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Antibody-drug conjugates and
predictive biomarkers in
advanced urothelial carcinoma

Sarah E. Fenton1,2 and David J. VanderWeele1,2*
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The use of antibody-drug conjugates (ADCs) is expanding in several

malignancies, including urothelial carcinoma where two of these

medications have been approved for use and several others remain under

study. ADCs act by binding to specific cell surface proteins, delivering

anticancer agents directly to the target cells. Preclinical studies suggest that

loss of these surface proteins alters sensitivity to therapy and expression of

target proteins vary significantly based on the tumor subtype, prior therapies

and other characteristics. However, use of biomarkers to predict treatment

response have not been regularly included in clinical trials and clinician

practice. In this review we summarize what is known about potential

predictive biomarkers for ADCs in UC and discuss potential areas where use

of biomarkers may improve patient care.
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1 Introduction

Urothelial carcinoma (UC) of the bladder is the fourth most frequent cancer of male

adults in the United States, with approximately 81,200 cases expected in 2022 (1).

Outcomes are driven by the stage at which the disease is diagnosed, with a 5-year overall

survival (OS) rate greater than 90% for patients diagnosed with non-muscle invasive

bladder cancer (NMIBC), 50-82% for muscle invasive bladder cancer (MIBC) and 5% for

metastatic disease (2). Currently approved management strategies for metastatic disease

include chemotherapy such as GC (gemcitabine and cisplatin or carboplatin) or MVAC

(methotrexate, vinblastine, doxorubicin, and cisplatin), immunotherapy

(pembrolizumab, atezolizumab, or avelumab), or targeted therapy (erdafitinib for

patients with certain FGFR3 or FGFR2 mutations). These therapies are limited by the

toxicities associated with active chemotherapy regimens, the low response rates seen with

immunotherapy, and the limited number of patients harboring the relevant biomarker.
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Fortunately, several novel therapies have been introduced in the

management of advanced and metastatic disease that have the

potential to improve these outcomes. Specifically, the

introduction of antibody-drug conjugates (ADCs) such as

enfortumab vedotin (EV) and sacituzumab govitecan (SG)

have expanded treatment options for patients with advanced

UC. Predictive biomarkers that could help to forecast outcomes

following the use of specific therapies have not been

incorporated into clinical practice. As treatment options are

added to the clinician’s armamentarium, biomarkers become

valuable in prioritizing active therapies for individual patients.

For example, both EV and SG are approved as third line

therapies for metastatic UC. Biomarker-driven data may aid in

therapy selection between these two agents. Data from

preclinical models and secondary analyses of clinical trials

using ADCs suggest that several biomarkers exist that may

improve therapy selection. Thus, in this review we will cover

currently available information supporting the potential use of

biomarkers in the management of advanced UC.
2 Antibody drug conjugates

ADCs were first synthesized in the 1960s when small

molecule chemotherapies were linked to immune gamma

globulins (3). Since then, nine ADCs have been approved by

the FDA for use in cancers including UC, lymphoma, acute

myelogenous leukemia, and breast cancer (4, 5). ADCs are

composed of a monoclonal antibody that binds to specific

target antigens on the surface of tumor cells linked to

anticancer agents such as chemotherapy drugs (6). By

delivering these anticancer agents directly to the target cells,

ADCs increase therapeutic efficacy while decreasing potential

systemic toxicities (7). Many of the antibodies used in the

synthesis of ADCs are composed of immunoglobulin G and,

instead of optimizing their ability to elicit an immune response,

these antibodies are selected based on binding affinity, potential

cross-reactivity, and immunogenicity (7, 8). Activation of

immune responses following exposure to ADCs can lead to
Frontiers in Oncology 02
the formation of additional antibodies that bind to the ADC and

compromise its efficacy (9, 10). Thus, due to its long half-life,

stability in the serum and wide distribution in the intra and

extravascular compartments, immunoglobulin G is an ideal

candidate in the construction of ADCs (8). The ratio between

the drug and the antibody must also be addressed, as a high ratio

results in aggregation and clearance of the ADC while a low ratio

results in low efficacy following drug delivery (11). Finally, the

linker between the drug and the antibody must be optimized to

allow stability in the circulation. Early release in the serum can

lead to undue toxicity and decreased effect at the tumor (12, 13).

However, in most cases the linker must also be able to be cleaved

once the ADC is internalized into the target cell (14). Despite

these requirements, the introduction of ADCs into clinical

practice has been increasing significantly over the past decade.

