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The prospect of tumor
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therapeutical strategies

Dirk Eulberg*, Anna Frömming, Kfir Lapid,
Aram Mangasarian and Avital Barak

TME Pharma AG, Berlin, Germany
Multiple mechanisms promote tumor prosperity, which does not only depend

on cell-autonomous, inherent abnormal characteristics of the malignant cells

that facilitate rapid cell division and tumor expansion. The neoplastic tissue is

embedded in a supportive and dynamic tumor microenvironment (TME) that

nurtures and protects the malignant cells, maintaining and perpetuating

malignant cell expansion. The TME consists of different elements, such as

atypical vasculature, various innate and adaptive immune cells with

immunosuppressive or pro-inflammatory properties, altered extracellular

matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-

tethered bioactive molecules that contribute to malignancy, directly or

indirectly. In this review, we describe the various TME components and

provide examples of anti-cancer therapies and novel drugs under

development that aim to target these components rather than the intrinsic

processes within the malignant cells. Combinatory TME-modulating

therapeutic strategies may be required to overcome the resistance to current

treatment options and prevent tumor recurrence.

KEYWORDS

tumor microenvironment, precision oncology, cancer immunology, cytokines,
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Introduction

The classical definition of cancer spotlights fundamental cancer cell properties,

including uncontrolled cell division, resistance to cell death, invasive and metastatic

capacity, genomic instability and accumulation of cancer-driving mutations, and

dysregulated metabolism and cellular signaling (1). Classically, drug development

efforts have been invested in attenuating these characteristic cell-autonomous

mechanisms with the hope of achieving clinically stable remission. Chemotherapeutic

agents aim at halting mitosis and DNA synthesis or causing excessive DNA damage,

leading to cancer cell death. The unfortunate aftermath is the collateral damage to healthy
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cells. To spare healthy cells, more advanced strategic concepts

have emerged with the advent of targeted therapy. Cancer cells

may elevate the expression of specific oncogenic proteins,

making them attractive candidates for therapy (2). Well-

known examples are (i) imatinib - a selective inhibitor of the

abnormal BCR-ABL fusion kinase, characteristic of chronic

myeloid leukemia (CML); (ii) bortezomib - a selective

inhibitor of the 26S proteasome, vital for the survival of

multiple myeloma (MM) cells due to their increased demand

for protein turnover; and (iii) epidermal growth factor receptor

(EGFR) inhibitors, such as erlotinib and gefitinib, approved for

non-small cell lung cancer (NSCLC) (2). Another approach is

cancer immunotherapy which revolutionized oncology by

strategically harnessing the immune system to track and kill

malignant cells. Exemplary strategies include (i) monoclonal

antibodies (mAbs) directed at tumor-associated antigens and

markers (e.g., human epidermal growth factor receptor 2

[HER2] and CD20); (ii) stimulation of effector leukocytes by

means of immune checkpoint inhibitors (ICIs); and (iii)

adoptive cell transfer of genetically engineered immune cells

(e.g., chimeric antigen receptor T cells; CAR-T cells) (3, 4).

Sadly, the cellular heterogeneity of tumors and their

evolutionary nature can generally propagate resistance to

different therapies (2–4).

Tumors are not semi-homogenous aggregates of cancer cells. In

fact, in many tumors, malignant cells only represent a small

minority of all cells. Tumors consist of various components, such

as ECM, fibroblast-rich connective tissue, blood and lymphatic

vessels, nerves, numerous subtypes of immune cells, and other types

of mesenchymal cells. Collectively termed TME, the

histopathological and molecular characteristics are utterly

disparate from a normal tissue microenvironment. Thus, it does

not come as a surprise that cancer cells are capable of utilizing and

shaping the TME to their advantage (5). A thorough investigation

of the molecular interactions between the tumor and its

microenvironment, taking into consideration spatial and temporal

cellular dynamics, may enable the development of novel therapies

targeted at TME components rather than at the cancer cells. There

is a need to apprehend how the TME of each anatomic cancer type

differs from its equivalent normal tissue (either adjacent or from

healthy controls). It is crucial to elucidate these pathophysiological

differences because they play a role in tumor progression and

resistance to therapy. Noteworthy, unlike publicly available cancer

genome databases, no systematic studies have comprehensively

compared the TME of various cancer patients. Notwithstanding,

there is a general notion that the characteristics of each TME

component are highly variable. This variability is not only due to

differences between anatomic cancer types but also to intra-

individual differences and intra-tumor heterogeneity.

Every tissue requires nutrients, oxygen, and waste clearance

for survival and prosperity, which are naturally provided by the

vascular system. These demands increase in hyperproliferative

tissues, including tumors, and as a result, they turn hypoxic,
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triggering neo-vascularization. Tumors use two mechanisms to

establish the necessary blood supply for the growing malignant

tissue: angiogenesis and vasculogenesis. Angiogenesis is defined

by the formation of new blood vessels from existing vessels. To

promote angiogenesis, tumors are known to secrete pro-

angiogenic factors, such as vascular endothelial growth factor

(VEGF), fibroblast growth factor-2 (FGF2), and angiopoietins

(6). This pathophysiological process is collectively termed the

‘angiogenic switch’ (7). In contrast, vasculogenesis is defined by

the formation of new blood vessels following the recruitment

and coalescence of bone marrow (BM)-derived, circulating

endothelial progenitor cells (EPCs) (6). One of the key

differences between malignant and normal tissues is the

phenotypic appearance of a disorganized, leaky vasculature,

owing to the rapid growth of capillary beds and their failure to

mature fully (6). Disrupted endothelial integrity and enhanced

permeability lead to uneven perfusion and interstitial pressure,

which affects tumor physiology. In accordance, it also leads to

reduced efficiency of drug delivery.

Cancer-associated fibroblasts (CAFs) are resident ECM-

producing stromal cells that, by interacting with other TME

components, acquire tumor-promoting properties, such as the

secretion of growth factors and pro-angiogenic factors.

Compared to normal fibroblasts, CAFs are considered to be

strongly activated due to their enhanced proliferation capacity

and secretory functions (8). This results in stromal

rearrangements, such as desmoplasia, typified by the

augmentation of myofibroblasts and dense, straightened ECM

fibrils. Inflammatory fibrosis characterizes a significant portion

of cancers, implying its contribution to carcinogenesis (9);

however, fibrosis-low tumors are also highly influenced by

CAFs. For example, CAF-derived matrix metalloproteinases

(MMPs) degrade glycoprotein matrices, thereby enabling the

release of bound growth factors and creating room for malignant

cells to proliferate and migrate as well as vasculature to form

(10). Moreover, CAFs may render the TME immunosuppressive

by secreting transforming growth factor-beta (TGFb), which
represses lymphocyte and antigen-presenting cell (APC) effector

functions (11). In doing so, CAFs remodel the local immune cell

composition (8).

