified

by genetic manipulation but merely amplified the inducible MMP-9

percentage, at each pHe (194). In mice, the treatment with

triphenylphosphine oxide (TPPO), a known inhibitor of the

TRPM5 channel, resulted in a significant reduction of NF-kB

activities, lower expression of EMT-associated genes (Vim, Mmp9,

Cdh2), and attenuation of spontaneous lung metastasis (194).
TRPM6

TRPM6 could play oncogenic/tumor suppressive roles through its

ability to mediate Mg2+ homeostasis and its kinase functions

(274, 275).

Colon and colorectal cancers
Colon carcinoma LoVo and doxorubicin-resistant LoVo cells

showed different cytosolic Mg2+ levels. In resistant cells, the total

magnesium concentration is higher, but the entry capacity is poorer,

than in sensitive cells. In resistant cells, there are decreased TRPM6

and TRPM7 levels due to transcriptional regulation and post-

transcriptional events, respectively (276).

In colorectal cancer (CRC), the expression of Mg2+ transporters

has been investigated in numerous studies (274, 275). TRPM6 mRNA

was downregulated in CRC tissues and, therefore, the high expression

of TRPM6 channels in CRC patients was correlated to prolonged

overall survival (277, 278). These authors also identified hsa-let-7f-1

and hsa-let-7g as the regulatory miRNAs of TRPM6. Pugliese et al.

reported that TRPM6 expression was higher in inflammatory (IBD)

tumor tissues than in non-IBD CRC, but these facts could not be

associated with tumor stage or grade (279). Always in the digestive

system, TRPM6 is expressed in the human hepatoma cell lines HepG2

and Huh-7 (280). A study by Pietropaolo et al. hypothesizes that

downregulation of TRPM6 contributes to severe hypomagnesemia in

cancer patients treated with the monoclonal antibody targeting EGFR,
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cetuximab (CTX). In human colon carcinoma CaCo-2 cells, CTX

reduced the TRPM6-mediated Mg2+ influx through interference with

the EGF signaling path (281).
TRPM7

One of the first studies about the implication of TRPM7 in cancer

progression informs on the association of an SNP TRPM7

polymorphism (Thr1482Ile) and an increased risk of developing

hyperplastic polyps or colorectal adenoma, particularly in patients

with a high Ca2+/Mg2+ intake diet (282). Recent data also identified

TRPM7 expression as an indicator of the predisposition to colorectal

cancer (CRC) onset and progression in patients with inflammatory

bowel disease (279, 283).
Prostate cancer
Compared to prostate hyperplasia cells and tissues, the TRPM7

channel is overexpressed in prostate cancer (PCa) cells and tissues

and this upregulation has been correlated with poor survival of

patients (284). The activation of TRPM7 channels increases the Ca2

+/Mg2+ ratio in serum, promoting cell proliferation in PCa (285).

Knockdown of TRPM7 in DU145 and PC3 cells suppressed migration

and invasion by reversing the EMT state, thus is, downregulating

EMT activators (MMP2 and MMP9) and overexpressing suppressor

proteins (E-cadherin) (284). TRPM7 was also required for TGFb‐
induced EMT, which subsequently promoted cell invasion (286).

Under hypoxic conditions, TRPM7 knockdown promoted

proteasomal HIF-1a degradation and inhibited EMT changes in

DU145 and PC3 cells. TRPM7 knockdown increased RACK1

phosphorylation, reinforcing RACK1-HIF-1a interaction, and

attenuating the connection between HSP90 and HIF-1a. Deletion
of both TRPM7 and HIF-1a suppressed TRPM7-HIF-1a-Annexin-1
signaling, inhibiting hypoxia-induced cell migration and

invasion (287).

Pancreatic cancer
TRPM7 is essential for pancreatic ductal adenocarcinoma

(PDAC) progression and invasion. The over-expression of these

channels has been correlated with the increase in tumor size and

the advancement of tumor stages, and hence, inversely connected to

patient survival (288, 289). In PANC‐1 and MIA PaCa‐2 aggressive

PDAC cells, TRPM7 channels mediated the Mg2+ entry, which has no

effects on cell viability but was a requisite for cell invasion (290). This

Mg2+ entry prompted heat‐shock protein 90a (Hsp90a) secretion,
with the subsequent stabilization of both urokinase plasminogen and

pro‐MMP2 activator pathways, stimulating the extracellular matrix

degeneration and the PDAC cell invasiveness. In consequence,

silencing TRPM7 in PDAC cell lines reduced cancer cell invasion

(290). Analogously, in cancer stem (CSCs)-like and metastatic lung

cancer cells, TRPM7 silencing induced EMT inhibition, stemness

markers, phenotypes suppression, and concomitantly Hsp90a/uPA/
MMP2 deregulation (196). TRPM7 channels are implicated in AG-9/

VG-6-stimulated MIAPaCa-2 cell migration. Elastin-derived peptides

(EDP), AG-9 and VG-6, bind to the ribosomal protein elastin

receptor (RPSA), which is overexpressed in human pancreatic
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tumor tissues, where its interconnection with alpha-6 integrin

(ITGA6) regulates the invasion process of PDAC cells (291, 292).

This cell migration effect is avoided by TRPM7 channel silencing.