Table 1 summarizes ADCs that have been studied in UC and

their mechanism of action. Table 2 summarizes ongoing studies

investigating the role of ADCs in UC. Unfortunately, many of

these ADCs have been studied independent of biomarker testing

to predict treatment response, toxicities and potential

resistance mechanisms.
3 Enfortumab vedotin

EV is a fully human monoclonal antibody conjugated by a

protease-cleavable linker to monomethyl auristatin E (MMAE).

The delivery of MMAE to the tumor cell results in inhibition of

microtubule formation and cell death through interruption of

cell division (15, 16). The antibody component of EV binds to

Nectin-4 on the surface of the cell, an immunoglobulin-like

transmembrane protein that participates in the formation of the

adherens junction (17–20). Nectin-4 is enriched in placental and

embryonic tissues as well as squamous epithelial tissues such as

the skin where it plays a role in cellular adhesion and immune

evasion (21, 22). Nectin-4 is also overexpressed in several

cancers including UC as well as breast, ovarian, lung and

gastric carcinomas (14, 17, 23–25). In upper tract UC,

upregulation of Nectin-4 is associated with poor outcomes,
TABLE 1 Currently approved ADCs in the management of UC.

ADCs Studied in
UC

Antibody
Target

Mechanism of Action

Enfortumab vedotin Nectin-4 monomethyl auristatin E (MMAE) is delivered to the tumor cell, resulting in microtubule inhibition, disruption of cell
division and cell death

Sacituzumab
govitecan

Trop-2 SN-38 is delivered to the tumor cell, resulting in inhibition of topoisomerase I and the accumulation of lethal DNA
double strand breaks

Sirtratumab vedotin SLITRK6 MMAE is delivered to the tumor cell, resulting in microtubule inhibition, disruption of cell division and cell death

Trastuzumab
emtansine

HER-2 Emtansine is delivered to the tumor cell, resulting in microtubule inhibition, disruption of cell division and cell death

Disitamab vedotin HER-2 MMAE is delivered to the tumor cell, resulting in microtubule inhibition, disruption of cell division and cell death
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TABLE 2 Currently active trials of antibody-drug conjugates in urothelial carcinoma.

Ongoing ADC Trials in UC

Clinicaltrials.gov
Number

Treatment Regimen Patient Population Primary Outcome
Measure(s)

Current Study
Status

NCT04223856 EV & Pembrolizumab Unresectable or
metastatic UC

PFS & OS Recruiting

NCT04963153 EV & Erdafitinib Metastatic UC Incidence of AEs, RP2D
& MTD

Recruiting

NCT04878029 EV & Cabozantinib Unresectable or
metastatic UC

RP2D Recruiting

NCT04960709 EV, Durvalumab & Tremelimumab or Durvalumab &
EV prior to cystectomy

Cisplatin ineligible (or
refuse) MIBC

pCR, EFS & rates of AEs Recruiting

NCT04700124 EV & pembrolizumab prior to cystectomy Cisplatin ineligible MIBC pCR & EFS Recruiting

NCT03924895 EV & pembro prior to cystectomy Cisplatin ineligible (or
refuse) MIBC

EFS Recruiting

NCT05524545 EV & Evorpacept Unresectable or
metastatic UC

DLTs & rate of AEs Recruiting

NCT04527991 SG Unresectable or
metastatic UC

OS Recruiting

NCT05581589 SG prior to cystectomy Non-urothelial MIBC pCR Not yet recruiting

NCT05226117 SG prior to cystectomy MIBC pCR Recruiting

NCT03547973 SG combination therapy Unresectable or
metastatic UC

ORR & PFS Recruiting

NCT04863885 SG, Nivolumab & Ipilimumab Cisplatin ineligible
metastatic UC

MTD & ORR Recruiting

NCT05327530 SG & avelumab Unresectable or
metastatic UC

PFS & rate of AEs Recruiting

NCT04724018 SG & EV Unresectable or
metastatic UC

MTD & DLT Recruiting

NCT02675829 T-DM1 HER-2+ solid tumors ORR Recruiting

NCT04073602 Disitamab vedotin HER-2- unresectable or
metastatic UC

ORR Active, not
recruiting

NCT05302284 Disitamab vedotin plus toripalimab HER-2+ unresectable or
metastatic UC

PFS & OS Recruiting

NCT05016973 Disitamab vedotin & triplizumab followed by cystectomy MIBC Pathologic response Not yet recruiting

NCT04879329 Disitamab vedotin & pembrolizumab Unresectable or
metastatic UC

ORR Recruiting

NCT05495724 Disitamab vedotin & tislelizumab HER-2+ high risk MIBC pCR Recruiting

