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Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital
Heidelberg, Heidelberg, Germany
The liver is the most preferential initial site of metastasis for uveal melanoma

(mUM), and this preference is associated with rapid mortality in mUM patients.

Despite the significant clinical benefits of Immune checkpoint inhibitors (ICIs) in

metastatic cutaneous melanoma patients, ICIs have shown little to no benefit in

mUM patients. A potential reason for this inefficiency of ICI could be partly devoted

to the involvement of the liver itself, thanks to its rich source of growth factors and

immunosuppressive microenvironment. Uveal melanoma cells show increased

expression of a transmembrane protein called cMET, which is known as the sole

receptor for the Hepatocyte growth factor (HGF). Hyperactivation of cMET by HGF

contributes to mUM development, and the liver, being the major source of HGF,

may partially explain themetastasis of uveal melanoma cells to the liver. In addition,

cMET/HGF signaling has also been shown to mediate resistance to ICI treatment,

directly and indirectly, involving tumor and immune cell populations. Therefore,

targeting the cMET/HGF interaction may enhance the efficacy of

immunotherapeutic regimes for mUM patients. Hence in this minireview, we will

discuss the rationale for combining cMET inhibitors/antibodies with leading

immune checkpoint inhibitors for treating mUM. We will also briefly highlight the

challenges and opportunities in targeting cMET in mUM.

KEYWORDS

uveal melanoma, immunotherapy, liver metastasis, cMET signaling, combination
(combined) therapy, PD1 (programmed cell death protein 1), LAG3: Lymphocyte-
activation gene 3, resistance mechanism
1 Introduction

Melanocytes have functional roles in light absorption, regulation of oxidative stress, and

the immune system (1). Compared to skin melanocytes, melanocytes in the eye evolved with

distinct biologic characteristics, gene expression profiles, and immune regulatory pathways

(2–6). Uveal melanoma (UM) is a rare but deadliest cancer that develops from the

melanocytes in the uveal tract of the eye (7). The most intriguing features of UM include

90% of tumors harboring a mutation in GNA11 and GNAQ genes and its extraordinary

preference to spread and colonize in the liver. As a result, approximately 90-95% of metastatic

UM tumors will develop liver metastasis (LmUM), unlike metastatic cutaneous melanoma,
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which is only observed in approximately 20% of patients clinically (8–

10). This preference is not only associated with rapid mortality with a

survival expectancy of less than a year but also confers resistance to

many anti-cancer therapies, including immunotherapy (11).

Immunotherapy with immune checkpoint inhibitors (ICIs) such as

anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA4) and

anti-programmed cell death protein 1 (anti-PD1) reverse the

exhausted anti-tumor immune cell responses and has given a

tremendous hope in terms of survival for metastatic cutaneous

melanoma (mCM) patients in the clinic (12, 13). However, the

same cannot be stated for metastatic uveal melanoma (mUM)

patients (14). This inefficiency can be partly due to the involvement

of the liver itself, as the ICI treatment has also been shown to be less

efficient in mCM patients with liver metastasis (15, 16).

The preferential spreading of UM to the liver cannot be explained

just by the anatomical connection but by biological attraction and

immunosuppressive microenvironment of the liver that can protect the

UM growth in this distant organ once spread. Molecular communication

seems pivotal as UMs overexpress specific protein receptors for which the

growth factors derived from the liver may serve as ligands, hence acting

as chemoattractants that direct UM to the liver (17). Moreover, as the

liver interacts with various foreign antigens, it tightly regulates immune

responses to avoid unwanted immune reactions, which UM can exploit

to promotemetastasis (18). In vivo, the CD27+CD11b- immature natural

killer cells in the liver were shown to promote the development of

melanoma metastasis to the liver (19). Reduced infiltration of PD1+ and

CTLA4+ T cells was observed in mice with liver metastasized melanoma

compared to mice with only subcutaneous melanoma, suggesting that

liver metastasis may also regulate systemic immune responses (20).