Teleologically speaking, malignant cells may maintain their

abnormal self-identity and prosper if an anti-tumor immune

response is avoided. Immune escape is signified by cell-

autonomous mechanisms, such as loss of MHC class I

expression or the elevated expression of inhibitory immune

checkpoints (3, 4). Notably, immune escape can be the

consequence of changes in the immune cell composition of the

TME that affect both the adaptive and the innate immune

systems. Escape from the adaptive immune system can be due

to the inhibition of cytotoxic tumor-infiltrating lymphocyte

(TIL) immunosurveillance and activation, enhanced by the

enrichment of regulatory T (Treg) cells in the TME. Treg cells

are normally trained to recognize self-antigens, thus responsible
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for maintaining self-tolerance. However, since cancer cells

commonly express self-antigens beside unique neoantigens,

Treg cells could, in principle, counteract the anti-cancer

immune response (12). With respect to the innate immune

system, the presence of myeloid-derived suppressor cells

(MDSCs), tumor-associated macrophages (TAMs), and tumor-

associated neutrophils (TANs) indicates an immunosuppressive

TME associated with poor prognosis (13, 14). MDSCs and TANs

originate from circulating BM-derived myeloid cells (13), while

intra-tumoral TAMs either originate from tissue-resident

macrophages or differentiate from recruited MDSCs/

monocytes (14). All these cell types show similar immuno-

modulatory functions, mediated by secreted factors [e.g.,

TGFb and Interleukin-10 (IL-10)], metabolic reprogramming

(e.g., arginine and tryptophan deprivation), or regulatory cell-to-

cell contact (e.g., CD80/CD86) (12–14). Furthermore, TAMs

and MDSCs support tumor vascularization and tumor

progression by secreting pro-angiogenic factors and degrading

the ECM, respectively (6, 13, 14). This highlights the complexity

of the crosstalk between TME components that work in concert

to maintain tumor viability.

The comprehensive milieu of signaling messengers in the TME

draws attention to the importance of creating a favorable

microenvironment for cancer cells to thrive. In this review, we put

emphasis on the CCL2/CCR2 and CXCL12/CXCR4/CXCR7 axes.

On top of their supportive role in tumor growth andmetastasis, they

serve as important communication axes between TME components

andmalignant cells.The chemokinesCCL2andCXCL12 (previously

known as monocytic chemotactic protein 1 (MCP-1) and stromal-

derived factor-1 (SDF-1), respectively) are crucial for the attractionof

CCR2+ and/or CXCR4+ MDSCs, Treg cells and TANs as well as for

the polarization of macrophages towards tumor-supportive TAMs

(15, 16). Of interest, the chemokine CXCL12 has also been shown to

exclude CXCR4+ effector T cells from the TME (16, 17). CXCL12

additionallypromotes tumorvascularizationby inducing endothelial

cell differentiation, proliferation, and morphogenesis via its receptor

CXCR7 (also called ACKR3) (16). Both CCL2 and CXCL12 are

found to be highly secreted in a broad range of cancers and are often

associated with poor prognosis, underscoring them as targets for

anti-tumor therapy. We further explore the current strategies for

targeting TME components as a conceptual therapeutical

approach (Figure 1).
Enhancement of anti-tumor
immune response

EffectorCD8+TandNKcells routinely eliminate abnormal cells,

which express tumor-associated antigens and tumor-specific

neoantigens or have lost MHC class I expression. If a tumor is

immunogenic (i.e., its malignant cells can be specifically recognized

by the immune system), but the endogenous anti-tumor immune

response is too weak or suppressed, a possible course of action is to
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enhance the immune response to achieve tumor eradication.

Such a straightforward approach is the administration of

immunostimulatory cytokines, cytokine receptor agonists, or the

blockage of tumor-promoting pro-inflammatory cytokines (18).

Given to patients already decades ago, interleukin-2 (IL-2), IL-12,

IL-15, tumor necrosis factor-alpha (TNFa), and interferon-gamma

(IFNg) are potent immunostimulants of effector lymphocytes (18).

However, the activity of cytokines is short-lived and highly

pleiotropic, and their signaling pathways are often redundant,

resulting in different responses in different cell types. Some of these

responses are undesired and may lead to toxicity or even tumor-

promoting effects. To address these limitations, biased receptor

agonists have been developed. For example, ALKS 4230

(nemvaleukin alfa) is a fusion protein comprised of modified IL-2

and the high-affinity IL-2Ra chain. It preferentially triggers signaling

via the IL-2Rbg subunits, which activates cytotoxic CD8+ T and NK

cells but not Treg cells. In fact, the anti-tumor effect ofALKS 4230 in a

mouse lungcancermodel is superior to thatof recombinant IL-2 (19).

Displaying a similar selective immunostimulant mode of action,

ALT-803 (N-803) is a ‘superagonist’ of IL-15R, a fusion protein of a

mutant IL-15 and IL-15Ra-Fc. ALT-803 has been found to be

effective in a mouse MMmodel (20) and other pre-clinical models.

The adversity of cytokine-induced systemic toxicity, such as capillary

leak syndrome, could be avoided by coupl ing the

immunostimulatory cytokines to a targeted delivery system. The

extra domain Boffibronectin is highly enriched in the ECMofmany

tumors, thus serving as a target candidate for cancer diagnosis and

precision medicine, to which the specific antibody L19 has been

developed (21). A series of novel biologics (e.g., darleukin, fibromun,

and daromun) is based on the composition of L19 conjoined with

recombinant IL-2 or TNFa. These well-tolerated compounds are

currently being tested in several trials in combination with

chemotherapy/radiotherapy for the treatment of metastatic

melanoma, NSCLC, and soft tissue sarcoma (STS) (22, 23)

(Supplementary Table 1). Another approach to elicit an enhanced

immune response is to reduce immunosuppression, for instance, by

neutralizing the immunosuppressive cytokine TGFb (11). TGFb is

known to foster M2 polarization of TAMs and de-activate cytotoxic

CD8+ T and NK cells. Selective inhibition of latent TGFb1, the
predominantly expressed TGFb isoform in cancers, is efficient in

potentiating the anti-cancer immune response in amurine model of

refractory bladder cancer (24) but yet to be evaluated clinically.

A major mechanism by which an immunosuppressive TME

is established is the upregulated expression of inhibitory

checkpoints on malignant cells, CAFs, and immune cells

(predominantly T cells, NK cells, macrophages, and dendritic

cells (DCs)). These surface signaling molecules negatively

regulate innate and adaptive immune cell responses.

Therefore, substantial efforts have been invested in the

development of biologics that inhibit these immune

checkpoints, subsequently re-activating immune effector

functions in the TME (3, 4). To date, the ICIs that have been

approved for clinical use are mAbs that block programmed cell
frontiersin.org
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FIGURE 1 (Continued)