EDP treatment did not modify TRPM7 expression but activated the

channel without stimulating divalent cation influx into the cytosol. In

addition. EDPs treatment induced the co-localization of the TRPM7

channel and the ribosomal protein SA (RBSA). Co-treatment with an

RPSA inhibi tor , EGCG, and AG-9 prevented the co-

localization (292).
Breast cancer
In human breast ductal adenocarcinoma (hBDA), the high levels

of TRPM7 expression have been interconnected with the Ki67

proliferation index, Scarff-Bloom-Richardson (SBR) cancer grade,

and tumor size (293). High TRPM7 mRNA levels have also been

linked to lower recurrence‐ and distant metastasis‐free survival. In

xenografts, immunodeficient Rag2−/−IL2rg−/− mice, harboring

human MDA‐MB‐231 cells, these high TRPM7 levels were required

for cancer proliferation and metastasis (294). More recently, it has

been described that the increased expression of TRPM7 channels

predicts reduced survival in patients suffering from Luminal A breast

cancer (295). The authors found that the methylation frequency of the

channel has a mean of 42.7% in the whole cohort, while it is much

lesser in Luminal A cancer versus other subtypes (33.3% vs. 45.7% in

Luminal B, 46.9% in Her2+, and 51.3% in Basal-like). In addition,

TRPM7 methylation has been negatively related to metastasis at the

lymph node, disease recurrence, and final cancer-induced death. In

this type of cancer, de-adhesion of cell-matrix interactions and

myosin-II-based cell strains are TRPM7-dependent, and in a

murine model of breast cancer, TRPM7 is required for cell

metastasis into the lung (296). TRPM7 is also involved in the

migration and invasion of MDA-MB-435 cells, in which the

regulation of Src and MAPK kinase pathways are dependent on

TRPM7 level (297). This suggests that TRPM7’s role is independent

of Ca2+ entry and involves the channel a-kinase activity, which is

required for the phosphorylation of myosin-IIA heavy-chain (179,

296, 297). TRPM7 maintains mesenchymal phenotype in MDA-MB-

231 and Hs 578T cells by regulating the EMT transcription factor

SOX4 (298). In this respect, the TRPM7 channel reduces the

cytoskeletal stress by inhibiting myosin II activity, which

mechanistically activates SOX4 expression and, therefore,

contributes to metastatic processes of breast cancer cells (298).

These results indicate the involvement of TRPM7 channels in both

the alteration of mechanical adhesion dynamics and in the

cytoskeletal tension reduction, which in the end resulted in

increased cell migration (294, 296, 298).
Nasopharyngeal carcinoma, ovarian cancer, and
neck squamous carcinoma

The TRPM7 role in breast cancer cell migration was also found in

other tumors, such as ovarian cancer, and nasopharyngeal and neck

squamous carcinomas (195, 299, 300). In ovarian and neck squamous

carcinoma samples, the TRPM7 expression was negatively

interrelated with the expression of E-cadherin, but positively

correlated with N-cadherin, twist, and vimentin expression (195,

228). In ovarian cancer SKOV3 and OVCAR3 cell lines, TRPM7
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depletion inhibited migration and invasion, and decreased metastasis

to the lung in SKOV3 tumors, therefore prolonging the survival of

mice with this type of tumors. Reduction of TRPM7 expression by

treatment with MK886, a 5-lipoxygenase inhibitor, or with the

intracellular calcium chelator BAPTA-AM, decreased EGF-

mediated migration, invasion, and EMT/insulin-like growth factors

(IGF), by decreasing the levels of [Ca2+]i. TRPM7 silencing also

attenuated calcium-related PI3K/AKT activation, which was

enhanced by treatment with LY2904002, a PI3K inhibitor (301).

The same group proposes TRPM7 as a modulator of metabolic

reprogramming pathways in ovarian cancer (195, 302–304).

TRPM7 expression levels in SKOV3 and HO8910 cells were

positively correlated with glycolysis-related protein (HK2, PDK1)

levels, but negatively correlated with oxidative phosphorylation

(OXPHOS) pathway-related protein (IDH3B, UQCRC1) levels,

suggesting that in ovarian cancer TRPM7 channels promote

glycolysis (195). TRPM7 knockout significantly reversed these

relationships by shifting glycolysis to OXPHOS. In vitro and in

vivo, silencing TRPM7 increased the activation of AMPK and

stimulated the ubiquitination and degradation of HIF-1a, thus
attenuating the HIF-1a-enhanced glycolysis, and inhibiting the

proliferation of ovarian cancer cells (195). These outcomes may

indicate that the glucose metabolic reprogramming in ovarian

cancer is regulated by the TRPM7/AMPK/HIF-1a axis (195).

TRPM7 silencing not only diminished the glucose uptake, but also

ECAR and lactic acid production, while increased ATP, ROS, OCR

levels, and NAD+/NADH ratios. Consistently, in a xenograft mice

ovarian cancer model, the pharmacological inhibition of the TRPM7

activity with carvacrol also decreased the 18F-FDG uptake

(195, Table 1).