Besides, direct evidence of tumors from melanoma patients with liver

metastases has revealed reduced infiltration of CD8+ T cells and PD1+ T

cells but increased infiltrations of TIM3+ T cells. Together these data

suggest that tumors metastasized to the liver may experience a unique

microenvironment (21). Throughout this process, strategies targeting

immune suppression with ICIs alone seem insufficient for handling

mUM; hence wemay have to explore and evolve treatment combinations

that can potentially target tumor signaling pathways involved in LmUM

development along with immune-enhancing regimes. In this regard, the

hepatocyte growth factor receptor (cMET) signaling pathway has been

extensively studied and reviewed for its role in developing LmUM and

may potentially enhance ICI treatment.

cMET is a transmembrane protein composed of a and b subunits

connected by disulfide bonds at the N-terminus. The a subunit

remains extracellular, whereas the membrane-spanning b subunit

consists of extracellular, transmembrane, and an intracellular tyrosine

kinase domain at the C-terminus (22). It is usually expressed in a wide

range of cells, including immune cells such as neutrophils, and is

involved in cellular processes like survival and migration. So far, there

are four ligands reported for the cMET receptor, hepatokines such as

hepatocyte growth factor (HGF), leukocyte cell-derived chemotaxin-2

(LECT2), decorin, a small leucine-rich proteoglycan, and a bacterial

surface protein called Internalin B (IntlB) from Listeria

Monocytogenes which is needed for pathogen entry into the host

cell (23–26). All four proteins are known to bind and interact with the

extracellular region of cMET but with different binding affinities. The

binding of HGF or IntlB results in cMET phosphorylation and

activation of signaling pathways that regulate cell proliferation,
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epithelial-to-mesenchymal transition (EMT), and anti-apoptotic

effects. In contrast, LECT2 and decorins can counter the HGF and

Intl B signaling (23, 26). For example, LECT 2 binding inhibits cMET

phosphorylation and Raf1/ERK signaling, which is responsible for

EMT transition, and its absence promotes EMT in tumoral

hepatocytes (27, 28). Similarly, the binding of cMET to decorins

expressed in most extracellular matrices suppresses intracellular beta-

catenin levels and inhibits cMET-mediated cell migration and growth

(29). cMET/decorin binding also promotes rapid intracellular

degradation of cMET via the recruitment of the E3 ubiquitin ligase

c-Cbl (25).

Meanwhile, considering its significant role in cell proliferation

and migration, it is not surprising to see cMET upregulation in cancer

cells, but interestingly the threshold of its overexpression is way

higher in mUM compared to other tumors, including mCM (30). Loss

of cMET negative regulators, gene amplification, or germline

mutations in exon 14 of cMET may result in such altered gene

expression in tumors (31–33). The high-affinity binding of liver-

derived HGF ligand to cMET can drive LmUM (23). In vitro, cMET/

HGF signaling induces FAK/MAPK/STAT signaling pathways and

regulates tumor cell growth invasion. cMET/HGF signaling also

induces AKT/mTOR signaling pathways that activate E3 ubiquitin

ligase MDM2, inhibiting apoptosis. Whereas cMET inhibition or

downregulation of cMET suppresses UM proliferation and migration

by inhibiting these pathways in vitro and in vivo (34). Consistent with

its role in migration, liver metastatic lesions from UM patients have

shown increased expression of cMET compared to primary tumors

(35). In addition, over-expression of cMET correlates with high-risk

parameters in UM and indicates a poor prognosis (36). cMET

signaling is also involved in tumor resistance to many cancer

treatments (37–40). Therefore, targeting cMET is a promising area

of cancer drug development, and cMET targeting approaches are

currently being investigated in clinical trials for various cancers,

including mUM.
2 cMET inhibitors in clinical trials
for advanced cancer patients,
including mUM

