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A growing body of evidence has revealed that microRNA (miRNA) expression is

dysregulated in cancer, and they can act as either oncogenes or suppressors under

certain conditions. Furthermore, some studies have discovered that miRNAs play a

role in cancer cell drug resistance by targeting drug-resistance-related genes or

influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this

regard, the abnormal expression of miRNA-128 (miR-128) has been found in

various human malignancies, and its verified target genes are essential in

cancer-related processes, including apoptosis, cell propagation, and

differentiation. This review will discuss the functions and processes of miR-128

in multiple cancer types. Furthermore, the possible involvement of miR-128 in

cancer drug resistance and tumor immunotherapeutic will be addressed.

KEYWORDS
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1 Introduction

Cancer is a serious threat to humanity that has recently overtaken heart disease as the

leading cause of human death (1). According to reports, millions of new cases were diagnosed

worldwide in 2019, with an estimated 8.2 million cancer deaths (1). Cancer is becoming more

common as people live longer and the global ecology deteriorates, so the incidence rate is

expected to reach 23.6 million by 2030 (1). Cancer is a complex genetic disease in which

oncogenic and/or suppressor gene mutations lead to impaired cell growth and death (2). In
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this sense, data show that microRNAs (miRNAs) influence the cause

of human cancer (3–5). miRNAs are small non-coding RNAs of 18-24

nucleotides that exert functions such as mRNA degradation and

inhibiting translation initiation. Also, various studies have shown

the importance of miRNAs in controlling key cell functions such as

apoptosis, growth, migration, proliferation, stress response, and

metabolism. (6–8). miRNAs have also been shown to play an

important role in the progression of diseases such as cancer.

Dysregulation of miRNAs has also been shown in diseases such as

cancer through various processes, including amplification or deletion

of miRNA genes, inappropriate transcriptional regulation of

miRNAs, and problems in the miRNA biosynthesis machinery (9–

11). In this regard, a growing body of evidence shows that miRNA-

128 (miR-128) is a well-known tumor suppressor, inhibiting cancer

growth, migration and metastasis by upregulating cancer (12–14).

miR-128 is an intronic miRNA, and the mature miR-128 form is

encoded by the two isoforms, namely miR-128-1 and miR-128-2 (15).

The pri-miR-128-1 gene is located in the R3H domain-containing

protein 1 gene (R3HDM1) on chromosome 2q21.3. It has been shown

that pri-miR-128-2 is located within the cAMP-regulated

phosphoprotein, 21 kDa gene (ARPP21) on chromosome 3p22.3

(15). miR-128 is one of the most prevalent miRNAs expressed in

the adult mouse and human brain and is tissue-dependent (16). In

mice, miR-128 expression gradually rises during development and

reaches a maximum in adulthood. Additionally, miR-128 is expressed

in various brain areas, indicating a crucial involvement in the

operation of different neuronal cells (16). Indeed, miR-128 has been

shown to play a significant function in nervous system development

and maintenance (17). miR-128 has modulated neuronal excitability

and motor activity by decreasing the expression of different ion

channels and extracellular signal-regulated kinase 2 (ERK2)

signaling pathway components (16). In addition to its physiological

roles in normal tissues, miR-128 plays an important regulatory role in

tumor cells. Preliminary studies on miR-128 point to its tumor

suppressor activity. Loss of miR-128 has been reported in human

lung cancer—due to a deletion on chromosome 3p that includes the

miR-128-2 and ARPP21 locus—and in breast cancer (18). Specifically,

Kotani et al. found that miR-128 is downregulated in acute

lymphocytic leukemia (ALL)-AF4 (19). Furthermore, one study

showed reduced expression of miR-128 in chemoresistant breast

cancer (BC) cells nourished from the BC cell line and primary BC,

which was inserted before regulation involved in region 1 (Bmi-1) and

ABC transporter of mouse B lymphoma 5 (ABCC5), are known as

targets of miR-128 (20, 21). Additionally, miR-128 inhibits the p38

Mitogen-activated protein kinase (MAPK) signaling pathway, which

reduces the production of interleukin (IL) 10 (IL-10) and IL-6 and, on

the other hand, increases the formation of IL-12 in dendritic cells (DCs)

and enhances DC antitumor immunity and the progression Reduces

cancer in melanoma (22). Most importantly, Zhu and colleagues found

that overexpression of miR-128 in the setting of doxorubicin lowers cell

viability while increasing apoptosis and DNA damage, rendering BC-

initiating cells more sensitive to therapy (23). They additionally

discovered that decreased amounts of miR-128 in metastatic BC

tissues were associated with poor clinical therapeutic efficacy and

survival rates. The functions and processes of miR-128 in various

types of cancer, such as BC, lung, glioblastoma, pancreatic, thyroid,
Frontiers in Oncology 02
osteosarcoma, leukemia, multiple myeloma, melanoma, and head and

neck carcinoma, will be explored and described in this report. In

addition, a possible function of miR-128 in cancer resistance to

chemotherapeutics, as well as cancer immunotherapeutics in certain

types of cancer, will be discussed.
2 Physiological and pathological
functions of miR-128

miR-128 has been implicated in various diseases and cell processes,

including cell division, epithelial-mesenchymal transition (EMT), tumor

growth, angiogenesis, and invasion (Figure 1) (24–27). Of note,

accumulating data suggest that miR-128 can be used as a prognostic

indicator in various disorders (27–29). miR-128 upregulation increases

neuronal development in embryonic neural stem cells and P19 cells

primary by suppressing non-sense-mediated decaying (30, 31). Human-

induced pluripotent stem cells transduced with miR-128 exhibit features

comparable to mature neurons and increase the production of beta-

tubulin as well as other neuronal indicators (32). Throughout embryonic

mouse neurodevelopment, the brain-enriched miR-128 is plentiful and

elevated (33). miR-128 was initially hypothesized as a physiological

modulator of mRNA usage, similar to miR-124 (33). In a cell culture

system, miR-128 was demonstrated to enhance neurogenesis by

inhibiting the production of two proteins involved in nonsense-

mediated mRNA degradation (NMD) (30). Different roles of miR-128

in cognition and memory were revealed later. Upregulation of miR-128

was relevant and required for the extinction of conditioned fear in

research on the acquisition and inhibition of fearful memories (34).

Besides, miR-128 is vital in muscle renewal, revascularization,

adipogenesis, and osteoclastogenesis (35). Recent research has shown

that miR-128, a muscle-related miRNA, may limit cardiomyocyte

migrations, propagation, and rejuvenation and control chicken

myocardial inflammatory response (35–37). Additionally, miR-128

was found to be important in the tumorigenesis of skeletal muscle

satellite cells (SMSCs) in in vitro experiments (35). In fact, miR-128

increased myogenic markers (myosin heavy chain (MHC), myocyte

enhancer factor 2C (MEF2C), and myogenic differentiation (MyoD)

in C2C12 cells via negatively impacting the Jun N-terminal kinase

(JNK)/MAPK axis (38). In contrast, miR-128 suppression reduced

SMSC maturation into myotubes at 2 and 3 days (39).

miR-128a has also been shown to influence cell growth, and it might

play a role in adipogenesis and adipose tissue formation (40–42).

However, miR-128-3p (a member of the miR-128 family) has not yet

been associated with preadipocyte development or lipogenesis. Recently,

the SERTA domain containing 2 (Sertad2) has been shown to modulate

lipid metabolism, and peroxisome proliferator-activated receptor gamma

(PPARg) is a known key regulator of preadipocyte development (43).

Furthermore, bioinformatics investigations revealed that Sertad2 and

PPARg are possible targets of miR-128-3p (44). Chen et al. showed that

the expression of miR-128-3p was significantly decreased during the

development of 3T3-L1 preadipocyte (mouse embryo source) (44). The

high expression of miR-128-3p decreased the expression of adipogenesis

biomarkers as well as the formation of lipid droplets and triglyceride

contents, indicating the relevance of miR-128-3p in adipogenesis (44).

Furthermore, in 3T3-L1 preadipocytes, miR-128-3p appears to
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suppresses cell proliferation potentially. As a potent inhibitor of

adipogenesis, miR-128-3p may selectively target PPARg, reducing the

growth of 3T3-L1 preadipocytes, and miR-128-3p may interact with

Sertad2 to induce breakdown triglycerides and lipolysis (44). Overall,

these results provided new knowledge about miRNA-mediated

proliferation, lipid metabolism, and differentiation processes.