TRPM7 is highly expressed in neck squamous carcinoma

(HNSCC) tissues, especially in invasive tissues, and overexpressed

in hypopharynx squamous carcinoma (FaDu), tongue squamous

carcinoma (SAS), and buccal carcinoma (TW2.6) cell lines, which

was associated with poor overall survival rates. The knockdown of

TRPM7 negatively regulates the expression of genes and proteins

correlated to the calcineurin/NFAT pathway (i.e. NOTCH1,

NFATC3) and reduced the percentage of migrating and invasive

SAS cells (305). Silencing TRPM7 significantly decreased the E-

cadherin/vimentin ratio and suppressed dynamic processes, such as

migration, colony and tumorsphere formation, and hence, SAS

invasion. These effects involve a negative regulation of the

expression of several proteins, like Snail, cyclin D1, c-Myc, SOX2,

NANOG, and OCT4. TRPM7-knocked cells alone or treated with cis-

platin significantly reduced colony and tumorsphere formation,

compared with untreated or cis-platin-treated wild-type SAS

cells (305).

Bladder cancer
Different works related TRPM7 upregulation to bladder cancer

(Bca) cells’ proliferation, motility, and apoptosis (200, 201, 306).

TRPM7 knockdown reduced the migration and invasion ability of

UMUC3 and T24 cells by suppression of JNK (c-Jun N-terminal

kinase), Akt, and Src phosphorylation. Treatment with carvacrol

inhibited TRPM7 activity and restricted the tumor size in a

xenograft model (201; Table 1). Another TRPM7 inhibitor,

oridonin, suppressed the proliferative activity, as well as colony-
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formation and migration capacities of T24 cells, eliciting wide-

ranging apoptosis in vitro, and delayed tumor growth in vivo (200;

Table 1). On the other hand, treatment with oridonin appreciably

improved p53 expression levels, increased caspase-3 activity, and

reduced the expression of p-AKT, p-ERK, and TRPM7 channels.
Non-small cell lung cancer
In the non-small cell lung cancer (NSCLC) cell line A549, the

TRPM7 channel is over-expressed after stimulation of epidermal

growth factor (EGF), and an increased cell migration is observed.

TRPM7-knockout attenuates the effects of EGF stimulation (307). In

TRPM7-rich 95D cells, treatment with Waixenicin A repressed

survivin, vimentin, STAT3, uPA, HSP90a, TRPM7, and MMP2

expression levels, while TRPM7-knockout enhanced the anti-CSCs

effect above mentioned (196; Table 1). Luanpitpong et al. proposed an

interesting TRPM7/O-GlcNAcylation regulatory axis as a potential

target against lung carcinoma (308). In different cell lines and patient-

derived primary cells, the inhibition of TRPM7 and of the enzyme O-

GlcNAc transferase (OGT) suppresses the cells’ motility. TRPM7

inhibition also decreases Cav-1 expression, a component of the

plasma membrane micro-domains, overexpressed in lung

carcinoma, and connected with tumor invasiveness and patients’

poor survival. This inhibition can be reversed by activating O-

GlcNAcylation, defining the TRPM7/O-GlcNAc/Cav-1 pathway.

Hypo-O-GlcNAcylation of Cav-1, following post-translational

TRPM7 inhibition, promotes Cav-1 ubiquitination and subsequent

proteasomal degradation, a crosstalk that was also observed with c-

Myc. In vitro and in experimental lung metastasis in vivo, when

TRPM7 inhibition repressed O-GlcNAcylation, c-Myc and Cav-1,

ubiquitination and then their proteasomal degradation increased,

therefore inhibiting cell migration and invasion (308).

Samar et al. also propose the regulatory Ca2+influx/O-

GlcNAcylation axis, which directly targets ITGA4 and ITGB7

human integrins, as a potential target against the motility and

dissemination of myeloma (MM) cells (309). Silencing the TRPM7

channel and, therefore, inhibition of Ca2+ entry, efficiently reduced

MM cells’ spreading in vivo. These results suggest a potential clinical

application for both TRPM7 inhibitors and O-GlcNAcylation

modulators to treat MM (309).
Liver cancer
Inhibition of the TRPM7/myocardin-related transcription factors

A and B (MRTFs) axis is another promising strategy to curb

hepatocellular carcinoma (HCC) growth (310). The expression of

genes implicated in cell proliferation, dissemination, and

differentiation is mediated by the serum response factor (SRF),

which has MRTFs as coactivators (197). Using HuH7, HuH6, and

TRPM7 knockout HAP1 cells, Voringer et al. showed that TRPM7

activation induces RhoA activation, and, successively, the

polymerization of F-actin; permits the formation of MRTF-A-

Filamin A complex and stimulates MRTF-A/SRF transcriptional

activity. The authors hypothesize that the TRPM7 channel activity

is necessary to increase Mg2+ concentration, required for optimal

kinase activity, which is essential for both productive TRPM7-RhoA

interaction and MRTF transcriptional activity. Treatment of HuH7

and HuH6 cells with NS8593, a TRPM7 blocker, strongly reduced
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proliferation by cell cycle arrest in G1 phase. This fact, together with

the increase in senescence-associated ß-galactosidase activity, ERK

phosphorylation, GTP loading of Ras, and TNFSF10 and p16INK4a

expression, indicated that TRPM7 lack of function contributes to

oncogene-induced senescence of hepatocarcinoma (HCC) cells. The

same results were obtained in vivo in the corresponding mice model

of HCC xenograft, derived from HuH7 cells (310).