So far , many strategies to target cMET, including

immunotherapeutic approaches such as cMET-specific CAR T cells,

cMET neutralizing antibodies, and small molecule inhibitors, are already

being tested in clinical trials of solid tumors (Figure 1). Some have already

demonstrated impressive therapeutic efficacy in the clinical setting. Intra-

tumoral injection of cMET targeting CAR T cells was well tolerated in

breast cancer patients, resulting in tumor necrosis and loss of cMET

immunoreactivity (41). At the same time, a wide range of cMET small

molecule inhibitors are currently being investigated in clinical trials for

several cancers, including mUM. cMET inhibitors can be classified as

selective inhibitors that only target cMET and non-selective inhibitors

that target cMET along with other pathways such as VEGF, ALK, etc.

Both have shown significant anti-tumor activity in a wide range of

cancers and manageable safety profiles in the clinic. Tepotinib, a highly

selective oral cMET inhibitor, was well tolerated, has shown promising

efficacy in advanced hepatocellular carcinoma patients with cMET
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overexpression, and is currently being investigated for other cMET-

deregulated cancers (42, 43). Tivantinib, another selective cMET

inhibitor in combination with Sorafenib, a multi-kinase inhibitor, has

also shown promising results in clinical trials of cancer patients, including

advanced melanoma with a 63% of disease control rate. Interestingly, in

this study, cMET overexpression was noted in only 29% of patients, and

all patients with increased cMET expression have been shown to respond

to the treatment (44). Meanwhile, two clinical trials were registered or are

currently ongoing with cMET inhibitors for mUM. Among them, a

phase II clinical trial including heavily pre-treated mUM patients who

received a combination of Crizotinib, a non-selective cMET inhibitor,

and Darovasertib has shown to achieve a 100% disease control rate and

31% response rate according to the preliminary reports from the

investigators (45). Treatment-related adverse events (AEs), including

54% of grade 1 or 2 and 27% of patients with grade 3, were reported. In

line with these findings, a reanalysis of a discontinued phase 2 trial

revealed that cabozantinib, a multi-kinase inhibitor that targets cMET

along with AXL, and VEGFR2, displayed anti-tumor activity with 61%

disease control rate and a median PFS of 4.8 months in mUM patients

(46). Although the current clinical trials targeting cMET are conducted

mostly in combination with other kinase inhibitors making it hard to

interpret the sole efficacy of cMET inhibition, collectively, these data

suggest that cMET inhibitors are safe and can show anti-tumor activity in

mUM patients.
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Nevertheless, similar to the fate of other small molecule

inhibitors, the mUM may acquire resistance under cMET

inhibitors. Besides, the constant TCR signaling or the highly

immunosuppressive tumor microenvironment may soon lead to the

exhaustion of cMET inhibition-induced anti-tumor immune

responses (47). Therefore, even though the exact mechanisms of

their additive activity are yet to be proven in mUM, there is a strong

rationale for cMET inhibitors to evolve with ICI regimes. To this

point, most of the successful attempts of ICI usage in cancers like liver

cancer were demonstrated in combination or when pre-treated with

small molecule tyrosine kinase inhibitors, suggesting the potential of

cMET inhibitors when evolved in combination with ICIs in mUM

patients (48, 49).
3 cMET inhibitors in combination
with Immunotherapy

Anti-PD1 monotherapy has shown minimal success in mUM

patients, with responses ranging from 0-7% with a median PFS of 2-3

months and OS limited to approximately one year (50, 51). Increased

hepatic tumor load and intrinsic tumor factors such as low tumor

mutational burden, PD1/PDL1 expression levels, and increased

presence of alternative immunosuppressive molecules like
FIGURE 1

cMET-targeting approaches and agents in clinical trials are listed accordingly, and cMET-targeting agents currently being investigated in combination
with ICI regimes are highlighted in the figure.
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Lymphocyte-activation gene-3 (LAG3) in mUM compared tomCMmay