It has been suggested that the expression of miR-128 is involved

in the inflammatory response in the periodontal tissues of

periodontitis patients. It is also shown that the upregulation of

miR-128 can reduce the production of tumor necrosis factor (TNF)

and prevent the phosphorylation of p38. It also alleviates the

development of macrophages with an inflammatory phenotype

(45). Furthermore, increasing evidence suggests that miR-128 might

promote neuroinflammation by downregulating PPAR-g to enhance

amyloid beta-induced decreased neuronal survival in Alzheimer’s

disease (AD) cells and animal models of AD. Also, it has been

reported that miR-128 significantly impacts AD pathogenicity (46–

48). In one study, Zhang and colleagues discovered that miR-128 was

significantly increased in blood samples from patients with AD

compared to healthy controls (49). In summary, they found that

miR-128 may be used as a potential biomarker in the serum of

patients with AD. Also, this miRNA can be used as a new therapeutic

target of neuroinflammation.
3 miR-128 biogenesis and targets

miR-128 is produced in two major transcripts through two

separate genes, miR-128-1 and miR-128-2, both of which translate
Frontiers in Oncology 03
into an equivalent mature miRNA sequence. These miRNAs are

found in the intronic region of two distinct genes on separate

chromosomes. According to studies, miR-128 exhibits organ- and

development-specific expression profiles. miR-128 has been identified

in the thymus, brain, and skeletal muscle and is found at high

concentrations during neural development (21).

According to a study by Mi and colleagues, intronic miR-128-2,

which is located in an intron of cAMP-regulated phosphoprotein 21

(ARPP21), was significantly upregulated in all subjects but not in acute

myeloid leukemia (AML) (50). Surprisingly, higher miR-128-2

expression was also not associated with increased gene copy number

or ARPP21 promoter hypomethylation. Different processes may

explain the contradictory expression of miRNA and its host gene.

Abnormal expression of miR-128 is common in human cancers.

However, depending on the type of cancer, it is highly effective in

acting as a tumor suppressor miRNA or oncomiR (51, 52). In addition,

it has been shown that miR-128 regulates Long-Interspaced Element-1

(LINE-1 or L1) by connecting directly with open reading frame (ORF)

2 L1 RNA, which encodes L1 RT. (53). Suppression of the L1 element is

a driving mutation throughout tumor formation and development (54,

55). In a study, Guzman and colleagues discovered miR-128 as a

modulator of telomerase activity in HeLa cells in an anti-miR screen,

indicating that miR-128 suppresses endogenous production of

telomerase activity (52). Furthermore, they discovered that

upregulation of miR-128 decreased telomerase reverse transcriptase

(TERT) levels (both mRNA and protein concentrations), whereas

reduction of miR-128 increased TERT (both mRNA and protein

concentrations) in many cell lines compared to the control group.

Finally, they show that miR-128 modulates telomerase activity and
FIGURE 1

miR-128 functions in the different cellular processes.
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affects two sites in the coding region of TERT mRNA. The results

indicate that the tumor suppressor miR-128 influences cancer cell

oncogenicity through modulating telomerase.
4 miR-128 and cancer

Current research has linked the aberrant expression of specific

miRNA genes to aggressive disease manifestations, such as

malignancy (56). miRNAs act as tumor suppressors or oncogenes

based on their modulatory effect on the expression of their target

genes (57). Decreased expression of miR-128 has been shown in a

variety of cancers such as MLL-AF4 ALL, lung cancer, glioblastoma,

and neuroblastoma (Table 1) (18, 24b;92–94). Consequently, the

functions and processes of miR-128 in various malignancies will be

discussed in this section.
4.1 Breast cancer

Cancer metastasis is responsible for a significant portion of cancer

deaths, and treatments are inadequate, and breast cancer (BC) is no

exception (95). About 15% of patients with BC have distant

metastases, usually to the brain, liver, lungs, and bones, and 90% of

these people will die of metastasis (96, 97). Nevertheless, the processes

behind metastatic dissemination remain unknown and represent a

significant obstacle to the treatment of BC. In women, BC is the most

common type of cancer worldwide (95). BC currently affects

approximately 1.7 million individuals worldwide, significantly

affecting public health (95). In BC, it was discovered that the

expression of miRNAs was altered in different mechanisms of

tumorigenesis by modulating different components in distinct

signal transduction (98). Several miRNAs, including components of

the miR-200 family, are associated with critical pathways of cancer

development, including EMT and metastasis in BC (99). It has been

found that miR-128-3p can reduce proliferation, differentiation, and

motility in BC cells (58). Meanwhile, upregulation of miR-128-3p

may affect cell cycle stages by suppressing the production of CDK2/

Cyclin E1 and CDK4/6/Cyclin D1. Furthermore, it was found that

miR-128-3p may suppress the LIM domain kinase 1 (LIMK1)

signaling pathway in BC by targeting the LIM domain kinase 1

(LIMK1) gene (58). These findings point to a novel regulatory

mechanism of miR-128-3p-LIMK1/CFL1 in BC, which may lead to

new therapeutic approaches for BC.

Metastasis-related miRNAs acting as favorable or unfavorable

regulators are known as “metastamirs” (100). Cao and colleagues

showed that miR-128, a metastamir, significantly decreased

expression levels in human BC samples, which was inversely related

to tumor grade, with decreased expression levels higher in grade III

(95). A significant correlation was reported in highly aggressive BC

cell lines that showed relatively low expression levels of miR-128 (95).

Wound healing assays, traditional or dynamic transwell invasion and

migration assays, and other functional investigations revealed that

aberrant expression of miR-128 in MDA-MB-231 cells [a triple-

negative breast cancer (TNBC) cell line] significantly decreased cell

migration and invasive potential (95). Moreover, Metadherin

(MTDH), an oncogene that regulates bioactivities including
Frontiers in Oncology 04
apoptosis, longevity, cell metabolism, and revascularization, was

discovered to be a specific target gene of miR-128 and is implicated

in the miR-128-mediated reduction of initiation and progression in

BC cells (95). These data show that miR-128 plays an essential part in

BC metastasis and might be a prospective candidate for anti-

metastasis treatment.

TNBC is a variant of BC responsible for about 15% of all cases of

BC (101). Xiao and colleagues discovered that reduced expression of

miR-128 was associated with a shorter lifespan and disease-free

survival in TNBC patients but not with a significantly shorter

lifespan (66). The finding that limited lifespan in TNBC is

associated with reduced miR-128 expression suggests that the

involvement of miR-128 in TNBC is consistent with a tumor

suppressor, and miR-128 suppressor targets may be oncogenic (66).

The involvement of miR-128 in TNBC cells decreased glucose

metabolism and inhibited cell growth. It is important to note that

glucose metabolism in tumor cells significantly affects cell

proliferation. It is unclear whether the reported suppressed cell

proliferation is caused by low glucose metabolism or a logical

consequence of miR-128 upregulation. However, the finding that

miR-128 inhibits the growth of TNBC cells is consistent with the

decreased expression of miR-128 in TNBC tissues (66). According to

the results of this research, miR-128 may be a suitable biomarker and

treatment option in people with TNBC.

Wnt signaling pathways are related to stem cell growth, self-

renewal, and migration. They are commonly considered a target for

treating several tumor types (102). Activation of the Wnt signaling

pathway may promote the cancer growth of BC cells (103). NIMA-

related kinase 2 (NEK2) is a type of mitotic kinase involved in

tumorigenesis and cancer progression (64). Overexpression of NEK2

in various types of cancer suggests that it could be a potential anticancer

drug target (104). Furthermore, a previous study showed that BC’s

NEK2 expression is often overexpressed (105). However, both miR-

128-3p and NEK2 have been investigated in BC progression, and their

exact function in this disease is currently unknown (106, 107).

Consequently, Chen and colleagues studied the association between

miR-128-3p and NEK2 and its contribution to BC progression in

research (64). They discovered that by reducing NEK2 expression, miR-

128-3 might reduce stem cell properties such as division, motility,

invasion, and self-renewal in BC stem cells (BCSCs) (Figure 2). Recent

research showed that overexpression of miR-128-3p reduced BCSC

development, motility, and invasion by downregulating the Wnt

signaling pathway through downregulating NEK2 expression (64).

This work established the promising clinical function of miR-128-3p

and NEK2 in treating BC through modulating the Wnt signaling

pathway. However, the research is still in its early stages, and more

research on the molecular mechanism is needed. With increasing

technology and a deeper understanding of cancer pathogenesis, more

tumor-associated genes have been discovered, potentially providing

new targets for therapeutic agents (108). These are hypermethylated in

cancer 1 (HIC1), which encodes a transcriptional repressor with

multiple partners and targets and is involved in various cancer

functions, including cell longevity, proliferation, and migration (109,

110). HIC1 is consistently suppressed in human malignancies such as

BC, PC, CC, lung, and liver cancer, thought to be due to promoter

hypermethylation (110–113). In their investigation, Li and colleagues

discovered that miR-128 was highly elevated in BC tissues (61). Their
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TABLE 1 The role of miR-128 in various types of cancer.

