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Glutamine metabolism and
radiosensitivity: Beyond the
Warburg effect
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Bassel A. Bashjawish and Brittany A. Simone*

Radiation Oncology Department, State University of New York (SUNY) Upstate Medical University,
Syracuse, NY, United States
Mounting data suggest that cancer cell metabolism can be utilized

therapeutically to halt cell proliferation, metastasis and disease progression.

Radiation therapy is a critical component of cancer treatment in curative and

palliative settings. The use of metabolism-based therapeutics has become

increasingly popular in combination with radiotherapy to overcome

radioresistance. Over the past year, a focus on glutamine metabolism in the

setting of cancer therapy has emerged. In this mini-review, we discuss several

important ways (DNA damage repair, oxidative stress, epigenetic modification

and immune modulation) glutamine metabolism drives cancer growth and

progression, and present data that inhibition of glutamine utilization can lead to

radiosensitization in preclinical models. Future research is needed in the clinical

realm to determine whether glutamine antagonism is a feasible synergistic

therapy that can be combined with radiotherapy.
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1 Introduction

Nearly 100 years ago, Otto Warburg demonstrated that cancer utilized more glucose

and released more lactate than normal tissue under aerobic conditions (1). The

understanding of altered metabolism as a cancer hallmark has accelerated in the last

two decades (2, 3). More than 50% of cancer patients will receive radiation therapy, and

improving response to therapy and decreasing toxicity is vital (4). There is growing

interest in leveraging cancer metabolism to expand the therapeutic window. Calorie and

carbohydrate restriction increase sensitivity to radiation in vitro and in vivo, but adoption

in clinical trials has been slow (5), perhaps because weight loss is associated with poor

cancer outcomes (5–9). Liu et al. recently summarized preclinical and early clinical

studies regarding radiosensitization through inhibition of lactate metabolism (10). Over

the last year, glutamine metabolism has continued to emerge as another important driver
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1070514/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1070514/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1070514/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1070514&domain=pdf&date_stamp=2022-11-17
mailto:simoneb@upstate.edu
https://doi.org/10.3389/fonc.2022.1070514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1070514
https://www.frontiersin.org/journals/oncology


Alden et al. 10.3389/fonc.2022.1070514
of resistance to anti-cancer therapies including radiation.

Glutamine metabolism and transport plays a role in DNA

damage repair (DDR), oxidative stress, epigenetic modification

and immunosuppression. It thereby promotes tumor survival,

growth and dissemination in addition to radioresistance. This

mini-review summarizes recent investigations of glutamine

manipulation for radiosensitization and anti-cancer therapy.
1.1 Glutamine in DNA damage repair and
oxidative stress

Glutamine is critical to tumor metabolism and therefore is

an attractive target for potential therapeutics (Figure 1). It

contributes to DDR after ionizing radiation (IR) as a vital part

of nucleotide synthesis (12). In addition, conversion of
Frontiers in Oncology 02
glutamine to glutathione via leads to increased capacity for

DDR through free radical scavenging (12). As such, there are

multiple small molecule inhibitors being investigated as

potential radiosensitizers. These include V-9302, which

antagonizes the c-Myc-regulated amino acid transporter

ASCT2, as well as glutaminase (GLS) inhibitor CB-839.

JHU083, a prodrug of the broad glutamine antagonist 6-diazo-

5-oxo-L-norleucine (DON), disrupts NADP(H) and redox

homeostasis in cancer cells, while decreasing hypoxia, a well-

known contributor to radioresistance (13–15). Lastly, depletion

of glutamine as a conditionally essential amino acid with the use

of L-asparaginase (L-ASP) has been attempted as a means to

induce cell cycle arrest and increase radiosensitivity (16, 17).