The various TME components and TME-targeting therapeutic strategies. The center of the figure depicts an immunosuppressed tumor which
consists of malignant cells and different types of non-malignant cells that together constitute the TME. Immunosuppressive cells, such as
MDSCs, M2-like macrophages, and Treg cells, are shown within the tumor mass. At the periphery of the tumor mass are effector immune cells,
such as T cells, NK cells, and M1-like macrophages. Blood vessels vascularize the tumor, which is also supported by stromal fibroblasts and
altered ECM. The different tumor-promoting and anti-tumor TME processes and the respective interventional therapeutic strategies that target
them are depicted in boxes around the tumor mass. Red arrows indicate tumor-promoting processes, whereas blue arrows & antibodies
indicate therapeutic interventions. (A) Growth of blood vessels within the tumor in response to hypoxia. Vasculogenesis: a gradient of CXCL12
chemoattracts CXCR4+/CXCR7+ EPCs and BM-derived monocytes that contribute to the de novo growth of blood vessels and capillaries.
CXCL12/CXCR4/CXCR7 antagonists (e.g., plerixafor and NOX-A12) block tumor vasculogenesis. Angiogenesis: VEGF is released, promoting
vascularization from existing blood vessels and capillaries that nurture the tumor. Anti-VEGF/VEGFR mAbs and antagonists (e.g., bevacizumab
and ramucirumab or TKIs) block tumor angiogenesis. (B) Immunostimulation by cytokines: In response to interleukins, such as IL-2, IL-7, IL-12,
and IL-15, effector T-cells and NK cells undergo activation and proliferation, mounting anti-tumor immunity. The application of selective IL
receptor agonists (e.g., ALT-803 and ALKS 4230), which have been developed to affect effector immune cells preferentially, stimulates this
process. In response to growth factors, such as GM-CSF (e.g., produced by TVEC), M1-like macrophages and other APCs are recruited to the
tumor site, assisting in the cross-activation of effector immune cells. (C) Immunosuppression by myeloid cells: TME-expressed chemokines,
such as CCL2 and CXCL12, induce the recruitment of immunosuppressive myeloid cells, such as CCR2+/4+/5+ or CXCR4+ MDSCs and M2-like
TAMs. Their immunosuppressive engagement is mediated by cytokines, such as TGFb, that inhibit effector cell activity and, at the same time,
activate suppressor cells. Therapeutic interventions can act upon several steps of this process: chemokine neutralization (e.g., NOX-E36 and
NOX-A12) or blockage of their receptors by antagonists, elimination of myeloid cells (e.g., by targeting CSF-1R), or neutralization of TGFb (e.g.,
SHR-1701). (D) Cancer-associated fibroblasts: CAFs and myofibroblasts are enriched in the TME, supporting tumor growth by secreting growth
factors, altering the ECM, and creating an immunosuppressive microenvironment. Their elimination, for example, by anti-FAP mAb, has the
potential to slow down or abrogate tumor progression. (E) Altered extracellular matrix: The TME is characterized by altered ECM properties, for
example, the overexpression of the extra domain B of fibronectin (darkened segment). Often, tumors are associated with fibrosis and
desmoplasia. Increased secretion of ECM-degrading proteases (illustrated as scissors), such as MMPs, heparanase, and uPA, enhances the
invasion capacity of cancer cells. Targeting the altered ECM properties (e.g., L19 mAb) and the local administration of selective protease
inhibitors could inhibit tumor expansion. (F) Protection of malignant cells in the bone marrow niche: Cancer cells of hematological origin utilize
BM niches that, under normal conditions, support and protect HSCs. Retention in the BM is mediated by stroma-derived molecules such as
CXCL12 or cancer cell-expressed adhesion molecules such as E-selectin. CXCL12/CXCR4 antagonists (e.g., NOX-A12 and motixafortide) and E-
selectin inhibitors (e.g., uproleselan) cause loss of retention, which leads to the mobilization of cancer cells into the blood circulation, possibly
promoting chemosensitization. Combining cell-killing agents with cell mobilizers could thus be more effective in eradicating hematological
malignancies. (G) Immune exclusion: The effector CXCR4-expressing T cells are excluded from the tumor by CXCL12 gradients. The
immunosuppressive TME, characterized by the presence, for example, of Treg cells and TGFb, also diverts effector immune cells, such as
cytotoxic T-cells. CXCL12/CXCR4/TGFb antagonists (e.g., plerixafor, NOX-A12, and bintrafusp alfa) may reverse tumoricidal effector cell
exclusion by enabling their infiltration into the tumor mass. (H) Immune checkpoint inhibitors: The immune checkpoints CTLA-4 and PD-1,
expressed by T cells, bind to CD80/CD86 and PD-L1/L2 on APCs or cancer cells, respectively, whereas LAG-3 on T cells binds to MHC-II
molecules on APCs. Because immune checkpoints attenuate immune cell activation, ICIs (e.g., ipilimumab against CTLA-4, nivolumab/
pembrolizumab against PD-1, atezolizumab against PD-L1, or relatlimab against LAG-3) instigate continued immune cell activation. The CD47/
SIRPa pathway, employed by innate immune cells, hampers phagocytosis by APCs. Blocking this axis (e.g., by magrolimab or evorpacept) could
thus enhance cancer cell recognition by the immune system. (I) Tumor-promoting inflammation: In some cancer entities, uncontrolled
inflammation can cause effector cell exhaustion, thereby impeding effective anti-tumor immune response. Neutralization of pro-inflammatory
cytokines, such as IL-1b, IL-6, IL-8, and TNFa, by mAbs, or blockage of their respective receptors, i.e., IL-1R, IL-6R, and CXCR1/2, facilitates
resolution of tumor-promoting inflammation.
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death protein-1 (PD-1), programmed death-ligand 1 (PD-L1),

cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), and

lymphocyte activation gene-3 (LAG-3), all of which promote

T-cell activity. The clinical development progress of ICIs that

target other novel checkpoint molecules is discussed elsewhere

(25). The co-inhibition of immune checkpoints may add to

efficacy, for example, the anti-PD-1 nivolumab plus the anti-

CTLA-4 ipilimumab in the treatment of NSCLC (26). Of note,

this combination of ICIs has a less favorable safety profile than

either of the mAbs alone. Unfortunately, a large fraction of

cancer patients is unresponsive to ICIs due to (i) a low

expression of immune checkpoint receptors/ligands; (ii) a low

inflammatory profile of the TME; or (iii) T-cell exhaustion,

characterized by poor effector functions (3, 4, 27). Another

attractive yet-to-be-approved therapeutic strategy targets

‘myeloid checkpoints’. For example, the CD47/signal-

regulatory protein a (SIRPa) pathway transduces a ‘don’t eat

me’ signal to inhibit phagocytosis by SIRPa-expressing
Frontiers in Oncology 05
macrophages/DCs. Thus, the surface CD47 expression by

cancer cells plays to their advantage by avoiding phagocytes,

cancer-associated antigen presentation, and, eventually, T-cell

priming (28). The leukocyte immunoglobulin-like receptor

subfamily B (LILRB) comprises immunomodulatory receptors

that recognize the ubiquitously expressed MHC class I

molecules, which are responsible for distinguishing self from

foreign (29). Anti-CD47/SIRPa/LILRB mAbs or antagonists as

modalities to elicit tumoricidal immune responses have shown

success in animal models and are under clinical investigation

(28, 29). Therefore, the assessment of innovative combination

therapies applying ICIs, also against innate checkpoints, is

warranted (Supplementary Table 1). An example of such an

innovative approach is the design of HX009, a bifunctional anti-

CD47/PD-1 mAb, currently assessed in early studies (30).