explain such inefficacy (52–55). Interestingly, the cMET pathway is also

involved in resistance to anti-PD1 treatment and associated with almost

all factors mentioned above, strengthening the rationale for combination

treatment (Figure 2). cMET expression correlates with liver metastasis of

UM and tumor mutational burden in lung cancer patients, and cMET/

HGF signaling has been shown to upregulate indoleamine-2,3-

dioxygenase (IDO) 1, a highly immunosuppressive molecule involved

in resistance to immunotherapy (35, 56–58). cMET inhibition stops

tumor growth and invasion and can improve anti-PD1 response by

involving immune cells. High-dose crizotinib induces immunogenicity in

tumor cells and increases the expression of PD1, LAG3, and PDL1, in a

mouse model for lung cancer, therefore preparing the tumors for

immunotherapy with anti-PD1 antibodies (59). In addition,

neutrophils can play a significant role in the promotion of tumor

growth and liver metastasis, and their increased presence in the blood

or tumor is another factor known to contribute to anti-PD1 resistance

(60–63). In vivo, HGF/cMET signaling drives neutrophils from bone

marrow to the TME, where they acquire immunosuppressive properties

in T cell inflamed tissues and suppress immunotherapy-induced CD8+ T

cell expansion and effector function. Meanwhile, concomitant inhibition

of cMET and PD1 blocked the infiltration of bone marrow-derived

immunosuppressive neutrophils into the tumor and led the way for the

anti-tumor efficacy of PD1 inhibitors in mouse tumor models (64).

Accordingly, a novel dual inhibitor of cMET and PD1 has shown

superior anti-tumor efficacy with solid anti-proliferative and anti-

metastatic effects compared to monotherapy with PD1 inhibitors alone

in tumor cell lines and in a mouse model with liver cancer (65). Besides,

several clinical trials are currently evaluating the safety and efficacy of

cMET inhibitors in combination with ICIs for advanced cancer patients.

A clinical phase I/II combination therapy with Cabozantinib and

Nivolumab in advanced liver cancer patients reported a disease control
Frontiers in Oncology 04
rate of 81%, a response rate of 17%, and a median PFS of 5.5 months.

However, a triple combination therapy including Cabozantinib,

Ipilimumab, and Nivolumab has shown higher response rates but had

to be discontinued due to increased treatment-related toxicities (66).

Likewise, this combination showed a better response rate, delayed disease

progression, and extended patient survival in treatment-naive metastatic

renal cell carcinoma, another cMET-deregulated tumor (48). Collectively,

these data suggest that a concomitant combination of cMET inhibitors

and ICIs, or a sequential combination of cMET inhibitors followed by

ICIs, may improve responses to cancer immunotherapy on multiple

fronts in mUM patients.

Like PD1, LAG3 is also an inhibitory receptor that controls T-cell

tolerance and is the next most promising immune target after PD1 (67).

It is particularly promising for mUM because it functions as an

alternative pathway for PD1, and LAG3-positive T cells are more

abundant in mUM TME than CTLA4 or PD1-positive T cells (54, 55).

Furthermore, LAG3 is highly expressed in monosomy of chromosome 3

(M3) UM tumors and, similar to cMET, correlates with high-risk

histopathological parameters (68). Accordingly, increased expression of

LAG3 in TILs linked to reduced disease-free survival in mUM patients

(68). Relatlimab, an anti-LAG3 antibody, has already shown promising

clinical benefits in mCM patients in combination with the PD1 antibody

nivolumab (69), and clinical trials are currently ongoing to determine the

efficacy of relatlimab plus nivolumab in mUM patients (NCT04552223);

therefore, a combination of cMET and LAG3 inhibitors theoretically

offers another potential strategy for mUM. However, further studies are

required to understand the relationship between these two proteins in

mUM tumors and the consequences of blocking them together. Similarly,

tebentafusp is the most promising soluble TCRmolecule offering survival

benefits in mUM patients with HLA-positive tumors (70). Even though

patients progressing under tebentafusp have a survival benefit, patients

responding to treatment have better overall survival. However, response
FIGURE 2

Schematic representation of targeting cMET pathway in mUM patients to enhance the anti-tumor efficacy of ICI regimes.
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rates are low, and strategies to increase efficacy through combination