To date, several preclinical studies have been published

utilizing CB-839 (Telaglenastat) to sensitize different cancers

to IR (18, 19). Rashmi et al. have demonstrated that the use of
FIGURE 1

Simplified cartoon showing key aspects of glutamine metabolism and associated therapeutic strategies (11). CB-839, telaglenastat; DRP-104,
sirpiglenastat; MDSCs, myeloid derived suppressor cells; IFNg, interferon gamma; TNFΑ, tumor necrosis factor alpha; PFN, perforin; GzmB,
Granzyme B; GPNA, L-g-glutamyl-p-nitroanilide; DON, 6-diazo-5-oxo-L-norleucine; BPTES; bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)
ethyl sulfide; GSH, glutathione (reduced); ROS, reactive oxygen species; RT, radiation therapy; TCA cycle, tricarboxylic acid cycle; Α-KG, alpha
ketoglutarate; SucCoA, Succinyl-CoA; OAA, oxaloacetate. Adapted from “Warburg Effect”, by BioRender.com.
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CB-839 in PI3K- activated cervical cancers can independently

affect cell survival in PTEN-/- cervical cancer cell lines (20).

Additionally, it was demonstrated that the combination of CB-

839 with radiation provides improved tumor control in SiHa

xenograft tumors, suggesting that CB-839 works synergistically

with radiotherapy in cervical cancer. Similarly, after identifying

that increased tumor GLS mRNA levels were associated with

decreased survival in The Cancer Genome Atlas’ transcriptome

database (p<0.03), Wicker et al. utilized CB-839 in combination

with sublethal IR in a xenograft model of high GLS expressing,

p16-/-, head and neck squamous cell carcinoma (21). Compared

with control (vehicle treated) tumors, the size of radiation-

treated, CB-839-treated and combination-treated tumors were

74.3%, 94.9% and 61.7%, respectively. Mechanistically, they

showed that DNA damage assessed by g-H2AX was

significantly higher in combination-treated cells, and that this

additive effect was reversible with N-acetyl-cysteine (21).

This concept is moving to the clinic in both cervical cancer and

gliomas (Table 1). A phase I study investigating safety and tolerability of

CB-839 with radiation and temozolomide in isocitrate dehydrogenase

(IDH)- mutated grade II/III astrocytoma (NCT03528642) is currently

active. The study will evaluate maximum tolerated dose and

recommended phase II dose as primary outcomes as well as overall

response rate (ORR) and clinical benefit rate as defined by Response

Assessment in Neuro-Oncology (RANO) criteria. The same is being

attempted in cervical cancer with NCT05521997, a randomized phase

II trial of CB-839 in combination with cisplatin and radiation

compared with standard chemoradiation. The primary endpoint in

this study is progression-free survival at 24 months after therapy. Yang

et al. and Lemberg et al. provide tables showing additional clinical trials

involving CB-839 (17, 30).

Depleting extracellular glutamine with L-ASP provides

another avenue of potential therapeutic benefit. Targeting

extracellular glutamine circumvents the non-specificity and

toxicity of glutamine uptake inhibitors (24, 31). Additionally,

inhibition of one specific glutamine uptake receptor can lead to

upregulation of alternate receptors, rendering these therapies

ineffective. Thiruvalluvan et al. demonstrated that the use of L-

ASP in prostate cancer leads to cell cycle arrest, thereby increasing

sensitivity to DNA damage (22). Treatment of 22Rv1 cells with L-

ASP lead to downregulation of CDK1, CCNB1 and PCNA with

elevation of p21 in cells treated with radiation. In this study, a

radioresistant prostate cancer cell line was created (ARCAPM-IR).

Exposure to L-ASP sensitized these cells to radiation treatment

compared with the parent line (ARCAPM) (22).
1.2 Alpha-ketoglutarate and the
epigenetic landscape of tumors

Once transported intracellularly, glutamine can be trafficked

to the mitochondria of cancer cells and metabolized to

glutamate, which impacts production of alpha-ketoglutarate
Frontiers in Oncology 03
(ΑKG) through the tricarboxylic acid (TCA) cycle. This ΑKG

is then transported out of the mitochondria and modifies

expression of key proteins linked to cancer growth and

progression. Histone and DNA methylation is directly affected

by ΑKG (32, 33). It is by this process ΑKG is posited to affect

stemness in cancer cells, and its concentration within cells can

drive progression and metastasis. Tran et al. recently

demonstrated that ΑKG promotes hypomethylation of DNA

histone H3K4me3, which targets several Wnt pathway genes in

colorectal cancer (33). Likewise, ΑKG affects radiosensitivity in

the setting of IDH mutations. In IDH- mutated tumors, there is

an abundance of ΑKG leading to accumulation of a by-product

of the Krebs cycle, 2-hydroxyglutarate (2HG), which ultimately

affects methylation of enzymes responsible for DNA double

strand break (DSB) repair (34). This aberration in DSB repair

leads to increased radiosensitivity as seen in IDH mutated

gliomas (34, 35).