Cancer cells are capable of developing immune evasion

mechanisms; therefore, the tumor adapts to acquire ‘cold’

properties (i.e., lack of effector immune cells in the tumor
frontiersin.org
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parenchyma) (3, 4). ‘Cold’ tumors are categorized into two types:

(i) ‘immune–excluded’ tumors, where effector TILs accumulate

in the tumor periphery but are unable to infiltrate due to the

immunosuppressive TME; (ii) ‘immune-desert’ tumors, where

also the surrounding tissues are devoid of effector TILs due to

low immunogenicity. In these cases, the non-targeted approach

of immunostimulants as monotherapy is likely to be

t h e r ap eu t i c a l l y f u t i l e . Comb in a t i on t h e r ap y o f

immunostimulants together with ICIs could be promising in

paving the way to overcome localized immunosuppression

entailed by the TME. In particular, immune-excluded tumors

could be reverted to ‘hot’ tumors (i.e., inflamed with a high

presence of TILs). When administered together with ICIs, these

aforementioned immunostimulant drugs have shown a degree of

success not only in pre-clinical cancer models (31–33) but also in

clinical trials (Supplementary Table 1). Following observations

of robust TIL recruitment and benefits of overall response in

earlier studies, ICIs like nivolumab and pembrolizumab (anti-

PD-1 mAbs) are currently being tested in conjunction with

ALKS 4230 (34), ALT-803 (35), or other immunostimulants, in

phase 2/3 trials of patients suffering from advanced cancers

(Supplementary Table 1). Ineffective alone, TGFb antagonists

could also be combined with ICIs to allow cytotoxic T cell

penetration to the tumor core, consequently mounting anti-

tumor immunity (33). Bintrafusp alfa (M7824) merges these two

therapeutic strategies into one dual-purpose drug: a bifunctional

fusion protein composed of the extracellular domain of

TGFbRII, which can trap free ligands, and an anti-PD-L1

mAb (36). It is now clinically tested for several oncological

indications (Supplementary Table 1). Taken together, these

therapeutic innovations highlight the importance of the

immune cell composition of the TME in the accomplishment

of anti-tumor effects, as discussed next.
Modulating the immune TME

Altering the immune cell composition of the TME could be a

fruitful strategy to prevent tumor progression if these

interventions materialize: (i) the selective depletion of

immunosuppressive cells, such as Treg cells, M2-poised TAMs,

TANs, or MDSCs, from the TME; (ii) the alleviation or

resolution of the intense, non-specific TME inflammation,

clinically evident in some malignancies; (iii) the increased

trafficking of effector T and NK lymphocytes or APCs to the

tumor site. Effector TILs may be trapped in the tumor stroma

(immune-excluded tumors) or may not be present (immune-

desert tumors) (3). Thus, to develop effective immune TME-

targeting strategies, scientists investigate the eminent functions

of signals mediated by growth factors, cytokines, and

chemokines affecting immune cell trafficking. The comparative

scrutinization of receptor-ligand repertoires and their

downstream effects in different immune cells, whether pro- or
Frontiers in Oncology 06
anti-tumor, is one of the main principles guiding oncological

drug development today.

A straightforward approach is to eliminate immunosuppressive

cells. The elimination of Treg cells by targeting highly expressed

markers, such as CCR4 or CD25 (i.e., the IL-2Ra chain), is under

investigation (12, 18). So far, however, more efforts have been

directed toward the elimination of immunosuppressive myeloid

cells. Colony-stimulating factor-1 (CSF-1; also known as

macrophage-CSF, M-CSF) drives monocyte differentiation and

proliferation and supports macrophage survival (14). Although

not specific to TAMs and MDSCs, the overall effect of blocking

its receptor CSF-1R is potentially beneficial. Anti-CSF-1R mAbs

and CSF-1R inhibitors have been shown to reduce CD68+/CD163+

TAM numbers in solid tumors pre-clinically as well clinically (37–

39). While in most pre-clinical experiments, the anti-tumor effect of

CSF-1R inhibitors is compelling, no or only marginal objective

clinical responses have been demonstrated in early clinical trials (as

monotherapy or with chemotherapy) (14). This might be attributed

to the incompetence to modify immune cell composition in the

TME in a way that favors anti-tumoral immune cells over pro-

tumoral immune cells (40, 41). A phase 2 trial in advanced

pancreatic cancer patients, treated with the anti-CSF-1R mAb

cabiralizumab and the ICI nivolumab, has not met its efficacy

endpoint (42). This result, however, does not exclude success in

other ongoing trials (Supplementary Table 1). As mentioned above,

CCL2 is a key chemoattractant of CCR2+ monocytes that can

differentiate into tumor-supportive MDSCs and TAMs (15). In a

similar manner to CSF-1R blockage, anti-CCR2 mAbs and CCR2

antagonists prevent TAM and MDSC infiltration, accompanied by

elevated TILs, in animals and humans alike (43–45). Current

clinical trial results in treating advanced unresectable pancreatic

cancer are promising (45–47), warranting further investigation. Of

interest, blocking the ligand CCL2 itself might be an alternative

approach (see Box 1).

Since the CCL2/CCR2 axis is pivotal in inflammatory

processes, it is worth evaluating how intervention by

modulating the inflammatory properties of the TME can

augment anti-tumor immunity. In many cancer entities,

chronic inflammation and lymphocyte exhaustion are

considered to be feed-forward reactions to the tumor burden

and ineffective anti-tumor immunity (48). This allows the

neoplasm to maintain its pathology. The underlying

pathophysiological mechanisms include tissue damage and

mutagenesis, ECM breakdown and fibrosis, the release of

mediators that support cancer cell growth and invasiveness,

and myeloid cell-mediated immunosuppression of effector

lymphocytes (48). Attempts have been made to block pro-

inflammatory cytokines, primarily IL-1b, IL-6, IL-8, and

TNFa, or their receptors using mAbs or specific antagonists.

These attempts have mostly concluded in no or only modest

clinical success (18). The anti-IL-1b mAb canakinumab

remarkably lowers lung cancer mortality (49), but its

unfavorable immunocompromising effect in patients results in
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increased exposure to hazardous infections (50). Recent

advances have been made by administering combinatory

regimens in animal models (51–55) and relapsing patients

with drug/immunotherapy-resistant tumors (Supplementary

Table 1). It is apparent that the TNFa inhibitors infliximab

and etanercept, given as prophylaxis or salvage treatments,

potentiate susceptibility to ICIs. More importantly, they reduce

severe adverse effects related to ICI-induced autoimmune

inflammation (56, 57), e.g., colitis in melanoma patients and

pneumonitis in lung cancer patients (58). Thus, targeting the

TME can not only support an effective anti-tumor immune

response but also alleviate treatment-related comorbidities.

Depending on the tumor type and TME characteristics,

inhibition of inflammation could be either productive or

unproductive, further discussed elsewhere (3, 48).

An innovation leap has been made when the notion of

adoptive cellular therapy was introduced. Basically, tumor-

reactive immune cells, such as T cells and NK cells, are

cultured, expanded, exogenously activated, or genetically

engineered, followed by re-infusion into the patient. The most

advanced approach is CAR-T cell therapy, in which T cells are

armed with a chimeric receptor composed of a mAb-derived

antigen-binding domain designated for a specific tumor-

associated antigen and intracellular TCR-derived signaling and

costimulatory domains (59). At present, the medical indications

are mainly hematological malignancies. In solid tumors, the

obstacles are both the selective pressure to lose surface

expression of the targeted antigen and the limited infiltration

of transferred CAR-T cells into the tumor tissue. To overcome

this obstacle in immune-excluded tumors, scientists plan to

deliver CAR-T cells together with ICIs or design CAR-T cells

that also secrete immunostimulatory cytokines (59). Notably, the

current development of M1-like CAR-macrophages for clinical

use has the potential to compete with immunosuppressive M2-

like TAMs and MDSCs in the TME (60). Furthermore,

administering medicinal agents to overcome immune cell

exclusion could presumably enhance the efficacy of

immunotherapies, including adoptive cell therapy.