Neuroblastoma and glioblastoma
In the human neuroblastoma cell line SHEP-21N, the expression

of N-myc oncogene correlated with TRPM7 but not with TRPM6

mRNA expression, probably due to the few numbers of malignant

tumors with significant TRPM6 expression (311). N-Myc expression

is related to increased cell growth and overexpression of both TRPM6

and TRPM7 channels. N-Myc knockout SHEP-21N cells showed a

basal expression of both channels, which was significantly enriched,

especially that of TRPM6, by the up-regulation of N-Myc. Analyzing

membrane currents, they found that the endogenous TRPM6/TRPM7

currents show decreased Mg·ATP suppression, amplified sensitivity

to Mg2+, and weak sensitivity to 2-APB inhibition (311). These data

support both Ca2+ and Mg2+ uptake, consistently with the increase of

heteromeric TRPM6/TRPM7 channels mediated by N-Myc.

Accordingly, the silencing of TRPM6/TRPM7 in these cells induced

decreased cell proliferation.

In glioblastoma cells U87, treatment with the TRPM7 activator

naltriben induced TRPM7‐like currents through Ca2+ influx. It did

not alter cells’ viability or proliferation, but increased migration and

dissemination (198; Table 1). Concomitantly, the author observed

improved activation in the MAPK/ERK signaling pathway proteins

but not in PI3K/AKT. Treatment of U87 cells with the TRPM7

inhibitor carvacrol decreased cell growth and viability, migration, and

dissemination, and induced TRPM7-mediated apoptosis. Carvacrol

may regulate dynamic cell processes through the decrease of MMP-2

protein expression and the increased levels of p-cofilin (199).

In xenograft GBMmouse models injected with U87 or U251 cells,

the treatment with carvacrol showed a significantly reduced tumor

size in both mice, decreased expression of the p-Akt protein, and

increased levels of GSK3b (312). TRPM7 expression and activity are

not only required for glioma cell proliferation and migration/invasion

but also drive glioblastoma stem cells (GSC) plasticity through Notch

and STAT3 proliferative activities (313–317). In A172 cells, data from

a miRNA microarray analysis revealed down- and up-regulated

miRNA whose transcripts are significantly changed after TRPM7

knockdown. There are two TRPM7 mutants with an inactive kinase

domain, the Dkinase and the K1648R transfected glioma cells, which

have reduced cell invasion, thus indicating the need for an active

TRPM7 channel for glioma cell growth, while for cell migration and

invasion it seems necessary a functional kinase domain.

Overexpression of miR-28-5p suppressed glioma cells’ proliferation

and invasion, by upregulating the target Rap1b gene (313). In

addition, TRPM7 knockout in A172 glioma cells induced the

regulation of a series of lncRNAs (318), of which HOX transcript

antisense intergenic RNA (HOTAIR) was the most positively affected

by TRPM7 depletion (319). TRPM7-mediated HOTAIR

overexpression promoted glioma cell proliferation and invasion.

HOTAIR exerted the oncogenic effects partially through TRPM7/

HOTAIR/miR301a-3p/FOSL1 axis. TRPM7 mediates the Ca2+ influx
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necessary for NF-kB activation, which transcriptionally activates

lncHOTAIR. In turn, lncHOTAIR directly inhibits miR-301a-3p

expression, which functionally impedes FOSL1 gene expression

activity. As FOSL1 is a key glioma regulator, it is expected that

other TRPM7-mediated FOSL1 activations could contribute to

glioma pathogenesis, other than HOTAIR and miR-301a-3p.

Differently, Xing et al. showed the mechanisms responsible for

autophagy and tumorigenesis process induced by TRPM7 (320).

Pharmacological and genetic TRPM7 activation disturbs lysosomes/

autophagosome fusion, thus inhibiting the autophagy. TRPM7

activation umpires the releases to the cytosolic media of

intracellular Zn2+, which abolishes the interaction between VAMP8

and syntaxin 17 (Stx17), two soluble N-ethylmaleimide-sensitive

factor-attachment protein receptors (SNARE) located, respectively,

in the lysosome and in the autophagosome, and therefore arresting

autophagy flux (320). In a panel of cancer and regular cell lines, as

well as in xenograft and melanoma lung-metastasis animal models,

the autophagy inhibition mediated by TRPM7 activated cell death

and blocked cancel cells’ metastasis in vitro. In vivo, TRPM7

activation limited tumor proliferation and metastasis by inducing

ROS production, cell cycle arrest, and apoptosis (321).
TRPM8

Prostate cancer
TRPM8 is overexpressed in prostate tumors compared to non-

malignant prostate tissues, and this channel is present in hormone-

refractory prostate cancer with higher Gleason grading scores (96,

322, 323). In prostate cells TRPM8 gene expression is dependent on

androgen. The androgen receptor (AR), when bound to an androgen

(DHT), directly activates the TRPM8 gene promoter (324, 325).

Biochemical findings have reported a direct TRPM8 interaction

with androgens or their receptors (326). In prostate cancer LNCaP

cells, while overexpression of TRPM8 transcript is observed, TRPM8

protein was internalized from its normal plasma membrane

localization, ubiquitinated, and degraded via proteasomal and

lysosomal pathways (327). High internalization and degradation of

TRPM8 correlates with greater severity of human prostate

cancer cases.