Type of
cancer

Sample
type

Mechanisms Findings Ref.

BC In vitro CDK4/CDK6/Cyclin D1
and CDK2/Cyclin E1 via
targeting
LIMK1

miR-128-3p modulated the LIMK1/CFL1 signaling pathway, which affected BC molecular growth. (58)

BC In vitro TGF-b signaling MiR-128a regulated TGF-b activity and lifespan of letrozole-resistant cell culture. (59)

BC In vitro TGF-b signaling TGF-b1 modulated MET- and HGF-induced cell motility in BC cell lines and TNBC tissue through
positive modulation of C-ets-1 and negative regulatory control of miR-128-3p transcription.

(60)

BC In vitro
and in
vivo

Downregulation of HIC1 miR-128 suppressed HIC1 expression and accelerated BC progression. (61)

BC In vitro
and in
vivo

Upregulation of FOXQ1 PVT1 lncRNA induces EMT by upregulating FOXQ1 through miR-128-3p. Furthermore, PVT1
interacts with UPF1 protein and induces EMT, proliferation, and metastasis in BC cells.

(62)

BC In vitro
and in
vivo

AurkA-Wnt3a signaling AurkA repressed the expression of miR-128, an inhibitor of wnt3a mRNA stabilization. (63)

BC In vitro
and in
vivo

Suppression of Wnt
signaling
the pathway by down-
regulating NEK2

miR-128-3p suppressed the stem cell properties of BCSCs by inhibiting the Wnt signaling pathway
by downregulating NEK2 expression, providing a new target for BC therapy.

(64b)

BC In vitro Targeting of metadherin miR-128 was shown to be pathologically upregulated in BC samples and cell lines and was found to
be inversely associated with histological grade and cellular tumor progression.

(65)

BC In vitro
and in
vivo

Inhibition of the insulin
receptor and insulin
receptor substrate 1

miR-128 inhibited mitochondrial respiration, glucose metabolism, and growth of TNBC cells. These
results were for insulin receptors targeted by miR-128 and suppression of insulin receptor precursor
1.

(66)

BC In vitro
and
clinical

Bmi-1 and ABCC5
overexpression

Stem cell-like specificity of BT-ICs is reduced in miR-128 produced by upregulation of Bmi-1 and
ABCC5, leading to chemotherapy drug tolerance in BC.

(23)

Lung In vitro – miR-128-3p in whole blood served as a novel marker for lung cancer diagnosis. (67)

Lung In vitro
and in
vivo

c-met/PI3K/AKT pathway miR-128/c-met axis increased the sensitivity of lung cancer stem cells to gefitinib through inhibition
of the PI3K/AKT pathway.

(68)

Lung In vitro
and in
vivo

Wnt/b-catenin
and TGF-b signaling

miR-128-3p was identified as a potential candidate in NSCLC for metastasis and chemoresistance. (69a)

Lung In vitro
and in
vivo

Targeting of VEGF-C and
block ERK, AKT, and p38
signaling

miR-128 was fully functional in NSCLC tumorigenesis, partly by modulating lymphangiogenesis and
revascularization by targeting VEGF-C and could simultaneously inhibit ERK, AKT, and p38
signaling pathways.

(25)

Lung In vitro EGFR expression miR-128-b modulated the EGFR transcription in NSCLC cells. (70)

Lung In vitro E2F5 The involvement of miR-128-2 as a critical role in regulating NSCLC chemoresistance was
discovered.

(71)

Lung In vitro SPTAN1 miR-128-3p induced cell cycle arrest and genomic instability in mitomycin C-treated lung cancer
cells through inhibition of SPTAN1, and these findings may be used in adjuvant lung cancer
therapy.

(48)

Lung In silico
and in
vitro

SNAIL and ZEB1 Downregulation of miRNAs through miR-128-3p associated with abnormal expression of SNAIL
and ZEB1 promotes the EMT program. This work elucidates the role of miR-128-3p as a major
tumorigenic effector of lung cancer cells.

(72)

Lung In vitro MIAT/miR-128-3p/PELI3 This study highlighted the molecular role of the MIAT/miR-128-3p/PELI3-dependent pathway in
NSCLC.

(73)

Glioma In vitro
and in
vivo

H3K27me
3 and
Akt phosphorylation and
up-regulation of p21
CIP1

miR-128 specifically inhibited glioma self-renewal, which was associated with decreased Bmi-1
expression.

(74)

(Continued)
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TABLE 1 Continued

Type of
cancer

Sample
type

Mechanisms Findings Ref.

levels,
and Bmi-1 down-regulation

Glioma In vitro
and in
vivo

Targeting of p70S6K1 Recent research has discovered the function and process of miR-128 in controlling glioma
neovascularization through the miR-128/p70S6K1 pathway, and miR-128 may be a potential
therapeutic target in glioblastoma.

(75)

Glioma In vitro Targeting of NEK2 Downregulation of miR-128 expression by targeting NEK2 reduced glioma cell death. (76)

Glioma In vitro
and in
vivo

LncRNA PVT1 via miR-
128-3p/GREM1Axis

LncRNA PVT1 upregulates miR-128-3p-regulated downstream signal transduction molecules
GREM1 and BMP and promotes malignancy and glioma development.

(77)

Glioma In vitro Upregulation of RhoE In U251 cells, aberrantly produced miR-128 modulates apoptosis and proliferation by targeting
RhoE.

(78)

Glioma In vitro
and in
vivo

LncRNA NEAT1 via miR-
128-3p/ITGA5 Axis

The NEAT1/miR-128-3p/ITGA5 axis is essential in the genesis and development of glioma and may
be a viable innovative technique for glioma treatment.

(79)

Glioma In vitro Targeting of
PDK1

miR-128-3p/PDK1 axis was important in tumor cell metabolism and proliferation in glioma cells. (80)

GBM In vitro
and in
vivo

Targeting c-Met
and EMT

miR-128-3p increased GBM sensitivity to temozolomide by modulating c-Met/EMT. (81)

GBM In vitro
and in
silico

miR-128-3p/
RUNX1/MRP1 axis

RUNX1 conferred temozolomide tolerance in GBM by increasing the expression of MRP1, which is
inversely controlled through miR-128-3p.

(82)

GBM In vitro Rap1B Upregulation of miR-128 attenuated GBM tumor progression by targeting the cytoskeleton and
related Rap1B-mediated molecular changes.

(83)

Neuroblastoma In vitro Reelin and DCX This research concluded that miR-128 functions in the molecular mechanisms that regulate the
development and aggressiveness of neuroblastoma.

(24a)

Neuroblastoma In vitro NTRK3 and
BCL2

miR-128 modulation of NTRK3 was isoform-specific, suggesting that neurotrophic-mediated
activities are closely related to miRNA-dependent processes.

(84)

Neuroblastoma In vitro
and in
vivo

SNHG16/
miR-128-3p/HOXA7

SNHG16 transformation reversed the effect of miR-128-3p on neuroblastoma tumorigenesis,
motility, invasion, and death.

(85)

Thyroid In vitro
and in
vivo

SPHK1 miR-128 may be a tumor suppressor miRNA involved in developing thyroid cancer. (86)

Thyroid In vitro HCP5 Knockdown of HCP5 via miR-128-3p sponge exerted an anticancer effect in ATC, suggesting a
possible therapeutic strategy for ATC.

(87)

OS In vitro LncRNA/miR-128-3p/
VEGFC axis

The MIAT/miR-128-3p/VEGFC pathway contributed to the development of osteosarcoma and may
even be used as a potential therapeutic target for OS.

(88)

Leukemia In vitro – miR-128 can reliably differentiate ALL from AML, suggesting that epigenetic control may play a key
role in maintaining miRNA expression in ALL.

(50)

Leukemia In vitro – Decreased expression of miR-128b is associated with glucocorticoid tolerance, and restoration of
their levels may be an effective treatment in MLL-AF4ALL.

(19)

Leukemia In vitro
and in
vivo

HCP5/miR-128-3p/
PLAGL2 via Wnt/b-
catenin/cyclin D1
signaling

HCP5/miR-128-3p/PLAGL2 signaling was associated with an increased risk of multiple myeloma
through altered Wnt/-catenin/cyclin D1 signaling.