Provoking recruitment of endogenous effector cells to the

tumor is an alternative to adoptive cell transfer, attaining a

similar anti-tumor immune response. This can be achieved

following the administration of a cytokine, a chemokine, or a

growth factor that essentially supports effector leukocytes. A

unique drug delivery technique employs oncolytic viruses to

express drug proteins within the TME. The FDA/EMA-approved

talimogene laherparepvec (TVEC), which utilizes oncolytic herpes

simplex virus (oHSV) as a vector, has been developed to treat

melanoma through direct injection into the tumor lesion (61). The

genetically engineered oHSV, which preferentially replicates in

cancer cells, also encodes the human granulocyte-macrophage

colony-stimulating factor (GM-CSF). GM-CSF is released from

bursting infected cancer cells; in turn, it entices professional APCs

which ultimately activate anti-tumor T cells. The concept of oHSV-
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mediated immunovirotherapy is reviewed in (61) (also see

Supplementary Table 1: ongoing clinical trials of TVEC + ICIs).

One may even speculate whether a particular TME-expressed

signaling molecule is capable of repelling TILs; therefore, blocking

its signals would potentially lead to an influx of effector TILs. The

CXCL12/CXCR4 axis has been identified to play roles in both TIL

chemorepulsion and MDSC chemoattraction, placing it as a dual-

purpose target for TME therapy (16, 17). In animalmodels, selective

CXCR4 inhibition has been extensively investigated in combination

with other pharmaceuticals, demonstrating therapeutic feasibility

(16). In humans, the CXCR4 antagonist motixafortide (BL-8040)

plus pembrolizumab have shown clinical efficacy in a phase 2 trial of

chemotherapy-resistant pancreatic ductal adenocarcinoma (PDAC)

(62, 63). T-cell-inflamed TME was displayed as a treatment

response. Despite encouraging early results in relapsing HER2-

negative metastatic breast cancer patients (64), the CXCR4

antagonist balixafortide plus the chemotherapeutic macrocycle

eribulin have not shown any added therapeutic value in a phase 3

clinical trial. Interestingly, blocking the ligand CXCL12 itself, which

inhibits the interaction of CXCL12 with both of its receptors,

CXCR4 and CXCR7, might be a pharmacologically superior

approach to targeting this axis (see Box 1). The therapeutic

approach of utilizing CXCR4 inhibition to combat hematological

malignancies is separately discussed under the section “Targeting

the niche”.
Angiogenesis and vasculogenesis
inhibitors

Recognizing that the persistence of highly vascularized

tumors depends on the ‘angiogenic switch’ has prompted the

development of angiogenesis blockers with the therapeutic goal

of impoverishing tumor blood supply (6, 7). The anti-VEGF-A

mAb bevacizumab was the first angiogenesis blocker approved

as a complementary anti-cancer therapy. It was followed by

other biologics that target the VEGF/VEGF receptor (VEGFR)

axis as well as a series of small-molecule receptor tyrosine kinase

(RTK) inhibitors (TKIs). TKIs can inhibit angiogenesis in

addition to direct effects on malignant cells (e.g., inhibition of

cell proliferation and induction of apoptosis) (65). The RTK

superfamily encompasses dozens of growth hormone receptors:

(i) VEGFRs, FGF receptors (FGFRs), and mesenchymal-

epithelial transition factor (c-Met) that promote endothelial

cell proliferation and migration; (ii) c-Kit that marks

endothelial progenitor cells; and (iii) platelet-derived growth

factor receptors (PDGFRs) that support blood vessel-conjoined

pericytes and smooth muscle cells. As a mode of action, TKIs

multi-target RTKs by competing with ATP over the conserved

ATP-binding domain (65). Therefore, TKIs are regarded as non-

specific despite some observed variable selectivity. A third

therapeutic approach targets endogenous anti-angiogenic
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mechanisms that regulate endothelial cell proliferation,

migration, and survival (6). Pharmaceutical recombinant

proteins, peptides, and gene therapy techniques have been

developed based on various endogenous anti-angiogenic

factors, such as endostatin, angiostatin, and thrombospondin

[reviewed in (66–68)]. To date, treatments targeted toward

endogenous anti-angiogenic factors have not been approved as

cancer therapy modalities in the western world.

In spite of the established relevance of angiogenesis for tumor

growth, anti-angiogenesis medications largely demonstrate limited

effects on overall survival as a result of intrinsic or acquired drug

resistance. Moreover, in congruence with experimental models,

tumor vascularization has been shown to re-commence upon

anti-angiogenesis drug withdrawal, leading to increased malignant

aggressiveness (6). A therapeutic strategy to confront anti-

angiogenesis resistance is the parallel or successive administration

of several anti-angiogenesis drugs; it is yet unknown if this approach

results in a clinical benefit. A double blow to halt cancer progression

may be achieved by combining anti-angiogenesis therapy with

drugs that target other TME components. In unresectable

hepatocellular carcinoma (HCC) and metastatic NSCLC patients,

a first-line combined therapy of chemotherapy, bevacizumab, and

the anti-PD-L1 mAb atezolizumab is superior to that of

chemotherapy plus anti-angiogenesis treatment alone (69, 70)

(more examples in Supplementary Table 1). Favorable clinical

outcomes are also observed in metastatic renal cell carcinoma

(RCC) patients treated with ICIs and TKIs compared to those

treated with either medication alone (71–73).

Diverse mechanisms can drive tumor vascularization.

Alternative non-angiogenic courses of tumor vascularization,

such as vascular mimicry (i.e., tumor cells that form vessel-like

structures), co-option of existing blood vessels, or de novo

vasculogenesis by EPCs, could take over (6). As a result,

continued blood supply is enabled despite conventional

angiogenesis blockade. Thus, implementing targeted inhibition

of several pathophysiological processes of tumor vascularization

could yield better clinical outcomes than targeting angiogenesis

alone. As a result of high energy demands, nutrient deficits, and

irregular blood supply, TMEs are typically characterized by

hypoxia (6). Hypoxia, via stabilization of the transcription

factor hypoxia-inducible factor-1 alpha (HIF-1a), upregulates
the expression of pro-angiogenic/vasculogenic factors, such as

the chemokine CXCL12 (16). In turn, CXCL12 presentation

in the TME and its resulting concentration gradients attract

circulating CXCR4/CXCR7+ EPCs and promote tumor re-

vascularization. This is especially noted under the pathological

settings of hypoxia/inflammation-induced CXCR4 and CXCR7

upregulation. Significantly, the CXCL12/CXCR4/CXCR7 axis

functionally contributes to cancer cell motility, invasiveness,

and metastasis (16). Thus, the inhibition of this axis may be

advantageous by targeting both tumor vasculogenesis and the

cancer cells directly.
Frontiers in Oncology 08
Strikingly, VEGF/VEGFR inhibition elevates CXCL12 and

CXCR4 expression in the TME of colorectal cancer (CRC) and

glioblastoma (74, 75), thus bypassing VEGF-dependent

angiogenesis blockade and contributing to tumor recurrence.