NCT04839510 MRG002 Unresectable or
metastatic UC

ORR Recruiting

NCT05488353 Disitamab vedotin & penpulimab prior to cystectomy Cisplatin-ineligible MIBC pCR Recruiting

NCT03523572 Trastuzumab deruxtecan & nivolumab Advanced breast and UC DLT and ORR Recruiting

EV, enfortumab vedotin; UC, urothelial carcinoma; PFS, progression free survival; OS, overall survival; AEs, adverse events; RP2D, recommended phase 2 dose; MTD, maximum
tolerated dose; MIBC, muscle invasive bladder cancer; pCR, pathologic complete response; EFS, event free survival; DLT, dose limiting toxicity; SG, Sacituzumab govitecan; ORR, overall
response rate; T-DM1, Trastuzumab emtansine.
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including a shortened progression free survival (26). By targeting

Nectin-4, EV delivers MMAE directly to the tumor cells.

Although response to EV has not been proven to correlate

with levels of Nectin-4, in preclinical models resistance to EV

can be induced through downregulation of Nectin-4 suggesting a

relationship between Nectin-4 levels and EV sensitivity (19).

EV was granted accelerated FDA approval in December of

2019 for the treatment of patients with advanced UC that

progressed following prior treatment with chemotherapy and

immunotherapy. This approval was based on the results of a

phase II single arm trial evaluating EV as third line therapy. The

overall response rate in this study was 44% (95% confidence

interval (CI) 35.1 – 53.2) with a median response duration of 7.6

months (95% CI 6.3 – not reached) (15). EV was fully approved

following the completion of the phase III EV-301 study

comparing EV to physician’s choice chemotherapy (docetaxel,

paclitaxel or vinflunine). Compared to chemotherapy, EV

significantly prolonged meaningful outcomes with similar

toxicity rates. More specifically, the median progression free

survival with EV was 5.55 months versus 3.71 months (HR 0.62;

95% CI 0.51 to 0.75, p<0.01) and the median overall survival was

12.88 months versus 8.97 months (HR 0.7; 95% CI 0.56 – 0.89,

p=0.001) (27).
3.1 Nectin-4 as a potential biomarker
for EV

As previously discussed, preclinical models of EV in UC

suggest downregulation of Nectin-4 on tumor cells is associated

with resistance to therapy (19). However, Nectin-4 has not been

incorporated as a predictive biomarker of treatment response. In

the phase I trial of EV in UC, evaluation of Nectin-4 expression

by immunohistochemistry (IHC) was initially required for

enrollment. For each patient, Nectin-4 expression was

quantified using a histochemical scoring system based on

staining intensity multiplied by percent of cells with positive

stain (H-score, range 0-300). Nectin-4 was detected in 97% of

patients with a median H-score of 290 (H-score range 14-300).

Due to the consistently high expression of Nectin-4, positive

testing was removed from the eligibility criteria (16). Recent data

from the EV-103 study of EV plus pembrolizumab in metastatic

UC confirmed these findings, where a moderate to strong H-

score (H ≥ 100) was identified in 92% of patients. Response to

therapy was independent of Nectin-4 expression level (28).

However, further testing has suggested that Nectin-4

expression may not be as consistent as previously observed.

A study of over 500 bladder tumors identified moderate to

strong H-scores (H ≥ 100) in 60% of patients. Rates of strong

staining were lower in metastatic sites than in primary tumors

(12% versus 34%) (17). Another case series found similar

variability in Nectin-4 staining based on tumor stage. Among

the NMIBC cases evaluated 87% were positive for Nectin-4
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muscle invasive cases. Nectin-4 positivity also varied based on

disease histology, with decreased positive staining in tumors

with squamous differentiation (70%), plasmacytoid variants

(62.5%), sarcomatoid (10%) and small cell variants (0%) (29).

This heterogeneity of expression was also seen in a Japanese

retrospective study of patients with MIBC. Interestingly, Nectin-

4 expression did not change significantly in samples obtained

from patients at the time of transurethral resection (TUR) versus

radical cystectomy (RC) when chemotherapy was not

administered. However, for patients that received neoadjuvant

chemotherapy there was a significant decrease in Nectin-4

expression between these samples. Additionally, in some

patients where tissue from a metastatic site was available

Nectin-4 expression was decreased in the metastatic site

compared to the primary tumor (30).