In AR+ prostatic carcinoma cell line LNCaP, silencing TRPM8 or

capsazepine blockade of TRPM8 limited cell viability and provoked

apoptotic nuclei formation (324). Working with different prostatic

tumor cells, Valero et al. reported that TRPM8 knockdown decreased

cellular proliferation and arrested cells in the G0/G1 phases,

impairing cell cycle progression. The TRPM8 blockers BCTC,

AMT, and JNJ41876666 reduce proliferation rates in LNCaP, PC3,

and DU145 cell lines, while showing a minimal effect on proliferation

in a normal prostate cell line, PNT1A (205, 328). In LNCaP and PC3

cells, TRPM8 depletion inhibited cell proliferation and promoted the

chemosensitivity of these cells towards epirubicin, through an

increase of p38 and JNK proteins phosphorylation (329). Over-

expression of TRPM8 produces anti-proliferative, apoptotic, and

anti-migratory effects in PC-3 cells, which are androgen-

independent. In these cells, ectopic TRPM8 expression induced G0/

G1 cell cycle arrest and expedited starvation-induced cell apoptosis
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through focal-adhesion kinase inactivation (330). These discrepant

effects (activator or suppressor) of TRPM8 on cancer cell growth and

survival should depend on the cancer cell types, the molecular

phenotype, and the intermediatiors by which TRPM8 channel

expression and activity are modulated, without forgetting the

contribution of TRPM8 isoforms to the modulation of the whole

process (331–333). Treatment of PC3 cells with menthol, a TRPM8

agonist, together with TRPM8 overexpression or AR inhibition,

showed an amplified anti-proliferative effect. Another TRPM8

agonist, WS12, when encapsulated into lipid nanocapsules,

impaired cancer cell migration ability (334, 335). In a prostate

xenograft mouse model, the same treatment limits cell proliferation

but also the spread of TRPM8-positive cells to metastatic sites by

impairing both the focal adhesion via Cdc42, FAK Rac1 and ERK

pathway’s inhibition, and the cytoskeleton dynamics (336).

A new TRPM8-controlled anti-invasion mechanism by direct

TRPM8/small GTPase Rap1A interaction (PPI) was also described

(337). In PC3 cells, the complex formed by TRPM8 and Rap1A,

trapped in its GDP-bound inactive form, prevents cell migration and

adhesion thus avoiding channel activation at the plasma membrane.

Structurally, critical residues for the PPI interaction are Y32 in the

sequence of Rap1A and E207 and Y240 in that of TRPM8. These

interactions were also found in breast (MCF-7) and cervical (HeLa)

cancer cell lines (337).

Alaimo et al. had already shown the positive effects induced by

TRPM8 agonists in combination with radio-, hormone- or

chemotherapy (208). Extracellular and intracellular stimuli, if are

prolonged over time and produce minimal increases in [Ca2+]i, may

be behind of the damaging cellular stress. In LNCaPFGC cells

overexpressing the channel, treatment with WS-12 (48 h) in

combination with either enzalutamide or docetaxel increases cell

death percentage, from about 20% after single treatments to nearly

60% (208). We also found that tryptophane-derived TRPM8 agonists

were able to show anti-PC potential in LNCaP cells, despite

antagonists appeared more potent and reliable compounds in the

same model (202).

Petrocel l i et al . identified a powerful and selective

tetrahydroisoquinoline-based TRPM8 antagonist, with strong

antiproliferative activity in LNCaP prostate cancer cells (204).

Analogously, tryptophane-derived TRPM8 antagonists inhibit

proliferation in the LNCaP cell line as well as in metastatic and

resistant tumor cell C4-2B, 22Rv1, and DU-CaP lines. In AR+

LNCaP, selected TRPM8 modulators mitigated migration and

invasiveness (202). These effects are maintained in both LNCaP

spheroids expressing AR and the castration-resistant prostate

cancer (CRPC) model. This model is usually resistant to

deprivation of androgen therapy (ADT) and is considered the most

aggressive form of PCa. No effects were detected in PCa cells devoid of

the AR receptor (202, 203). These TRPM8 antagonists interfere with

AR/TRPM8 crosstalk by a non-genomic mechanism abolishing the

AR/TRPM8 complex assembly, and counteracting the increase in

intracellular Ca2+ levels.

To our knowledge, only a modulator of TRPM8 (D3263,

Dendreon Corporation) reached a clinical trial (phase I) for the

management of advanced solid tumors (NCT00839631, 101).

D3263 is an orally active, TRPM8 agonist able to slow down tumor
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progression in advanced prostate cancer patients and in benign

prostatic hyperplasia. No results have been published to date about

this clinical study.

Pancreatic cancers
Pancreatic adenocarcinoma (PC) cell lines overexpressed TRPM8

channels, and this fact has been correlated to advanced TNM, vast

tumor size, and distant metastasis. Patients having high TRPM8

expression show worse DFS and OS than patients with low TRPM8

levels (323, 338). In pancreatic adenocarcinoma PANC-1 and BxPC-3

cell lines, silencing TRPM8 reduced cell proliferation and showed

impaired cell cycle progression, causing cells to arrest in the G1 phase

and, hence, decreasing the number of cells entering S phase (339).

Consistently, it was observed an increase of p21CDKN2A and

p27CDKN2B cyclin-dependent kinases. However, an increase in the

proportion of apoptotic cells compared to control cells was not

observed, but they exhibited features of replicative senescence by

inducing senescence-associated b-galactosidase (SAbG) expression.