(37,
89)

Melanoma In vitro
and in
vivo

p38 MAPK signaling miR-128 enhanced DC anticancer immunity by targeting p38 MAPK signal transduction. (22)

Laryngeal In vitro
and in
vivo

– miR-128a inhibited laryngeal cancer cell proliferation and induced apoptosis. (90)

(Continued)
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results suggest that miR-128 could function as an oncomiR in the

etiology of BC. Mechanistic studies revealed that miR-128 might

effectively bind the 3 untranslated regions (3’-UTR) of HIC1,

downregulate its expression, enhance invasion and metastasis, and

block apoptosis in BC cells (61). More importantly, restoring HIC1

expression with enhancer plasmids restored miR-128-induced cellular

phenotypes, implying that HIC1 targeting is a major determinant
Frontiers in Oncology 07
through which miR-128 exerts its oncogenic effect. Furthermore,

miR-128 control of HIC1 might elucidate, at least in some part, how

miR-128 overexpression increases cell invasion and metastasis while

inhibiting apoptosis in BC (61a). In conclusion, our findings point to a

novel axis consisting of HIC1 and miR-128 that may lead to BC

development and provide new possible directions for future

BC therapy.
TABLE 1 Continued

Type of
cancer

Sample
type

Mechanisms Findings Ref.

Head and neck
carcinoma

In vitro
and in
vivo

– miR-128 inhibited the growth of HNSCC by directly influencing the expression of potential targets
and acting as a tumor suppressor.

(91)
frontier
miR-128, miRNA-128; TGF-b, transforming growth factor beta (TGF-b), LIMK1, LIM domain kinase 1; CFL1, Cofilin 1; BC, breast cancer; HIC1, hypermethylated in cancer 1; HGF, hepatocyte
growth factor; FOXQ1, Forkhead Box Q1; EMT, epithelial-mesenchymal transition; PVT1, plasmacytoma variant translocation 1; lncRNAs, Long noncoding RNAs; BCSCs, BC stem cells; Bmi-1, B
lymphoma mouse Moloney leukemia virus insertion region 1; ABCC5, ATP Binding Cassette Subfamily C Member 5; TNBC, Triple-Negative Breast Cancer; PI3k, Phosphatidylinositol 3-Kinase;
VEGF, Vascular endothelial growth factor; NSCLC, Non-small-cell lung carcinoma; ZEB1, Zinc Finger E-Box Binding Homeobox 1; SPTAN1, spectrin-1; MIAT, myocardial infarction-associated
transcript; NEK2, NIMA Related Kinase 2; GBM, Glioblastoma; RUNX1, Runt-related transcription factor 1; OS, Osteosarcoma; ALL, Acute lymphocytic leukemia; AML, Acute myeloid leukemia;
DC, dendritic cell; HCP5, HLA Complex P5; MAPK, mitogen-activated protein kinase; PLAGL2, Pleomorphic adenoma gene like-2; HNSCC, head and neck squamous cell carcinoma.
FIGURE 2

miR-128 action mechanism in breast cancer. It has been found that by reducing NEK2 expression, miR-128 can reduce stem cell properties such as
division, motility, invasion, and self-renewal in BC stem cells (BCSCs). The study shows that overexpression of miR-128 reduced BCSC development,
motility, and invasion by downregulating the Wnt signaling pathway by downregulating NEK2 expression. miR-128, microRNA-128; BCSCs, Breast cancer
stem cells; NEK2, NIMA-related kinase 2; TCF4, transcription factor 4.
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4.2 Lung cancer

Lung cancer is a complex disease classified as non-small cell lung

cancer (NSCLC) or small cell lung cancer (SCLC) based on

pathophysiological features, and NSCLC accounts for 80-85% of all

lung malignancies (67). As previously mentioned, dysregulation of

miR-128 expression has been documented in various types of human

cancers, suggesting that it plays an important role in carcinogenesis,

and its role has been explored from tumor suppressor to tissue

protumor. Accordingly, it has been found that mutant p53 induces

miR-128-3p and its host gene ARPP-21, leading to p53 mutation-

mediated chemoresistance in NSCLC and an oncogenic function for

miR-128-3p shows in lung cancer (71). Donzelli and colleagues (71)

observed that expression of miR-128-2 in lung cancer cells reduces

cell apoptosis and induces tolerance to 5-fluorouracil, cisplatin, and

doxorubicin treatments. miR-128-2 post-transcriptionally targets

E2F5, leading to the loss of its inhibitory function on p21waf1

transcription (71). p21waf1 protein is found in the cytoplasm and

has an anti-apoptotic effect by preventing the degradation of

procaspase 3 (71). The above findings imply that miR-128-2

regulation promotes mutant p53His175 gain-of-function activities

by increasing the multidrug resistance of lung cancer cells.

In a study, Frixa and colleagues showed thatmiR-128-3p has a direct

and suppressive binding effect onDrosha and Dicer 3’-UTRs, leading to

an overall downregulation of miRNA expression in NSCLC cells (72).

The overexpression of miR-128-3p lowers the abundance of miRNAs

targeting important EMT elements, which eventually enhances the

aggressive capabilities of the cells transfected (72). In addition,

reintroducing Drosha to such a cellular environment led to the

restoration of migratory phenotypes, suggesting that Drosha plays an

essential function in regulating lung cancer cell motility (72b). These

results suggest that miR-128-3p-mediated deletion of Drosha and Dicer

transcription may lead to the growth and metastasis of lung cancer cells

by indirectly affecting the levels of several functional miRNAs.

Hu and colleagues discovered that miR-128 expression was highly

diminished in tissues and cells of NSCLC and was strongly associated

with NSCLC differentiating lymph node metastasis and cancer stage

(25). The overexpression of miR-128 remarkably decreased in vitro

growth, invasion, migration, and colony formation of NSCLC cells

and triggered G1 arrest and death. Remarkably, miR-128

dysregulation dramatically inhibited the expression of vascular

endothelial growth factor (VEGF)-C as well as reducing the activity

of a luciferase reporter, including the untranslated domain of VEGF-

C (Figure 3) (25). Moreover, upregulation of miR-128 in NSCLC and

human umbilical vein endothelial cells (HUVECs) resulted in

decreased expression of VEGF-A, VEGF receptor (VEGFR)-2, and

VEGFR-3, all of which are important factors in cancer

lymphangiogenesis and tumorigenesis, as well as decreased

phosphorylation of the phosphatidylinositol 3-kinase and

extracellular signal-regulated kin (ERK) (25). Additionally, they

discovered that restoring miR-128 in vivo significantly reduced the

invasion and metastasis of A549 cells in nude mice and decreased

both lymphangiogenesis and revascularization in tumor xenografts

(25a). The above data support the hypothesis that miR-128 may have

a function in NSCLC carcinogenesis, partly through the modulation

of lymphangiogenesis and angiogenesis by targeting VEGF-C and

concurrently blocking ERK, protein kinase B (PKB), also known as
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Akt, and p38 signal transduction pathways. Targeted therapies to

reestablish miR-128 in NSCLC may be effective in inhibiting

tumor development.

Notably, miR-128-3p antagonism profoundly affects metastasis and

chemoresistance in aggressive phenotype NSCLC cells, which can be

entirely reversed by restoring Wnt/b-catenin and TGFb-activities,
revealing that miR-128-3p might be a candidate for both tumor

growth and chemoresistance in NSCLC (69b). In the current work, Cai

et al. induced amodel ofNSCLCxenografts (chemoresistance-associated

cancer progression). They showed that in several NSCLC cell lines,

cancer stem cell (CSC) programming and EMT are driven by miR-128,

which indicates tumorigenesis, chemoresistance, and disease

progression through simultaneous activation of b-catenin and TGF-b
signaling (69b). Remarkably, they discovered that reactivation of TGF-b
and Wnt/b-catenin signaling pathways restored the antagonistic action

ofmiR-128-3ponchemoresistance andproliferation inhighly aggressive

NSCLC cells (69b). As a result of these discoveries, it is possible to block

both pathways simultaneously by targeting a singlemolecule to improve

chemoresistance and metastasis in NSCLC.

According to the literature, miR-128-3p expression is decreased in

lung cancer tissue compared to normal tissue (114). Nevertheless, the

therapeutic significance of this miRNA in the early detection of lung

cancer is unknown. Pan and colleagues discovered that the expression

levels of miR-33a-5p andmiR-128-3pwere decreased in lung cancer cell

lines and tissues (115). They identified that the expression levels of miR-

33a-5p and miR-128-3p in lung cancer tissues were substantially linked

with the tumor, node, and metastasis (TNM) grades. Significantly, the

levels of miR-128-3p and miR-33a-5p in the blood of patients with lung

cancer or initial lungcancer subjects (TNMgrade I-II)were lower than in

normal participants (115). Receiver operating characteristic curve

(ROC) analysis revealed that miR-33a-5p and miR-128-3p, alone or in

combination, had higher AUC scores and enhanced sensitivity/

specificity than conventional biomarkers in their study (115).