In experimental murine models, co-treatment with CXCR4 and

VEGF inhibitors overcomes this bypass, exerting a synergistic

effect on limiting tumor growth (75–78). The observation that

CXCR7 inhibition alone demonstrates an anti-vasculogenic

effect in vivo suggests that it may be beneficial to block the

whole CXCL12/CXCR4/CXCR7 axis to achieve full efficacy (79–

81). However, research is still needed to examine whether

CXCR7 action is associated with the observed resistance to

VEGF/VEGFR blockade therapy. Among multiple CXCR4

inhibitors available for research, only AMD3100 (also known

as plerixafor) has been approved for the induction of autologous

hematopoietic stem cell (HSC) mobilization in patients with

hematological malignancies (see ‘targeting the niche’). Given the

established role of the HIF-1/CXCL12/CXCR4 pathway in

tumor vasculogenesis, antagonists to this pathway are

predicted to display clinical potency as anti-vasculogenic

agents. Indeed, plerixafor infusion or an administration of an

anti-CXCR4 mAb have shown the capability of inhibiting post-

irradiation tumor revascularization in mouse and human

glioblastoma (82, 83). To date, the vast majority of oncology

studies evaluate the clinical efficacy of CXCR4 antagonists based

on their prominent anti-tumor or mobilizing effects (16) and not

anti-vasculogenesis effects. Of interest, neutralizing the CXCL12

ligand itself might be an alternative approach that allows

signaling blockade through both CXCR4 and CXCR7 (see

Box 1).
Targeting the structural elements of
the surrounding stroma

A pathological tissue repair process may commence in the

cascade of events resulting from hypoxia and cellular damage, in

particular following cancer chemoradiotherapy. In response to

the partially damaged malignant tissue, the stroma is re-

organized by various supporting mesenchymal cells. CAFs and

myofibroblasts, abundant in almost all epithelial cancers, are as

important as endothelial cells in promoting tumorigenesis and

post-chemoradiotherapy tumor recurrence (5, 8). A targetable

candidate CAF marker is fibroblast activation protein (FAP), a

membrane-bound protease that functions in tissue repair by

degrading ECM glycoproteins. FAP is enriched in CAFs but

lowly expressed in the stroma under homeostatic conditions

(84). As with other standalone TME targets, anti-FAP therapy

does not appear to be very promising as a monotherapy. In

autochthonous models of highly fibrotic PDAC, the tumors are

unresponsive to ICIs unless pre-conditionally depleted of FAP+

CAFs (85, 86). The underlying mechanism involves CAF-
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expressed CXCL12-mediated immunosuppression, shown to be

offset by the CXCR4 antagonist AMD3100 (86). This is

corroborated by the finding that the CXCL12/CXCR4 pathway

mediates CAF-dependent immunosuppression in a fibrotic

breast cancer model (87). In that study, AMD3100 diminishes

desmoplasia and enables effective immunotherapy in otherwise

resistant tumors (87). Simlukafusp alfa (FAP-IL2v, RO6874281)

is a chimeric biologic composed of anti-FAP mAb and an IL-2

variant with a selective affinity for IL-2Rbg. It demonstrates

synergistic efficacy in tumor-bearing animals when combined

with various immunotherapeutic drugs (88). Clinical outcomes

from early clinical trials lie ahead.

FAP being an ECM-degrading protease raises the question of

whether inhibiting other stromal proteases could serve as a

therapeutic strategy. Not only CAFs but also cancer cells,

TAMs, and other TME-residing cells produce ECM-degrading

proteases, including MMPs, urokinase plasminogen activator

(uPA), and heparinase; all of which are associated with poor

prognosis (10, 14). Released ECM-bound growth factors and

bioactive ECM fragments can, in turn, initiate tumor-

promoting/metastatic biological processes. The usefulness of

non-selective MMP inhibitors is limited by their tendency to

cause musculoskeletal and gastrointestinal derangements and

have so far failed to show any objective clinical response (89).

Conversely, selective MMP inhibitors with improved

pharmacokinetics and toxicity profiles have translational

potential for metastatic cancer (89); confirmation is still

needed in clinical studies. In a phase 3 clinical trial conducted

in gastric and gastroesophageal cancer patients, the addition of

anti-MMP-9 mAb andecaliximab to standard chemotherapy has

not been proven to increase efficacy (90). A similar discouraging

clinical outcome was observed when andecaliximab was

combined with nivolumab (91). Success may depend on the

careful selection of a combination treatment protocol according

to the patient’s diagnosis/prognosis profile. Roneparstat, a

potent heparanase inhibitor, has shown the potential to

overcome chemotherapy resistance in human MM cells (92).

So far, uPA inhibitors have shown low selectivity and potency;

however, a highly selective novel analog capable of eradicating

metastases in a xenograft model of PDAC (93) could be of

translational value. In conclusion, the key mechanistic message

here is that protease inhibitors could be useful in coping with

metastatic tumors, muting invasive properties, rather than

coping with tumor growth directly.
Targeting the niche

The BM contains microanatomical sites, termed stromal

niches, that support vigorous hematopoietic cell proliferation

and differentiation under homeostasis or upon demand. These

supportive niches grant protection from oxidative stress and

other insults and are tightly regulated (94). Remarkably,
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malignant cells, especially those of a hematological origin,

exploit and remodel stromal niches, through which they

acquire abilities of improved cell survival, immune evasion,

and resistance to chemoradiotherapy. Theoretically, the active

detachment and displacement of malignant cells from stromal

niches into the blood circulation can increase cellular

vulnerability to the cytotoxic effects of any anti-cancer therapy.

Malignant cells employ similar migration, adhesion, and homing

mechanisms into the BM as normal hematopoietic cells, for

example, the involvement of the CXCL12/CXCR4 pathway in

mediating HSC retention in the BM. Thus, the therapeutic

strategy is to induce mobilization of malignant cells into the

peripheral blood (PB) in the same manner as practically done for

HSCs in preparation for apheresis. Mobilization can then be

followed by radiotherapy, chemotherapy, targeted therapy, or

immunotherapy with the goal of eradicating the now

unprotected malignant cells. Granulocyte colony-stimulating

factor (G-CSF) and the CXCR4 antagonist plerixafor (in

conjunction or alone) are well-established HSC mobilizing

agents for both allogeneic and autologous transplantations.

Likewise, these agents display the capacity to mobilize

CXCR4+ human leukemic and MM cells to the PB (94, 95).

The application of this mobilization/chemosensitization strategy

has been tested in patients suffering from relapsed/refractory (R/

R) acute myeloid leukemia (AML) and MM, in whom

complementary chemotherapy has shown favorable results

(96–98) (see also Supplementary Table 1). Furthermore,

scientists have evaluated the direct immunotherapeutic impact

of the anti-CD20 mAb rituximab on human chronic

lymphocytic leukemia (CLL) cells in response to the co-

administration of CXCL12/CXCR4 inhibitors (99, 100).

Mechanistically, it is unclear whether mobilizing malignant

cells into the PB per se is sufficient to increase their

chemosensitivity. In laboratory research, G-CSF and CXCR4

antagonists can directly stimulate cell cycle entry and

susceptibility to apoptosis in hematological malignant cells,

suggesting another plausible cellular mechanism to explain the

observed augmented chemosensitivity (95). Notably, not all

malignant blasts express CXCR4 on their surface, making this

therapeutic strategy occasionally ineffective. Yet, given the

findings that CXCR4 expression often correlates with

malignancy grade, plerixafor-responsive cancer patients

presumably would have had otherwise unfavorable prognoses.

While most pharmacological approaches have relied on CXCR4

blockade, inhibiting the ligand CXCL12, which also blocks

interaction with CXCR7, is an alternative approach for

mobilizing malignant cells (see Box 1).

Various adhesion mechanisms enable retention in stromal

niches. Therefore, impeding these adhesion interactions is

instrumental in achieving loss of retention and peripheral

mobilization of adherent cells, whether normal or malignant.