therapies are of great interest. cMET inhibitors can increase the

immunogenicity of tumors and may further lead to an additive benefit

for tebentafusp (59).
4 Challenges & opportunities

Although there are abundant possibilities for combining cMET

inhibitors with ICIs, several important tasks lie ahead to move the

combination treatment from the lab to the clinic. Firstly, there is a

need to explore themost selective and active cMET inhibitor with less off-

target toxicities and high anti-tumor activity and then to evaluate the best

ICI agent (anti-PD1 or/and anti-LAG3) to combine for mUM treatment.

Although anti-PD1 antibodies are standard care, given the strong

rationale for targeting LAG3 in mUM, evaluating the combination

efficacy of cMET inhibitors and anti-LAG3 antibodies in mUM

patients is highly demanding. Bispecific antibodies targeting anti-

cMET/PD1 or anti-cMET/LAG3 are also promising developments for

mUM. Secondly, further preclinical research aiming to design the best

sequence of combination treatments, cMET inhibition followed by ICI or

a concomitant inhibition, should be investigated thoroughly to integrate

the combination treatments effectively in well-designed clinical trials.

Consequently, a crucial task is also to identify the patients who may

benefit from such combination treatment strategies. Identifying cMET

overexpressed tumors may serve this purpose. However, the scarcity of

tissue material and the tumor heterogeneity might make it challenging to

identify the cMET-positive tumors and to define a cut-off for its

overexpression. Systemic biomarkers can overcome these limitations

and serve as a non-invasive material to investigate predictive

biomarkers. In this regard, higher concentrations of soluble cMET, a

cleaved product of membrane cMET, have been detected in the blood

and may indicate the overexpression of cMET in tumors from mUM

patients. Accordingly, increased concentrations of soluble cMET have

been shown to correlate with worse survival in mUM patients suggesting

its potential in identifying cMET tumors (71). Likewise, the abundance of

circulating cMET-positive tumor cells captured using novel cMET-based

Ferrofluid also be an alternative method (72). Finally, cMET-based PET

CT has also been developed recently and is currently being tested in renal

cell carcinoma patients; adopting such screening procedures for mUM

patients can identify the mUM patients with cMET-positive tumors (73).
5 Conclusions

Enhancing the efficacy of ICI treatment for mUM patients is highly

demanding. The major challenge here is the involvement of the liver in

mUM patients. Targeting signaling pathways involved in liver metastasis

may improve the anti-tumor efficacy of ICIs. Inhibition of cMET, a

transmembrane protein highly involved in LmUM progression, induces

tumor cell death and inhibits signaling pathways in tumor resistance. In

addition, cMET inhibition also increases tumors’ immunogenicity and

blocks immune-regulating neutrophils’ infiltration into TME, therefore,

sensitizing the tumors to ICIs. Accordingly, ICIs combined with cMET

inhibitors are currently being investigated in clinical trials for other

cancer types and have already shown promising results in patients with

liver cancer. Therefore, applying the knowledge from these studies and
Frontiers in Oncology 05
developing combined treatment strategies, including cMET inhibitors

and ICIs for mUM patients, may have tremendous clinical potential.

While the benefit of such combination therapy may sound substantial in

terms of clinical benefits, several issues must be addressed to adapt this

approach safely and efficiently for mUM patients. Selecting a potential

cMET targeting agent or approach, identifying predictive biomarkers,

and the best treatment sequence for combination should be thoroughly

investigated. Besides, as combination therapies are highly associated with

increased toxicity compared to monotherapies, the mechanism

underlying the synergistic effect must be clarified in preclinical models.

Hence, further research efforts are urgently required to optimize the

development and delivery of cMET-ICI combinations, and it is highly

anticipated that future studies on this combinational approach will lead

to survival benefits for mUM patients.
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