These findings indicate that the TRPM8 channel is essential for

sustaining uncontrolled cancer cell growth, by regulating cell cycle

phases and replicative senescence (288). TRPM8 regulation by LCK, a

crucial lymphocyte-specific tyrosine kinase in regulating T-cell

functions, reveals that the phosphorylation at Y1022 of the TRPM8

protein is important for pancreatic tumor cell proliferation,

migration, and tumorigenesis (340). The phosphorylation process,

as well as the 14-3-3z/TRPM8 interaction, regulates TRPM8 multi-

merization and, therefore, increased current density. LCK

significantly enhanced this interaction, whereas mutant TRPM8-

Y1022F and knockdown of the 14-3-3z reduced LCK-induced

TRPM8 oligomerization. In addition, the phosphorylation of

TRPM8 at Y1022 inhibited, in turn, LCK Tyr505 phosphorylation,

thus modulating LCK ubiquitination and activity. In AsPC-1 and

PANC-1 cells stably expressing WT-TRPM8, control vector, or

TRPM8-Y1022F mutant, it was observed that WT-TRPM8

considerably increased tumor cell proliferation and showed a

significantly higher migration capacity in PANC-1, compared to

control vector-containing cells. Diversely, the TRPM8-Y1022F

mutant impaired cell proliferation and migration processes in this

cell line. In vivo assays in a mice PANC-1 cell-derived xenograft

model of pancreatic tumors, expressing the control vector, WT, and

Y1022F-TRPM8, showed up-regulated TRPM8 mRNA expression in

tumors expressing WT or Y1022F. Histopathologic analyses indicated

a significant increase in tumor volumes and weights, as well as in the

Ki67 antigen expression, in WT-TRPM8 tumor tissues compared to

controls. In mutant TRPM8-Y1022F tissues, a smaller increase in

volume, weight, and Ki67 antigen expression was observed compared

to WT-TRPM8 tumors (340).

Breast cancer
In ER+ grade I breast adenocarcinomas, TRPM8 expression is

normally upregulated (293, 341), with comparatively higher

expression of TRPM8 mRNA in the highly invasive MDA-MB-231

cell line. In MDA-MB-231 cells, TRPM8 knockout reduces migration

and invasion, decreasing the EMT-related markers (GSK-3ß

phosphorylation, Snail, and Akt). Contrastingly, in the low-

aggressive MCF-7 cell line, TRPM8 overexpression enhances
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invasion and migration, stimulating EMTs (293). TRPM8 activity

might be hormone-dependent in these cells, and its expression is

regulated by estrogen receptor alpha (ERa) and estrogens, and

correlated with the tumors’ estrogen receptor status (293, 341, 342).

TRPM8 promotes metastasis in MDA-MB-231 or MCF-7 cells by

regulating epithelial-mesenchymal transition (EMT) via AKT/GSK-

3b pathway activation (342, 343). However, it has also been described

that TRPM8 was not expressed in MDA-MB-231 cells and that the

TRPM8 transcript is absent in half of the studied breast cancer cell

lines, emphasizing that the relevance of TRPM8 as a therapeutic

target is very limited in this case (344).

Glioblastoma cancer
TRPM8 affects glioblastoma (GBM) cell migration rate by

stimulation with specific agonists, such as menthol and icilin, which

mediated a substantial increase in [Ca2+]i (345, 346), while

contributes to proliferation, survival, and local tumor invasion in

the case of U251 glioblastoma cells (347). In T98G and U-87MG cell

lines, the activation of TRPM8 channels by icilin produced an

important increase in migration speed and chemotaxis,

Consistently, TRPM8 downregulation by RNAi or through a

specific channel blocker, BCTC, decreases both cell migration and

transfer chemotaxis (346, Table 1). The stimulation of large-

conductance Ca2+-activated K+ ion channels (BK channels), could

be a possible mechanism behind the cell migration in glioma, induced

by TRPM8-mediated Ca2+ influx (345). TRPM8 activation by agonists

increased the probable opening of single BK channels (345, 346), while

TRPM8 activation and upregulation by ionizing radiation increased the

Ca2+ influx (346). In human glioblastoma cells, the TRPM8 channel

stimulated cell progression to the S phase, and mitosis, inducting

cyclin-dependent kinase CDC2, Ca2+/calmodulin-dependent protein

kinase II (CaMKII) isoforms, and phosphatase CDC25C (346). In

contrast, TRPM8 knockdown or inhibition impaired cell cycle

progression, DNA repair, and clonogenic survival, while inducing

apoptotic cell death (346).

Osteosarcoma
The proliferative role of TRPM8 in osteosarcoma (OSS) is

demonstrated in osteosarcoma cancer cells lines, MG-63 and U2OS,

where TRPM8 is aberrantly over-expressed (348). TRPM8

knockdown in these cells impaired regulation of the [Ca2+]i, and

decreased cyclinD1, Cdk4 expression, therefore blocking cell cycle in

G0/G1, and also p-GSK-3b and p-Akt expression, inhibiting

metastasis. In silencing TRPM8 cells treated with epirubicin, the

inhibition of Akt-GSK-3b pathway with suppression of FAK and p44/

p42 phosphorylation, amplified epirubicin-induced cell apoptosis

(349). Overexpression of TRPM8 transcript and protein is

concomitant to higher clinical stages, distant metastasis, and feebler

disease-free survival (350).