Recent work has stratified UC into different molecular

subtypes, and these categories are associated with variable

response to treatment. For example, the majority of luminal

and neuroendocrine subtypes have an improved response to

atezolizumab therapy, while luminal nonspecified and basal/

squamous respond to cisplatin-based therapies. Evaluation of

Nectin-4 expression has also identified heterogeneity between

these categories. Nectin-4 expression is highest in luminal

subtypes (luminal papillary, luminal nonspecified, luminal

unstable) compared to basal, neuroendocrine or stroma-rich

subtypes. This difference persists after cisplatin exposure (19).

These studies suggest greater heterogeneity in Nectin-4

expression than was previously seen in the phase I trial of EV

therapy. However, further work is necessary to determine if

expression correlates with disease response to EV therapy,

whether expression changes based on prior therapies and

biopsy site (primary versus metastatic) and whether use of

Nectin-4 as a predictive biomarker improves therapy selection

and patient outcomes. Answers to each of these questions will be

necessary in determining the utility of Nectin-4 as a predictive

biomarker to EV therapy.
3.2 TP53 and CDKN2B mutations as
potential biomarkers for EV

Previous investigations of potential biomarkers for EV

therapy have focused on Nectin-4, as it is considered a critical

component of ADC localization and binding to bladder cancer

cells. However, an additional retrospective study of 28 UC

patients identified further potential predictive biomarkers.

Patients that were responders to EV (either had a complete

response or remained on EV therapy for over 6 months) were

enriched for mutations in TP53 and had improved outcomes

including progression free and overall survival. Patients that

were nonresponders to EV therapy were more likely to have

metastatic disease to the bone and were enriched for mutations
frontiersin.org
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in CDKN2B (31). Given the limited number of patients included

in this study, the identification of two novel predictive

biomarkers suggests that more may be found with

additional studies.
4 Sacituzumab govitecan

SG is a humanized antibody against Trop-2 that is linked

with a hydrolysable linker to the small molecule chemotherapy

agent SN-38 (32, 33). An inhibitor of topoisomerase I (topo-I),

SN-38 acts to destabilize the interaction between this protein and

the DNA resulting in lethal DNA double strand breaks during

replication that cannot be repaired (34). Trop-2 is a glycoprotein

found on the cellular membrane of trophoblastic cells during

development as well as stratified squamous epithelial cells in the

skin, esophagus, tonsillar crypts and uterine cervix where it plays

a role in calcium signalling, proliferation and several other

regulatory signalling pathways (35–38). Trop-2 is also

overexpressed in epithelial cancers including up to 83% of UC

where it is associated with aggressive disease and poor prognosis

(36, 37, 39). SG is currently approved for use in triple negative

breast cancer (TNBC) and UC, however continued approval for

use in bladder cancer patients will depend on the outcomes

observed in the phase III TROPiCS-04 trial (NCT04527991).
4.1 Trop-2 as a potential biomarker
for SG

An initial exploratory trial of SG in solid tumors found that

64% (n=16/25) of the tumors tested were positive for Trop-2 by

IHC, however no correlation was observed between Trop-2

expression and response to SG (40). This finding may have

been limited due to tumor heterogeneity or sample size, as

further studies in UC have identified a positive correlation

between Trop-2 expression and response to SG therapy (41).

Preclinical testing in TNBC and UC also suggest that

modification of Trop-2 expression alters sensitivity to SG (42,

43). However, Trop-2 staining has not been included in the

phase II study of SG in UC (44). Thus, its utility as a predictive

biomarker remains limited despite secondary analysis in breast

cancer studies suggesting Trop-2 expression levels correlate with

response to SG therapy. More specifically, a secondary analysis

of the phase III ASCENT trial where patients with previously

treated, metastatic TNBC were treated with SG versus

physician’s choice of therapy found that treatment with SG

resulted in benefit regardless of Trop-2 expression, however the

benefit was lower in patients with lower Trop-2 expression

levels. Median progression free survival was 6.9 months in

patients with high expression of Trop-2 on their tumor, 6.5

months for patients with medium expression and 2.7 months

with low Trop-2 expression. Response rates and median overall
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survival mirrored these trends (45). Another study of Trop-2

expression evaluated 9 tumor samples from healthy donors, 21

NMIBCs and 10 MIBCs. Trop-2 staining was positive in the

superficial layer of the bladder urothelium in normal samples

and increased in NMIBC biopsies. However, the most significant

increase in Trop-2 expression was noted in samples with disease

invasion, particularly in the cells invading the muscle (36).