Remarkably, although under severe conditions, miR-128-3p and miR-

33a-5p were very stable in blood. These findings suggest that miR-33a-

5p/miR-128-3p in the bloodmay be used as newmarkers for lung cancer

diagnosis.MitomycinC (MMC), a potentDNAcross-linker, acts against

NSCLC, a process that requires interstrandDNA cross-linking to inhibit

the replication and proliferation of malignant cells (116). Although II Sp

is involved in the repair ofDNA interstrand cross-links (DNA ICLs) as a

structural protein, the interaction between miRNAs and SPTAN1 in

DNArepair and thepotential roleofMMCinsuppressing tumor cells are

unknown. Zhang et al. revealed a unique function for miR-128-3p in

MMC-exposed lung cancer cells, where chromosomal viability and cell

cycle progression are regulated through SPTAN1 (116).

In summary, these findings add to our understanding of the

dynamics of miR-128-3p in lung cancer sensitivity to chemotherapy.

The miR-128-3p-SPTAN1 axis opens up a new window into the

chemosensitivity process, and miR-128-3p may be a possible

molecular candidate to improve the lung chemotherapy process.

Finally, while these studies have shown that miRNA deregulation is

responsible for chemoresistance, the function of miRNAs in controlling

CSCchemoresistance is unclear. In this regard, Jiangetal. discovered that

in lung cancer cells, the expression of miR-128 is reduced, which is

associated with gefitinib tolerance in these cells (68). Increased

expression of miR-128 was later reported to increase PC9-CSC

sensitivity to gefitinib, thus limiting the efficacy of gefitinib in
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enhancing the CSCs population in vitro and in vivo (68). Furthermore,

they discovered that gefitinib did not inhibit the Phosphoinositide 3-

kinase (PI3K)/AKTpathway in PC9-CSCs.These results suggest that the

miR-128/c-met axis improves gefitinib susceptibility in lung cancer stem

cells by inhibiting the PI3K/AKT axis.
4.3 Thyroid cancer

Thyroid cancer is a frequent endocrine cancer that has been rising

globally over the last several decades (117). Follicular thyroid

carcinoma (FTC) and papillary thyroid carcinoma (PTC) (well-

differentiated), and also anaplastic thyroid carcinoma and
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imperfectly differentiated, are the histotypes of thyroid cancer (118,

119). Despite substantial research on the role of genetic defects and

environmental variables in thyroid tumorigenesis, the specific

molecular pathways behind the development of thyroid malignancy

remain unclear. Cao and colleagues discovered that miR-128

expression was significantly decreased in tissue and several human

PTC and FTC cell lines (86). Restoration of miR-128 activity in PTC

and FTC cells significantly reduced cell survival, motility, and

invasion. In addition, upregulation of miR-128 induced cell cycle

arrest in G0/G1 phase and apoptosis. Sphingosine kinase 1 (SPHK1)

was also a primary target of miR-128 (86). SPHK1 regulates cellular

activities and tumorigenesis, including reproduction, apoptosis, and

proliferation (120). Cao et al. found an inverse correlation between
FIGURE 3

miR-128 suppression mechanism in lung cancer. miR-128 dysregulation dramatically inhibited the expression of VEGF-C. Moreover, upregulation of miR-
128 in NSCLC resulted in decreased expression of VEGF-A, VEGF receptor (VEGFR)-2, and VEGFR-3, all of which are important factors in cancer
lymphangiogenesis and tumorigenesis, as well as decreased phosphorylation of the phosphatidylinositol 3-kinase and extracellular signal-regulated
kinase (ERK). Additionally, it has been discovered that miR-128 may have a function in NSCLC carcinogenesis, partly through the modulation of
lymphangiogenesis and angiogenesis by targeting VEGF-C and concurrently blocking ERK, Akt, and p38 signal transduction pathways. miR-128,
microRNA-128; VEGF, vascular endothelial growth factor; NSCLC, non-small cell lung cancer; Akt, protein kinase B.
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SPHK1 and miR-128 expression in FTC and PTC samples, and

luciferase reporter assays and RT-qPCR analyzes showed that miR-

128 downregulates SPHK1 expression by targeting its 3’UTR (86). In

addition, they discovered that up-regulated miR-128 suppressed

cancer growth in vivo and was found to be a tumor suppressor in

thyroid cancer. Also, recent research shows that 5-aza-20-

deoxycytidine significantly increases the expression of miR-128 in

thyroid cancer cell lines, suggesting that miR-128 plays a vital role in

regulating thyroid cancer proliferation (86).

Furthermore, the researchers discovered that upregulation of miR-

128 significantly increased apoptosis in thyroid cancer cell lines, primarily

through overexpression of caspase-3 and polyadenosine diphosphate-

ribose polymerase (PARP) was confirmed. Upregulation of SPHK1

inhibits miR-128-induced apoptosis, suggesting that SPHK1 may

contribute to miR-128-regulated apoptosis (86). These findings showed

that in PTC and FTC tissue or cells, the expression of miR-128 was

decreased, and SPHK1 was increased. Based on functional experiments,

apoptosis and cell cycle arrest in G0/G1 phase were observed after

restoring miR-128 expression, which inhibited thyroid cancer

progression and also reduced invasion and metastasis. SPHK1 has

been discovered to be a primary target of miR-128. According to the

findings, miR-128 might be a promising treatment target for thyroid

prevention and therapy by decreasing SPHK1.

Anaplastic thyroid carcinoma (ATC) is an uncommon thyroid

cancer characterized by rapid growth, extrathyroidal infiltration, and

lymph node metastasis to the brain, lungs, and bones (121, 122). ATC

has a significant mortality rate, with a median survival time of 5

months and 20% overall survival at one year (123). Human leukocyte

antigen (HLA) complex P5 (HCP5) has recently been shown to be a

tumor suppressor in the formation of PTC, which accounts for 80–

85% of thyroid malignancies (124). On the other hand, the function of

HCP5 in ATC is unclear. Chen et al. studied the expression of HCP5

in ATC and determined if HCP5 modulated miR-128-3p in ATC to

control ATC cell survival and apoptosis. They found that the

expression of miR-128-3p was decreased in the ATC cell line and

tissue, and miR-128-3p was the substrate of HCP5 in ATC cells in

further experiments (87). Chen and colleagues also found that HCP5

regulates miR-128-3p expression (87). Taken together, the HCP5/

miR-128-3p axis plays a critical function in controlling the survival

and death of ATC cells, suggesting that HCP5 can be used as a

therapeutic approach for ATC operation.
4.4 Head and neck cancer

Head and neck cancer (HNC) has become one of the malignancies

whose prevalence has increased over the past decade, although survival

rates have not increased significantly (125, 126). Squamous cell

carcinoma (HNSCC) occurs in the epithelial lining of the

nasopharynx, pharynx, larynx, and oral cavity, accounting for more

than 90% of HNC (127, 128). Research demonstrates that miR-128

regulates E2 promoter-binding factor a (E2Fa), Bmi-1, and other

regulatory regions, including transcriptional WEE1-A (a tyrosine

kinase) that phosphorylates CDK1 to promote tumorigenesis (129).

Overexpression of miR-128 suppresses HNSCC development by

directly modulating its targets, Paip-interacting protein 2 (Paip2),

BAG Cochaperone 2 (BAG-2), H3F3B, Bmi-1, and Bcl-2-associated
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X protein in proliferative and apoptotic processes, indicating that miR-

128 acts as a tumor suppressor, in vitro and in vivo. Hauser et al.

examined the function of miR-128 in the control of HNSCC

development as well as its potential targets (91). They showed that

almost all target mRNAs contain a complementary 3’UTR sequence

that may pair with miR-128 to inhibit target mRNA translation and

lead to decreased protein levels. Paip2, Bmi-1, and H3F3B proteins are

involved in tumor growth, and downregulation of Bmi-1 and H3F3B

expression reduces cancer growth and xenograft development in

JHU-22 miR-128 cells (91). In addition, Hauser and colleagues

discovered that JHU-13 miR-128 inhibited cell growth and

confirmed the binding of miR-128 to the 3’UTR of BMI-1 mRNA

(91). They also found that the expression levels of cell proliferation

regulators were altered with lower protein levels of cyclin D1 and

PCNA in JHU-22 miR-128 cells. Current findings suggest that miR-

128 is involved in several signaling pathways related to the

development and growth of HNSCC. Further research is needed

to confirm the expression and activity of miR-128 in HNSCC as well

as other pathogenic forms of human cancer. Bmi-1 has been found

to contribute to laryngeal squamous cell carcinoma (LSCC)

progression and maintain tumorigenic laryngeal growth,

suggesting that miR-128 plays a tumor suppressor role in

laryngeal cancer (130, 131). In addition, the involvement of miR-

128 in this cancer should be confirmed. Wan and colleagues first

reported that miR-128a expression is decreased in primary laryngeal

cancer and that upregulation of endogenous miR-128a reduces cell

growth and increases apoptosis in research (90). In conclusion,

according to the latest research, miR-128a is significantly

downregulated in LSCC. In addition, they discovered that the

upregulation of miR-128a decreased the growth of laryngeal Hep2

cells and accelerated apoptosis (90). Moreover, miR-128a

overexpression inhibited cancer progression in vivo. As a result,

targeting miR-128a might be a unique strategy for treating LSCC.
4.5 Osteosarcoma

Osteosarcoma (OS) is the most common type of bone cancer,

accounting for 20% of primary bone tumors and the second leading

cause of tumor-related deaths among young adults (132, 133).