Treatment of several osteosarcoma cell lines (143B, U2OS, HOS,

and MG-63), with AMTB, a TRPM8 antagonist, results in suppressed

proliferation and metastasis, and induces cellular apoptosis (207). In

143B and U2OS, incubation with AMTB for 24 h increases apoptosis

rate, raising both poly (ADP-ribose) polymerase (PARP) and cleaved

caspase-3 levels (207). In nude mice xenograft model, AMTB

treatment augmented tumor cells’ sensitivity to cisplatin, by
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smodering Smad2 and Smad3 phosphorylation and, therefore,

repressing the activation of TGFb signaling, which was implicated

in tumorigenesis and tumor progression (207, 351).

Squamous cell carcinoma
TRPM8 is overexpressed at the plasma membrane and in the

intracellular region of oral squamous cell carcinoma (SCC),

promoting the proliferation of these cancer cells. RQ-00203078, a

potent and selective antagonist of TRPM8, strongly inhibits migration

and invasion capability of HSC3 and HSC4 SCC lines, markedly

reducing clonogenic potential and calcium entry (206; Table 1).

Recently, Huang et al. observed that the overexpression of

TRPM8 channels increased basal autophagy levels, while TRPM8

knockdown reduced it, in different types of mammalian cancer cells,

including cervical cancer (HeLa), breast cancer (MDA-MB-231 and

MCF7), embryonic kidney (HEK293) and colorectal carcinoma

(HCT116) (9). The mechanism of TRPM8 autophagy regulation

involves the activation of autophagy-associated signaling proteins,

AMPK and ULK1, and phagophore formation. In breast cancer cell

lines, the authors hypothesized the formation through the

cytoplasmic C-terminus of TRPM8 of a TRPM8-AMPK complex

protein, which stimulates AMPK phosphorylation and activation, and

subsequent the ULK1 activation to enhance basal autophagy (352).
Perspective

During the last decade, accumulative research indicates the close

relationship between the cancer hallmarks and the deregulation of one or

more ion channels. TRPMproteins are part of that family that plays a crucial

role in the mechanisms of cancer cell proliferation, invasion, and survival.

However, forthcoming treatments with TRPM modulators still need more

comprehensive and coordinated basic and applied investigations.

We think that the recently disclosed structural data, and the new

structures that undoubtedly will come soon, will aid in a more rational

design of modulators. As proof, we refer to the channels with more

information on structural data, including right now an open channel

state (353), and a more significant number of modulators: TRPM8.

This information will also be valuable in the case of TRPM6 and

TRPM7 due to the complexity of their interactions and the biological

effects derived.

TRPM channels may represent key support for the success of

more conventional anticancer strategies such as chemotherapy and

radiotherapy. By damaging target cells, these therapies trigger many

stress responses, such as ion channel activation. Stimulation of

sensitizing channels (TRPM2 or TRPM8) can intensify insults

provoked by these therapies, whereas modulation of other channels

can circumvent intrinsic chemo(radio)resistance.

Since the TRPM8 receptor is closely related to the control of core

body temperature, the possibility of oral or systemic treatments based

on TRPM8 antagonists is minimal, as it has been shown with

compounds that have reached, but not passed, early clinical trials

(354). However, TRP modulators in topical preparations can be an

alternative solution. Two cosmetic preparations have recently been

marketed to help in restoring the balance of nociceptors in

chemotherapy-induced peripheral neuropathy, related to the

overexpression of TRPM8 channels (Alodia creams, https://
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atikapharma.com/es/products/alodia-manos). The preparation of

TRPM-based biosensors for cancer diagnosis and the development

of tumor-targeted nanomedicines containing TRPM modulators,

alone or in combination with known chemotherapeutic agents,

could also be contemplated soon in this field.

As described in this review, several miRNA/TRP channel pairs

seem to play a key role in tumor biology such as TRPM1, TRPM3, and

TRPM4. New therapies based on siRNA and antisense oligonucleotides

should be considered in the search for specific anti-tumor targets and

modulators centered on TRPM channels (317).

Improved knowledge of the TRPM/receptors interactome as well

as on the functional association between different ion channels, is

another fundamental aspect to discover cellular pathways operating

in TRPM-associated cancers. The search for synergy between

channels/receptors/proteins or between different channels involved

in the regulation of the same or complementary cancer signaling

pathways can be the basis for the design of more effective

TRPM modulators.

Another issue is finding the most suitable animal model to

validate TRPMs as potential targets and translate efficacy and safety

discoveries to human studies. It is commonly accepted that

integrating relevant data from humans at the early stages of the

drug discovery process strengthens the probability of success (355,

356). In this regard, the recent availability of multi-omics

epidemiological tools and large-scale clinical datasets will allow a

more reliable prediction of concerns related to the direct modulation

of a particular target in humans (357). The efficacy and safety signal

results from these “virtual” trials are likely to drive discussions about

the benefits and risks for each individual TRPM channel.