The interruption of anchorage-dependent cell signals can, as a

result, induce apoptosis in malignant cells that depend on their
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BOX 1 Novel modulators of the TME: L-RNA aptamers as chemokine-neutralizing compounds.
Therapeutic neutralization of secreted ligands confers an advantage over the blockage of their receptors because it has no direct action on cells, some of which belong
to normal tissues. Endogenous ligand neutralization is typically accomplished by the biotechnological development of specific mAbs or ‘ligand traps’ (i.e.,
recombinant ligand-binding receptor domains). In contrast to protein-based biologics, L-RNA aptamers are immunologically inert. These synthetic compounds are
made of nuclease-resistant PEGylated L-stereoisomer oligonucleotides that specifically bind ligands in a manner similar to antibodies. Two chemokine-neutralizing
L-RNA aptamer drugs that modulate the TME are currently in development for oncology indications: (1) the CXCL12-neutralizing NOX-A12 (olaptesed pegol); (2)
the CCL2-neutralizing NOX-E36 (emapticap pegol).

NOX-A12 in Glioblastoma
In combination with radiotherapy, antagonists to CXCL12, CXCR4 and CXCR7 have led to complete brain tumor regression and survival prolongation of tumor-bearing

rodents (82, 111–113). Radiotherapy, the backbone of the standard of care for gliomas, has the unintended effect of promoting tumor recurrence viaCXCR4/CXCR7-dependent
vasculogenesis (discussed under ‘Angiogenesis and vasculogenesis inhibitors’). This undesirable pathological tumor reaction illustrates why anti-angiogenesis medication is
insufficient as a salvage measure to curb post-radiotherapy tumor progression (17), clinically confirmed in glioblastoma patients (114). Additionally, endothelium-derived
CXCL12 attracts MDSCs into the TME and contributes to its immunosuppressive characteristics (discussed under ‘Modulating the immune TME’), particularly in glioblastoma
(115). Noteworthy, the CXCL12/CXCR4/CXCR7 axis is functionally involved in cancer cell proliferation, survival, and migration (16). Moreover, both individual CXCL12
receptors, i.e., CXCR4 and CXCR7, are implicated in brain tumor growth in vitro and in vivo (82, 111, 112). Thus, by blocking signaling via both CXCL12 receptors, NOX-A12
targets the whole axis, suggesting an advantage for NOX-A12 over individual CXCR4 and CXCR7 antagonists. In the absence of irradiation, the combination treatment with
NOX-A12 and anti-VEGF mAb demonstrates a synergistic effect (116). In a phase 1/2 study of newly-diagnosed glioblastoma patients, plerixafor has been concurrently
administered with chemoradiotherapy (83). In comparison to a contemporaneously assembled control group, locally diminished blood perfusion has been detected, supporting
the hypothesized anti-vasculogenic effect of CXCR4 blockade. The safety and efficacy of NOX-A12 have been evaluated in combination with radiotherapy in newly-diagnosed
glioblastoma patients characterized by the poor prognosis marker of unmethylated MGMT promoter (117). Interim results demonstrate a reassuring safety profile, a reduction
in tumor size in 90% of the patients, and an objective response in 40%. This finding was accompanied by lower tumor cell proliferation, loss of CXCL12 expression in the
endothelium, and the emergence of T-cell clusters. Together, these findings suggest re-shaping the TME to a less pro-tumoral microenvironment. Presently, the safety and
potential synergy of NOX-A12 with radiotherapy and either VEGF inhibition or ICI are further explored in glioblastoma patients.

NOX-A12 in other solid tumors
A major hurdle for immunotherapies is that many tumors are, to some extent, ‘immune-excluded,’ characterized by an immunosuppressive TME and low

numbers of infiltrating tumor-reactive lymphocytes. Thus, the efficacy of immunotherapies that stimulate immune cells, such as ICIs or cellular therapies, is
inadequate if the immunosuppressive TME is not tackled simultaneously (discussed under ‘Enhancement of anti-tumor immune response’ and ‘Modulating the
immune TME’) (3, 4). CXCL12/CXCR4 blockade is one of the mechanisms by which the immunosuppressive TME could be overcome, enhancing susceptibility to
successive immunotherapy. This has been proven to be the case in animal models of various cancer types (86, 87, 118–122) as well as human spheroid/organotypic
cultures (123, 124). Recently, this therapeutic approach has been employed in human trials to combat immunotherapy-resistant tumors, i.e., refractory microsatellite
stable (MSS) PDAC and CRC. The delivery of CXCR4 antagonists or the CXCL12 antagonist NOX-A12 in those patients elicits Th1 immune response (62, 63, 125,
126), as detected by immunological assessment of paired biopsies. Following CXCL12 inhibition by NOX-A12, clusters of activated T cells have been observed in the
treated CRC and PDAC patients (126), similar to findings in the glioblastoma patients (3, 117). These findings imply a reduced immunosuppressive pressure in the
TME, allowing a more robust and coordinated anti-tumor immune response. Further development will comprise a clinical trial to determine the efficacy of NOX-A12
plus pembrolizumab therapy in second-line PDAC patients in the background of standard-of-care chemotherapy. Based on the suggested mechanism of an improved
anti-cancer immune response, NOX-A12 has therapeutic potential in conjunction with ICIs for multiple oncological indications.

NOX-A12 in hematological malignancies
Administration of the CXCR4 antagonist plerixafor in combination with G-CSF is a well-established allogeneic/autologous HSC mobilization method.

Mobilized HSCs are then collected from the PB by apheresis and engrafted in cancer patients with ablated BM to allow for the repopulation of the hematopoietic
system. Mobilization/chemosensitization is an attractive strategy to mobilize and eliminate chemoresistant CXCR4+ malignant cells (94–99) (discussed under
‘Targeting the niche’). NOX-A12 inhibits CXCR4+ cell migration towards a CXCL12 gradient and is an efficient mobilizing agent in mice, non-human primates, and
humans (127). Similarly, it can inhibit the migration and induce the mobilization of malignant cells, which rely on CXCL12/CXCR4 interactions to colonize the BM,
as demonstrated in human CLL-stroma co-cultures (101) and murine models of MM and CML (128, 129). Interestingly, CXCL12 neutralization by NOX-A12
chemosensitizes CLL, MM, and CML cells resulting in their reduced survival in vitro or tumor burden in vivo (101, 128, 129). The clinical potency of NOX-A12 has
been evaluated as a treatment for hematological malignancies. In phase 2a trials, R/R MM and CLL patients have been treated with escalating doses of NOX-A12 in
combination with bortezomib and dexamethasone or bendamustine and rituximab, respectively (100, 130). In corroboration with the preclinical models (101, 128),
NOX-A12 treatment effectively mobilizes myeloma and leukemic cells, maintaining high levels in the blood circulation for at least 72 hours (100, 130). The observed
overall response rates (e.g., 68% for MM and 86% for CLL) are comparable to similar combination treatments with other novel agents, such as BTK and PI3K
inhibitors. However, larger controlled studies are required to accurately validate the efficacy of NOX-A12 as a strategic combination therapy.