Survival rates remain low, with 80% of surgically treated patients

experiencing recurrence or dissemination (134, 135). Consequently, it

is important to investigate the molecular processes behind the overall

development of survival and develop promising drug options for the

treatment of survival rates. Zhang and colleagues investigated the

physiological role of its long non-coding RNA (lncRNA) myocardial

infarction-associated transcript (MIAT) in survival through miR-128-

3p/VEGFC axis control in OS tissues and cell lines (88). It is generally

understood that lncRNAs act as ceRNAs and regulate functional gene

expression by sponge miRNAs (136). To confirm these findings,

Zhang and colleagues used bioinformatics methods to predict

MIAT-miRNA and dual luciferase reporter analysis to test the effect

of target binding, and they discovered that MIAT is the primary target

of miR-128-3p (88). Their findings showed that miR-128-3p

transcription was significantly decreased in cell lines and tissues

and inversely correlated with MIAT expression in survival rate. The

above results suggest that miR-128-3p acts as an inhibitor of survival
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rate. They used DIANA and TargetScan v 7.2 techniques to predict

the target genes of miR-128-3p and discovered that VEGFC is a

possible predisposing factor of miR-128-3p.

In addition, recent research has shown that VEGF is a major

downstream substrate of miR-128-3p and affects the growth of

lymphatic endothelial cells (137). Zhang and colleagues showed that

VEGFC expression was found to be negatively related to miR-128-3p

expression in survival rate and validated that VEGFC was a primary

target of miR-128-3p in MG63 cells, implying that there was a ceRNA

circuit in OS between VEGFC, MIAT, and miR-128-3p (88). They

showed that suppressing miR-128-3p diminished the effect of MIAT

knockdown on VEGFC protein levels and the growth, apoptosis, and

metastasis in MG63 cells. According to the findings of this research,

the MIAT/miR-128-3p/VEGFC axis may be a unique prospective

treatment method to improve the survival rate in OS.
4.6 Glioma

About 20,000 new cases of glioma are diagnosed in the United

States each year, and even with aggressive surgery, chemotherapy, and

radiation therapy, the median survival for the most malignant type

(glioblastoma) is approximately 14 months (74, 138). miRNA analysis

has revealed different expression profiles in glioblastoma and other

human malignancies (139). Several miRNAs have recently been

discovered to have a significant function in glioblastoma. miR-7

expression was found to be decreased in glioblastoma, inhibiting the

invasion and metastasis of primary glioblastoma lines, whereas miR-26

enhances glioblastoma cancer development in vitro and in vivo by

attempting to target numerous tumor suppressor genes, including RB

Transcriptional Co-repressor 1 (RB1) and Phosphatase and tensin

homolog (PTEN) (140, 141). The majority of miR-128 research on

tumorigenesis has focused on glioblastoma. For example, miR-128 is

downregulated in glioblastoma (74, 139). Upregulation of miR-128

reduces cell proliferation by targeting the transcription factor E2F 3a

(E2F3a) and Bmi-1 while blocking the Reel and Doublecortin (DCX)

promoters reduce neuroblastoma cell migration and metastatic spread

(24, 74, 139).

Shi et al. discovered that the miR-128 expression is reduced in

glioblastoma and acts as a tumor suppressor by specifically targeting

p70S6K1 (75). They determined that miR-128-induced transcription

downregulated the expression of VEGF, p70S6K1, and Hypoxia-

Inducible-Factor 1a (HIF-1a). Transformation of p70S6K1 restored

miR-128-inhibited expression of HIF-1a and VEGF, indicating that

p70S6K1 is a target of miR-128 (75). Furthermore, in their research,

upregulation of miR-128 inhibited cell proliferation, tumor

development, and revascularization in vivo. These findings add to

our knowledge of the importance and process of miR-128 in

glioblastoma pathogenesis and suggest a promising therapeutic

approach for the treatment of glioblastoma.

According to a study carried out by Godlewski et al., miR-128

expression is downregulated in glioblastoma, and Bmi-1 is the

primary target of miR-128 (74). Upregulation of Bmi-1 was

observed in various types of cancer and is a potent stimulator of

stem cell regeneration. Also, research on transgenic mice showed that

Bmi-1 plays an essential role in the formation of glioblastoma (142–

144). These findings show that the effect of miR-128 on glioblastoma
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cells is consistent with the reduction of Bmi-1 expression, including

one with a reduction in self-renewal of glioblastoma stem cells,

suggesting that miR-128 may have the potential for clinical

translation of glioblastoma stem cells. Shang et al. observed that

miR-128 expression was lower in glioblastoma specimens compared

to the control group (78). Increased miR-128 expression suppressed

U251 cell growth by targeting the RhoE gene at the translational level.

The increase in RhoE expression restored the progressive effects of

pre-miR-128 on growth and apoptosis in U251 cells (78).

In conclusion, abnormally produced miR-128 modulates

apoptosis and reproduction in U251 cells, partially via inhibiting

RhoE. These data imply that aberrant miR-128 expression is critical

for glioblastoma cell death and growth. Additional studies in this area

may help to develop new anti-glioma treatment techniques. Ye and

colleagues indicated that the miR-128 expression in glioblastoma

tissues was much less than in healthy brain tissues (76). miR-128

expression was associated with tumor volume and aggressiveness of

glioblastoma in their study but not with the gender or age of

glioblastoma patients. However, miR-128 upregulation induced

apoptosis in U87 cells and high protein content of degraded

Caspase-3, Bcl-2, and Bax (76). The researchers showed that miR-

128 was clearly associated with NEK2 using a dual luciferase reporter

gene assay, and additional investigations showed that upregulation of

NEK2 partially restored the effect of miR-128 on glioblastoma cell

death. These findings suggest that upregulated miR-128 prevents

apoptosis in glioblastoma cells by targeting NEK2 and contributes

to the occurrence and development of glioblastoma.

Qu and colleagues investigated whether and how abnormal

expression of miR-128 might alter the metabolic activity of

glioblastoma (145). They found that miR-128-3p inhibited lactate

synthesis, elevated ROS, and impaired mitochondrial activity in

glioblastoma cells by targeting Pyruvate Dehydrogenase Kinase 1

(PDK1). PDK1 is a critical enzyme in converting glycolysis into the

tricarboxylic acid cycle by suppressing Pyruvate dehydrogenase and

transforming oxidative phosphorylation to the Warburg process,

which increases lactate production (145). Suppression of PDK1

expression decreased lactate and ATP levels, increased reactive

oxygen species (ROS) formation, mitochondrial dysfunction,

decreased cell proliferation, and increased cell death. Their findings

indicated that the miR-128-3p/PDK1 axis is important in the

metabolism and development of tumor cells (145). These data

suggest that pharmacological efforts to control the Warburg effect,

including inhibition of PDK1, might be a potential therapy for

treating glioblastoma.

Glioblastoma is the most severe type of glioma and the most

common invasive and lethal brain tumor in children and adults with a

catastrophic prognosis (82, 146). The expression of Runt-related

transcription factor 1 (RUNX1) is significantly higher in the

mesenchymal subtype of glioblastoma and is strongly linked to the

mesenchymal subtype initiated through miRNA-mediated pathways

(147). Previous researchers reported that RUNX1 is involved in the

aggressive nature of glioblastoma (148). A new study showed that the

upregulation of RUNX1 can significantly enhance glioma growth and

metastasis (149). It has also been observed that the downregulation of

RUNX1 improves temozolomide sensitivity and suppresses

glioblastoma growth (150). However, the regulation of RUNX1

expression in glioblastoma remains unknown. A growing body of
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data indicates that multidrug resistance protein 1 (MRP1), which is

upregulated in cancers, modulates cellular chemoresistance, and

temozolomide has been identified as a target of MRP1 (151, 152). In

conclusion, Zhou and colleagues investigated the underlying

mechanisms of temozolomide tolerance and discovered the miR-128-

3p/RUNX1 pathway as a novel target for temozolomide tolerance in

glioblastoma (82). They confirmed the oncogenic involvement of

RUNX1 in glioblastoma cells and discovered miR-128-3p as a potent

inhibitor of RUNX1. The researchers also discovered that RUNX1

upregulated MRP1 to induce temozolomide tolerance (82). These

findings suggest that miR-128-3p/RUNX1/MRP1 axis modulates

temozolomide resistance in glioblastoma cells, and these molecules

may be used to regulate temozolomide responsiveness in glioblastoma.
4.7 Leukemia and multiple myeloma