In summary, the functional modulation of TRPM channels will

provide promising opportunities for new antitumor agents’

development, and behind cancer, for peripheral neuropathies and

other disabling diseases.
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Glossary

CSCs cancer stem cells

cryo-EM cryogenic electron microscopy

TMD transmembrane domain

NUDT9 Nudix hydrolase 9

ADPR Adenosine diphosphate ribosyl

AMP adenosine monophosphate

PLIK phospholipase C-interacting kinase

PAX6 paired box 6

MITF melanocyte inducing transcription factor

Raf rapidly accelerated fibrosarcoma

ERK extracellular signal-regulated kinase

JNK c-Jun N-terminal kinases

AP-1 Activator protein 1

CREB cAMP response element-binding protein

EGR-1 early growth response protein 1

ELK1 ETS transcription factor

P2X4 purinergic P2X4

eEF2-k eukaryotic elongation factor-2 kinase

PLCg2 phospholipase C gamma 2

STIM2 stromal interaction molecule 2

IGF2R insulin like growth factor 2 receptor

TGFBR2 transforming growth factor beta receptor 2

NFAT5 nuclear factor of activated T cells 5

BRAF v-raf murine sarcoma viral oncogene homolog B1

AKT protein kinase B

HIF hypoxia-inducible factor

FOXO3a forkhead box protein O3

Nrf2 nuclear factor erythroid 2–related factor 2

FOXM1 forkhead box M1

E2F1/2 E2F transcription factor ½

CDK1 cyclin dependent kinase 1

PLK1 Polo like kinase 1

CKS1 Cyclin-dependent protein kinase regulatory subunit 1

DBTRG Denver brain tumor research group

ULK1 Unc-51 like autophagy activating kinase 1

ATG7 autophagy related 7

ATG5 autophagy related 5

ATF4 activating transcription factor 4

MLL mixed-lineage leukemia 1
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CaMKII Calcium/calmodulin-dependent protein kinase II

PANC-1 pancreatic cancer cells

PKC protein kinase C

MAPK mitogen-activated protein kinase

MEK mitogen-activated ERK kinase

LC3-II microtubule-associated protein 1A/1B-light chain 3 tipe II

ULK1 Unc-51 like autophagy activating kinase 1

AMBRA1 autophagy and Beclin 1 regulator 1

ATG10 autophagy related 10

BECN1 beclin 1

BAX BCL2 associated X

MDA-MB-
231

M.D. Anderson-Metastatic Breast 231

AGS adenocarcinoma gastric cell line

MKN45 human gastric adenocarcinoma

BNIP3 BCL2 interacting protein 3

LC3A microtubule-associated protein 1 light chain 3

PTEN Phosphatase and tensin homolog

NOD non-obese diabetic

SCID severe combined immunodeficiency

ccRCC clear cell renal cell carcinoma

IGF insulin-like growth factor

EGFR epithelial growth factor receptor

mTOR mechanistic target of rapamycin

GSK glycogen synthase kinase-3

T-REx 293 tetracycline repressor protein

AN3CA metastatic undifferentiated EC

EMT epithelial-mesenchymal transition

PI3K phosphoinositide 3-kinase

CRISPR clustered regularly interspaced short palindromic repeats

CBA 4-chloro-2-[2-(2-chloro-phenoxy)-acetylamino]-benzoic acid

NBA 4-chloro-2-(2-(naphthalene-1-yloxy) acetamido) benzoic acid

LBA 4-chloro-2-(2-(4-chloro-2-methylphenoxy)propanamido) benzoic
acid)

TCF/LEF T cell factor/lymphoid enhancer factor

AKT1 AKT serine/threonine kinase 1

SNAI1 snail family transcriptional repressor 1

MIR150 MicroRNA 150

Rac1 Ras-related C3 botulinum toxin substrate 1
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SNARE N-ethylmaleimide-sensitive factor-attachment protein receptor

CYBA Cytochrome B-245 alpha chain

MUC2 Mucin 2, oligomeric mucus/gel-forming

GLI1 GLI family zinc finger 1

MMP-9 matrix metallopeptidase 9

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

MMP-2 matrix metalloproteinase-2

TGFb transforming growth factor b;’RACK1, receptor of activated protein
C kinase 1

uPA Urokinase-type plasminogen activator

EGCG Epigallocatechin-3-gallate

RAG-2 recombination activating gene 2 protein

IL2RG interleukin 2 receptor subunit gamma

SOX4 SRY-Box transcription factor 4

BAPTA-
AM

1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis
(acetoxymethyl ester)

HK2 Hexokinase 2

PDK1 phosphoinositide-dependent kinase-1

IDH3B isocitrate dehydrogenase NAD(+) 3 non-catalytic subunit beta

UQCRC1 Ubiquinol-Cytochrome C reductase core protein 1

ECAR extracellular acidification rate

OCR oxygen consumption rate

18F-FDG fluorodeoxyglucose F 18

NFAT nuclear factor of activated T-cells

NFATC nuclear factor of activated T cells 3

Notch 1 Notch homolog 1 translocation-associated

c-myc cellular myelocytomatosis oncogene

SOX2 SRY-Box transcription factor 2

Oct-4 octamer-binding transcription factor 4

STAT3 signal transducer and activator of transcription 3

CAV1 Caveolin 1

ITGA4 Integrin subunit alpha 4

ITGB7 integrin subunit beta 7

2-APB 2-aminoethyl diphenyl borinate

GBM glioblastoma

BCTC 4-(3-Chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-
piperazinecarboxamide

AMTB N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-
thienylmethyl)benzamide

Cdc42 cell division cycle 42 protein

FAK focal adhesion kinase

Rap-1A Ras-related protein 1
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BK big potassium

Cdk4 Cyclin-dependent kinase 4

TNM tumour, node, metastasis (staging cancer).
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