NOX-E36
As a major attractant of BM-derived cells that contribute to the creation of a tumor-supportive TME, the CCL2/CCR2 axis is of clinical relevance (discussed

under ‘Modulating the immune TME’) (15). Since TAM accumulation is observed in various solid tumors and pharmacological CCR2 inhibition has proven effective
in several cancer models, NOX-E36 provides translational potential. Preclinical and early clinical studies of advanced PDAC, in which CCR2 antagonists have been
assessed with or without standard chemotherapy, show encouraging results epitomized by CCR2+ myeloid cell depletion (43–47). Corroborating these results,
reduced TAMs are observed in murine PDAC and HCC models following treatment with a rodent version of NOX-E36 (mNOX-E36) (131, 132). Interestingly,
mNOX-E36 also suppresses pathogenic angiogenesis and tumor blood flow in rodent models of glioblastoma and fibrotic HCC, supporting the pro-angiogenic
function of TAMs (132, 133). In addition to antagonizing CCL2, NOX-E36 also antagonizes the closely related chemokines CCL8, CCL11, and CCL13 (134). Thus,
NOX-E36 inhibits the activity of multiple monocyte/macrophage-relevant components of the innate PD-1 resistance (IPRES) signature (135). IPRES components are
known to be implicated in creating an immune-privileged TME via the recruitment of immunosuppressive cells. NOX-E36 has already been shown to be safe in
humans, and a clear pharmacodynamic effect has been established, i.e., the reduction of peripheral monocyte counts and their respective surface CCR2 expression.
These observations confirm that NOX-E36 modulates a potentially immunosuppressive cell population in the TME. Clinical development of NOX-E36 for solid
tumors is in planning.
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protective niches for survival (i.e., anoikis or ‘death by neglect’)

(94, 101). One of these mechanisms is mediated by the vascular

adhesion molecule endothelial selectin (E-selectin; CD62E).

Expressed in the BM microvasculature, E-selectin binds to

sialylated ligands on HSCs as well as leukemic cells, promoting

chemoresistance of the latter (102). When combined with

chemotherapy, the E-selectin antagonist uproleselan (GMI-

1271) leads to high remission rates in patients with R/R AML

(103). This approach is currently being tested in a randomized

phase 3 trial (Supplementary Table 1). Based on preclinical

experiments, uproleselan is predicted to also potentiate

mobilization/chemosensitivity in chronic myelogenous

leukemia (CML) and MM (102). Interestingly, a novel dual

CXCR4/E-selectin antagonist (GMI-1359) is a powerful

mobilizing agent with therapeutic potential (104, 105). At the

infancy of clinical development for the treatment of

hematological malignancies, there are therapeutic agents that

preferentially disrupt other adhesion interactions known to exist

in the BM, including those mediated by CD44 and very late

antigen-4 (VLA-4; integrin a4b1) (102).
BM niches are also a favorable destination for metastasizing

cancer cells. Utilizing the same logic above, the interruption of

cellular mechanisms that misguide the ‘homing’ of malignant cells

from the bloodstream into the BM stroma could be exploited as a

targeted strategy to prevent or treat metastases (106). In

preclinical animal models of metastatic prostate and breast

cancer, accumulating evidence supports the roles of CXCR4 and

E-selectin in driving cancer cell dissemination in the BM, where

they form metastases. Blockage of these target molecules leads to

cancer cell mobilization and chemosensitization (107–109). The

cancer-stroma interactions mediated by CXCL12/CXCR4 and E-

selectin, which facilitate the formation of metastases in other

anatomical sites, such as lymph nodes and lungs, are discussed

elsewhere (16, 102).

Glioblastoma and a variety of other intracranial tumors are

able to trigger the sequestration of T cells in the BM, resulting in

T-cell lymphopenia and systemic tumor-promoting

immunosuppression. The mechanism for this appears to be

the loss of the sphingosine-1-phosphate receptor 1 on the T

cell surface (110). This observation suggests that tumors have the

ability to employ BM niches as another mechanism of immune

escape; it is worth further exploring if this generally applies to

non-cranial cancer entities. Counteracting this effect could

enhance many immuno-oncological therapeutic strategies.
Future perspectives

This review lays out current therapeutic strategies to combat

cancer progression by targeting the TME rather than malignant

cells directly. The combination of this approach with established

(e.g., chemoradiotherapy) or newer treatment strategies (e.g.,

targeted molecular therapy) holds great promise to overcome the
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limitations and challenges of the clearly insufficient current

standard of care in many oncology indications. In the majority

of patients treated with standard of care, including

chemotherapy regimens and targeted molecular therapies, the

combined effects of treatment resistance and selective pressure

under treatment result in tumor progression. This is also the case

for immunotherapies (e.g., anti-cancer antigen mAbs and ICIs)

that rely on harnessing the immune system to eliminate cancer

cells. Real-world evidence shows that a relatively small subset of

cancer entities are highly susceptible to immunotherapy, and

only a fraction of these patients exhibit a lasting clinical benefit

in the case of approved treatments (3, 4, 27). Several escape

pathways are implicated following immunotherapy, such as

cancer antigen escape (e.g., downregulation of CD19 or

CD20), alterations in downstream signaling events (e.g.,

induction of alternative survival pathways or resistance to

antibody-dependent cellular cytotoxicity), and T-cell

exhaustion (136). Lack of unique cancer antigens or loss of

MHC class I and b2-microglobulin expression, which are

responsible for antigen presentation on tumor cells, are known

underlying mechanisms for the failure of anti-PD-1/PDL-1

therapy (3, 4). As discussed above, the abundance of

immunosuppressive cytokines and cells in the TME and the

exclusion of tumoricidal immune cells from the TME are key

contributing factors to the development of immunotherapy

resistance, whether intrinsic (existed pre-treatment) or

acquired (arises post-treatment).

In contrast to the malignant cells of the tumor (1), the cells of

the TME are non-cancerous, therefore the principles of clonal

heterogeneity and evolution do not play a role. Moreover, the

cellular TME components are not characterized by dynamic cell-

autonomous immune escape and drug resistance mechanisms.

Furthermore, non-cellular TME components, such as the

modified ECM and various bioactive paracrine molecules, may

indirectly contribute to the development of drug resistance in

cancer cells. Detailed understanding of TME biology and the

interplay between its components (e.g., stromal rearrangements,

biomarker panels, the tumor microvasculature, secreted

cytokines and chemokines, and the inflammatory immune cell

milieu, all of which can be analyzed by comprehensive

histopathological and genetic tools) at different stages of

cancer progression is therefore important in order to design

therapies with greater benefit for patients. Notably, once specific

resistance mechanisms are characterized, they can be addressed

by targeting the respective TME component. Clinical efforts

aimed at targeting TME-localized immunosuppressive myeloid

cells are one recent example of novel approaches to address the

tumor-supportive TME. The hypothesis behind these trials is

that elimination or reprogramming of immunosuppressive TME

components could be an effective immunotherapeutic strategy in

itself or in combination with the stimulation of effector immune

cells. Beyond anti-tumor immunity, the contribution of tumor

vascularization and supporting stroma to tumor progression and
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recurrence should be considered in the design of novel TME-

targeting agents. TME-focused research is expected to identify

new TME components with the potential for precise targeting,

taking into account characteristics such as tumor sub-type and

previously received anti-cancer treatments. Precision oncology

on the basis of TME features is a promising therapeutic avenue

that could massively improve the therapeutic benefit for patients

with aggressive cancers. In conclusion, a thorough

understanding of the TME and novel combination therapies

which target multiple TME components in addition to

conventional anti-cancer drugs have great potential to address

the unmet medical need in oncology.
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