ALL and AML are genetically distinct and arise from myeloid

blood cells, lymphoid progenitors, or primary stem cells with

multilineage potential (153, 154). Because the treatment and

prognosis of ALL and AML are significantly different, ALL must be

differentiated from AML in the evaluation (155, 156). While ALL and

AML may be differentiated using appropriate morphologic,

immunohistochemical, and immunological methods, the traditional

clinical practice requires competent staff, and currently, no single test

is sufficient to diagnose a patient (157). Mi and colleagues performed

a genome-wide miRNA expression assessment in a breakthrough

study to discover biomarkers for the diagnosis and treatment of ALL

and AML and to provide insight into the unique pathways of

leukemogenesis between ALL and AML (50). miR-223, miR-128b,

miR-128a, and let-7b were the most significant and differentially

expressed among the 27 miRNAs expressed between ALL and AML.

miR-128a and -128b were significantly more abundant in ALL, while

miR-223 and let-7b were significantly more abundant in AML. May

and colleagues showed that overexpression of miR-128 in ALL was

not associated with duplication of genomic loci compared to AML

and normal control samples (50). However, researchers demonstrated

that the methylation of CpG islands in the miR-128b promoter was

much lower in ALL samples than in AML samples and that there was

an inverse correlation between miRNA expression and CpG

island methylation.

In conclusion, overexpression of miR-128 in ALLs versus AMLs

was related to epigenetic changes, i.e., hypomethylation of CpG

islands in the promoter region. Remarkably, Although miR-128 was

expressed in almost every AML as well as normal control samples at a

significantly reduced level compared to ALL samples, the degrees of

miR-128 promoter methylation were almost identical in control

subjects and subgroups of AML samples. This suggests that another

process influencing expression may warrant further investigation

(50). Overall, their work suggests that the expression characteristics

of miRNAs such as miR-128 may reliably distinguish ALL from AML

and that epigenetic regulation may significantly govern miRNA

expression in acute leukemias.

MLL-AF4 ALL, caused by a symmetric translocation between

MLL and AF4, accounts for approximately 50% of ALL cases in

infants, 2% in children, and 5% to 6% in adults (158). Kotani and

colleagues showed that reexpression of miR-128b rendered two MLL-
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AF4 ALL cell cultures susceptible to death with high and low doses of

glucocorticoid and etoposide and serum deprivation (19). They

discovered that several miRNAs, such as miR-128b and miR-221,

are decreased in MLL-rearranged ALL primary cell samples in

comparison to other types of ALL (19). Given their fundamental

involvement in virtually all ALL therapies, the mechanism by which

glucocorticoids act on their target cells and the molecular pathways

that confer glucocorticoid resistance remain largely unknown. In

conclusion, miR-128b and miR-221, which restore steroid

sensitivity, may provide a clear picture of the process of

glucocorticoid activity. Administration of miR-128b and miR-221

to MLL-AF4 ALL leukemia cells via a carrier, including a suitable

liposome, could complement conventional chemotherapy. Most

importantly, these two miRNAs work together to induce

chemoresistance. Two chimeric mRNAs, AF4-MLL and MLL-AF4,

caused by the disease-causing t(4;11) chromosomal translocation, are

two key targets of miR-128b (158). Their findings suggest that miR-

128b and miR-221, especially miR-128b, play important roles in

lymphoid biosciences. Most importantly, the effects of miR-128b

and miR-221 on drug resistance are additive, suggesting that the

binding of these miRNAs is a suitable target for treating diseases.

Multiple myeloma is a frequent hematologic malignancy with a

significantly higher incidence and mortality rate than non-Hodgkin’s

lymphoma (89). Despite recent advances in traditional chemotherapy

and stem cell transplantation, the five-year survival rate for people

with multiple myeloma remains poor. Consequently, a thorough

knowledge of the putative mechanistic interactions involved in

multiple myeloma at the genomic/transcriptional levels is essential.
5 miR-128 and chemoresistance
in cancer

Chemotherapy tolerance remains a key obstacle in successful

anti-cancer treatments and causes the recurrence and development of

more malignancies (23). Cancer-initiating cells, often called cancer

stem cells, are a subpopulation of cancer cells with stem cell-like

properties that have recently been identified in a wide range of human

cancers, including BC, prostate, brain, liver, pancreas, and blood

cancer (159–169). These cells are resistant to several chemotherapy

protocols and are considered the leading cause of cancer recurrence

after treatment (170–172). However, some biological mechanisms,

including overexpression of ATP-binding cassette transporters, and

increasing anti-apoptotic and effective DNA damage response, are

associated with chemoresistance in cancer cells; None of these

processes are stem cell-like properties, and thus their contributions

to tumor-initiating cell tolerance therapies remain unresolved (173).

In this context, it has been shown that abnormal miRNA expression is

engaged in various biological pathways associated with chemotherapy

resistance mechanisms. Zhu and colleagues demonstrated that

decreasing miR-128 in BC–initiating cells causes upregulation of

Bmi-1 and ABCC5, 2 autonomous substrates of miR-128 (23).

Overexpression of miR-128 in the setting of doxorubicin lowered

cell viability while increasing apoptosis and DNA damage, rendering

BC-initiating cells more sensitive to therapy. They additionally

discovered that decreased amounts of miR-128 in metastatic BC

tissues were associated with poor clinical therapeutic efficacy and
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survival rates. As a result, decreasing miR-128 in BC-initiating cells

leads to chemoresistance by reducing its suppression of Bmi-1 and

ABCC5 translation.

Tolerance to hormonal treatment has been identified as a medical

barrier in the therapy of hormone-dependent BC (59). Masri and

colleagues analyzed the impact of miRNA modulation of aromatase

inhibitors on the signaling pathways that lead to the development of

BC on aromatase inhibitors (59). Their study of hormone-resistant

cell lines found 115 differentially regulated miRNAs, 49 of which were

hormone-responsive, including a set of miRNAs that were regulated

inversely in aromatase inhibitor-resistant lines compared to long-

term estrogen-free lines and tamoxifen-resistant cells. They

highlighted the hormone-responsive gene hsa-miR-128a, which was

selectively overexpressed in letrozole-resistant cell lines. It has been

observed that miR-128a inversely targets TGF RI protein production

by binding to the 3’-UTR domain of this gene. After endogenous

suppression of miR-128a, letrozole-resistant lines were sensitized to

the development of the antagonistic activity of TGF-b. These results
suggest that hormone-responsive miR-128a can alter TGF signaling

and the survival of letrozole-resistant cell lines.

Zhao and colleagues discovered that the expression of miR-128-3p

was significantly decreased in glioblastoma cell lines and tissue. miR-

128-3p inhibited glioblastoma proliferation, invasion, and motility and

enhanced the therapeutic benefit of temozolomide by suppressing

glioblastoma proliferation, invasion, and migratory behaviors and

initiating apoptosis (174). miR-128-3p, when combined with

temozolomide, reduced tumor size and invasion while increasing

glioblastoma sensitivity to temozolomide in tumor-bearing nude mice

(174). Recent research elucidates the function of miR-128-3p in

enhancing glioblastoma chemosensitivity and the underlying

principles. Overall, miR-128-3p may be a suitable tool for identifying

drug-resistant therapeutic interventions. Likewise, She et al. found that

miR-128 increased temozolomide chemosensitivity via Rap1B-

mediated cytoskeletal reorganization in glioblastoma (175).

All in all, they showed that the expression of miR-128 was

significantly decreased in glioblastoma, suggesting that the decreased

expression of miR-128 was involved in the progression of astrocytoma

cancer. Upregulation of miR-128 inhibited glioblastoma invasion and

dissemination by targeting Rap1B-mediated cytoskeletal remodeling

and related substances, including N-cadherin, cell division cycle 42

(Cdc42), and RhoA (175). Studies revealed that miR-128 increased the

chemosensitivity of human glioblastoma cells to temozolomide.

Consequently, the restoration of miR-128 transcription may be a

strategy for treating glioblastoma, and the combination of miR-128

mimics with temozolomide may be a successful therapeutic approach

to reduce the development of glioblastoma.
6 Role of miR-128 in immune
responses and immunotherapy
in cancer

Recently, there seems to be much attention on determining the

function of miRNAs in modulating anti-tumor immunity and how

this may affect the efficacy of various cancer therapies (176, 177).