Similar to Nectin-4, Trop-2 expression also varied in between

molecular categories of UC with the highest expression in basal,

luminal and stroma-rich subtypes and low levels of expression in

neuroendocrine subtypes. Staining for Trop-2 was highly

variable in the basal and stroma rich subtypes. Secondary

analysis of tissue obtained in the IMvigor210 trial suggested

Trop-2 expression remained comparable across metastatic sites

and between patients with locally advanced or metastatic UC

(43). Thus, Trop-2 remains a potentially useful predictive

biomarker for SG response in UC. However, further studies

are necessary to confirm this hypothesis.
4.2 Topoisomerase-I as a potential
biomarker for SG

SG acts by inhibiting topo-I activity, suggesting expression of

this enzyme may be a potential biomarker of treatment response

and resistance. Studies suggest between 56 and 63% of UCs

overexpress topo-I (34, 46). However, further work is necessary

to correlate topo-I with outcomes following SG therapy.
5 Sirtratumab vedotin

Previously referred to as ASG15-ME, sirtratumab vedotin

(SV) is a humanized IgG2 antibody against SLITRK6 linked by a

protease cleavable l inker to MMAE. SLITRK6 is a

transmembrane protein that is overexpressed in UC, breast

and lung cancer as well as glioblastoma multiforme (47, 48).

In a phase I trial of 51 patients with metastatic UC, 93% stained

positively for SLITRK6 (48). However, evaluation of whether

expression of this therapeutic target would serve adequately as a

predictive biomarker of treatment response remains lacking.
6 HER-2 targeted therapy

Several HER-2 targeted therapies are under investigation in

the treatment of UC. Although initial trials with lapatinib and

trastuzumab did not show efficacy, more recent trials with ADCs

show promise (49–51). Trastuzumab emtansine (T-DM1) is

composed of an anti-HER2 antibody joined with a non-

cleavable linker to emtansine, a microtubule inhibitor.

Preclinical models suggest efficacy in UC cells that overexpress

HER2. Although a phase II basket trial showed no response in
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UC patients, several studies are ongoing (NCT02999672,

NCT02675829) (52). A higher response rate of 61% in UC

patients was seen in a phase II trial of disitamab vedotin

(RC48-ADC), an ADC composed of a humanized anti-HER2

antibody conjugated to MMAE (53, 54). A phase II trial studying

MRG002, another ADC composed of a humanized anti-HER2

antibody conjugated to MMAE, has identified a safe treatment

dose and has observed an overall response rate of 65%

(NCT04839510) (55). Other ADCS that target HER-2

currently under investigation in UC include trastuzumab

duocarmazine and trastuzumab deruxtecan. The majority of

these trials require HER-2 expression levels that are 3+ by

IHC or positive by FISH. However, recent studies of

trastuzumab deruxtecan in breast cancer suggest these

definitions may be broadened, as responses to this drug were

seen in patients with HER2-low tumors (defined as 1+ by ICH or

2+ with negative FISH testing) (56). Studies suggest HER-2 is

overexpressed in at most 20% of UCs, but evaluation for HER2-

low status has not been investigated (4, 57). Based on these

findings, validation of HER-2 levels as a predictive biomarker to

aid in therapy selection will be critical.
7 Conclusion

In 2021 the American Society of Clinical Oncology released a

Report on Progress Against Cancer that underscored the

importance of including both tissue and blood-based

biomarkers in clinical trials. Clinically useful biomarkers

should aid physicians and other health care professionals in

predicting response to treatment, potential toxicities and

resistance mechanisms to therapy (58). Treatment with ADCs

are particularly well suited to the integration of biomarkers, as

their efficacy depends on the presence of both the antibody target

and sensitivity to the delivered anticancer agent. However, trials

that have completed and are currently recruiting patients have

by and large forgone this potentially fruitful avenue of

investigation. Although initial studies suggested high
Frontiers in Oncology 06
expression of the ADC target, further retrospective and cohort

trials identified heterogeneity in expression of proteins such as

Nectin-4 and Trop-2 that appear to be critical for ADC efficacy.

These raise questions regarding whether expression levels in the

primary tumor can be used to evaluate patients with metastatic

disease, as well as whether patients with alternative tissue

histologies should undergo further testing prior to therapy

initiation. Prior therapeutic exposures may also alter

biomarker expression, suggesting repeat biopsies may be

necessary. Biomarkers remain an untapped resource in the

clinical management of patients with advanced UC, and as

Jindal et al. showed in their retrospective study of UC we

likely have only uncovered the tip of the iceberg in identifying

potentially beneficial biomarkers (31).
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