Thus, protective immunity has collateral and anti-oncogenic
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consequences, and the dynamic interaction between immune and

tumor cells in the tumor microenvironment significantly regulates

tumor growth. miRNAs regulate many immune-tumor cell junctions

and essential immune response processes (178). miRNAs have also

been discovered to be tumor suppressors or oncogenes, with the

ability to control antitumor immunity or crosstalk between cancer

cells and their surrounding immune cells (179). miRNAs can be used

as prognostic, diagnostic, and targeted immunotherapeutics based on

their specific regulatory role. Consequently, to develop successful and

safe miRNA-based anticancer therapeutic options, a thorough

analysis of the precise functions of miRNAs in the tumor

microenvironment (TME) is essential.

A growing body of data suggests that miRNAs influence tumor

immune responses, particularly innate and adaptive immune responses

(180, 181). In addition, some miRNAs have an important modulatory

function in immune cells and cancer cells, supporting tumor immune

suppression or creating an immunosuppressive environment (182).

Cancer-derived miR-214, for instance, can promote the proliferation of

CD4+ CD25 high Forkhead Box P3 (FoxP3) + Regulatory T cells

(Tregs) by addressing PTEN and stimulating IL-10 production,

resulting in host immune repression and accelerated tumor

progression (183). Downregulation of miR-128-3p in gastric cancer

has increased cell growth (184). Besides, miR-128 modulates the

invasion of anticancer immune cells in the immunological milieu,

comprising DCs, CD8 + T cells, and natural killer T (NKT) cells, via

the Zinc Finger E-Box Binding Homeobox 1 (ZEB1)/CD47 axis and

EMT, eventually suppressing PC development and dissemination

(Figure 4) (185). The downstream mechanism of miR-128-3p in the

EMT of cancer cells has been found in a study by targeting genes such

as ZEB1, CDC6, FOXO4, and SCAMP3 (186). Among these target

genes, ZEB1 has been mentioned to regulate the EMT of cancer cells in

cervical cancer and esophageal squamous cell carcinoma (186). miR-

128 has been found to block the p38 MAPK pathway, which inhibits

the production and production of IL-6 and IL-10 while increasing the

amount of IL-12 in DCs., hence boosting the anti-cancer immunity of

DCs and decreasing cancer progression in melanoma (22).

VEGFs are significant revascularization and lymphangiogenesis

mediators throughout cancer formation (25). These substances and

VEGFRs have been identified as the main therapeutic targets to reduce

pathogenic angiogenic and lymphogenic signals (25). Hu et al. showed

that the expression of miR-128 was strongly downregulated in NSCLC

tissues and tumor cells and strongly correlated with NSCLC

differentiation, clinical stage, and distant metastasis (25). In their

study, aberrant regulation of miR-128 completely inhibited VEGF-C

expression. This action downregulated a luciferase reporter containing

the VEGF-C 3’-UTR. Transduction of miR-128 in NSCLC cells and

HUVECs resulted in decreased expression of VEGF-A, VEGFR-2, and

VEGFR-3, essential requirements to explain lymphangiogenesis and

tumor vasculature, and a gradual decrease in the phosphorylation of

ERK, AKT, and the p38 axis. The above data imply that miR-128 may

play a significant function in NSCLC carcinogenesis, partly through

modulating revascularization and lymphangiogenesis via addressing

VEGF-C and concurrently impeding AKT, p38, and the ERK signal

transduction pathways.

Two targeted drugs often used to treat people with advanced

NSCLC are monoclonal antibodies and small molecule receptor

tyrosine kinase inhibitors (TKIs) (187). Previous research has
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shown that EGFR-TKIs are a suitable treatment modality that is

beneficial for cancers (with mutations in the EGFR gene) (187, 188).

Also, increased EGFR gene copy number is associated with a better

prognosis for patients receiving TKI therapy. (189). Current findings

have also shown that some TKI-responsive individuals have no

significant genetic alterations in EGFR (190). Because EGFR-TKIs

were effective in 10–30% of people with chemotherapy-resistant

NSCLC, identifying novel regulatory molecules may improve

targeted lung cancer therapy (191, 192). It has also been reported

that decreased heterozygosity in miR-128-b in NSCLC cells appears to

be associated with EGFR-TKI therapeutic efficacy (191, 193). Li et al.

showed that EGFR mRNA was expressed in all samples. However, the

EGFR expression level increases in malignant tissue compared to
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normal tissue (70). Based on the research findings, the expression of

EGFR and miR-128-b in cancer tissue is expressed differently than in

the healthy control tissue; also, the expression profile of miR-128-b is

inversely related to the mRNA and protein levels of EGFR. Also, in

NSCLC cells, miR-128-b regulated the expression of EGFR, thereby

affecting the efficacy of cell therapy. These findings suggest that miR-

128-b may have a suppressive function in lung cancer. However, the

effectiveness of existing anti-EGFR drugs for cancer diagnosis and

treatment is limited, which calls for developing innovative therapeutic

techniques to reduce EGFR signal transduction and expression.

Inhibition of EGFR expression and EGFR-TKI signaling pathways

with miR-128-b may provide a potential drug treatment option in

EGFR-mutated NSCLC.
FIGURE 4

Anti-tumor immunity mechanism of miR-128. miR-128 modulates the invasion of anticancer immune cells in the immunological milieu, comprising DCs,
CD8 + T cells, and NKT cells, via the ZEB1/CD47 axis and EMT, eventually suppressing PC development and dissemination. The downstream mechanism
of miR-128 in the EMT of cancer cells has been found in a study by targeting genes such as ZEB1. Among these target genes, ZEB1 has been mentioned
to regulate the EMT of cancer cells in cervical cancer and esophageal squamous cell carcinoma. DCs, Dendritic cells; miR-128, microRNA-128; NKT,
natural killer T; ZEB1, Zinc Finger E-Box Binding Homeobox 1; EMT, epithelial-mesenchymal transition.
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Finally, the effect of DC as an adjuvant therapy for metastatic

melanoma is currently being studied in several clinical studies (194,

195). However, cancer can prevent immune recognition by suppressing

the maturation and differentiation of DCs, which limits antigen

presentation facilitated by DCs (196). In this regard, melanoma is

one of the most immunological types of cancer, based on its higher

prevalence in immunocompromised patients (197). Efforts to regulate

DC communication are essential to define protection against cancer-

induced DC abnormalities for effective immunotherapy. Studies show

that modulating the p38 MAPK signal transduction pathway affects the

growth of immature DCs and T cells, suggesting that p38 seems to be

an effective technique for improving DC-mediated cancer

immunotherapy (198, 199). Liang and colleagues investigated the

effect of the miR-128 expression on p38 in DCs, and the therapeutic

benefits (miR-128 and p38) were tested in an animal model bearing

melanoma (22). The researchers discovered that the expression of miR-

128 was significantly decreased in DCs after stimulation with B16 cell

lysate. The miR-128 mimic and inhibitor were delivered to DCs

(derived from mouse bone marrow) and then injected into animals

with B16 melanoma. These results showed that miR-128 reduces

tumorigenesis, increases survival time, and thus has cancer-inhibitory

effects (22b). After B16 activation, p38 protein production increased in

DCs in their study. A recent report showed that miR-128 mimetics and

p38 inhibitors decrease IL-6 and IL-10 secretion while increasing IL-12

levels. Blocking miR-128 had a negative effect on the number of

inflammatory cytokines. In conclusion, miR-128 facilitation of anti-

tumor (DC-mediated) response in the cancer microenvironment offers

a cancer immunotherapy approach against many cancers, such

as melanoma.
7 Conclusion and future direction

The discovery that 50% of miRNA genes are located in cancer-

associated genomic regions or fragile regions, which are commonly

increased or decreased during carcinogenesis, emphasizes the

relevance of miRNAs in malignancy (200). Cancer is caused by a

complex set of gene alterations and is defined by unregulated

proliferation, infiltration, and dissemination. Due to their

importance in carcinogenesis, miRNAs have been studied as

predictive and diagnostic indicators and future therapeutic targets.
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miR-128 plays an important role in the molecular mechanisms of

many types of human cancer. For instance, miR-128 has been shown

to suppress the growth of breast cancer by modulating the expression

of LINK1 (58). Overexpression of miR-128 in cancer cells inhibited

proliferation, migration, and invasion, induced cell apoptosis and

suppressed tumor growth.

Conversely, miR-128 has been implicated in miR-128 in

carcinogenesis in some cancers. The notion that miR-128 may act

as both an anti- and an anti-apoptotic agent suggests that it could be

used to treat and develop innovative therapies. Therapeutic

approaches based on miR-128 enhancers (miR-128 overexpression)

or anti-miRNA oligonucleotides (AMOs) to reduce LNAs (locked

nucleic acids) may be studied in an attempt to target malignancy.

Consequently, the findings of this analysis will be used to evaluate the

possibility of miR-128 as a potential prognostic, diagnostic, and drug

target for cancer treatment in the future.
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