Histone and DNA methylation are directly affected by ΑKG

levels through ΑKG-dependent enzymes including jumonji

domain-containing histone demethylases and Tet proteins that

modify DNA methylation. Mukha et al. demonstrate that the

radiosensitivity of glutamine-dependent tumors such as prostate

cancer can be manipulated through this pathway (36).

Homologous recombination repair (HRR) aberrations have been

linked to impaired histone demethylation by ΑKG-dependent

dioxygenases KDM4A and KDM4B. It was hypothesized by

Sulkowski et al. that H3K9 methylation is directly affected by

2HG, and that high concentrations of this metabolite cause

impairment of DNA DSB localization (37). This ultimately

implies that accumulation of 2HG in the context of radiation

could cause sensitization through hypermethylation of H3K9 (37).

This defect in HRR caused by 2HG accumulationmimics BRCA1/

2-deficient tumors as it has been shown to sensitize cells to PARP

inhibitors (37). In line with this concept, the function of KDMs as

modulated by oncometabolites has been linked to radioresistance

in lung cancer (38).

Taken together, inherent mutations of metabolic pathways

in cancer cells such as IDH mutations as well as accumulation of

oncometabolites such as ΑKG within tumors create a diverse

metabolic tumor microenvironment (TME) that directly

impacts DSB repair. This creates an opportunity to use these

vulnerabilities to therapeutic advantage in combination

with radiotherapy.
1.3 Glutamine and anticancer immunity

The interaction between radiotherapy and the immune

system is complex and continues to be elucidated (39–44).

Radiation promotes tumor immunogenicity through increased

expression of chemokines such as CXCL9, CXCL10 and

CXCL16 which lead to T-cell recruitment (40, 42, 43).

Simultaneously, radiation leads to release of tumor antigens,
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TABLE 1 Selected preclinical studies and clinical trials exploring glutamine metabolism targets for cancer therapy.

Preclinical studies

Target(s) Inhibitor(s) Model(s) Selected Results Reference(s)

GLS, gamma-
glutamylcysteine
synthetase,
thioredoxin
reductase

CB-839, BSO, AUR CaSki, C33A, SiHa, SiHa PTEN-/-

cervical cancer cell lines
CaSki and SiHa xenograft tumors

CB-839 induced oxidative stress, reduced cell proliferation,
viability and surviving fraction in CaSki and SiHa PTEN-/-

cells; SiHa cells relatively resistant
CB-839 & RT decreased cell survival in vitro, and
decreased CaSki & SiHa tumor growth in vivo

Rashmi Mol
Cancer Ther 2020
(20)

GLS CB-839 CAL-27, HN5, FaDu HNSCC cell lines
CAL-27 & HN5 xenografts

CB-839 & RT increased oxidative stress (8-oxoguanine)
and DNA damage (g-H2AX) in CAL-27 cells
CB-839 & RT reduced tumor volume in xenografts

Wicker Cancer
Lett 2021 (21)

glutamine L-ASP CWR22RV1, PC3, ARCaPM &
ARCaPM-IR Pca cell lines:

glutamine depletion with L-ASP led to S phase
accumulation due to G2/M block, and sensitized
radioresistant cell line ARCaPM-IR to treatment

Thiruvalluvan
Cancers (Basel)
2022 (22)

GLS, PD-1, PD-L1 CB-839, anti-PD-1,
anti-PD-L1

Various Breast, NSCLC, lymphoma,
myeloma, mesothelioma & ALL cell
lines; CT26 colon cancer mouse model

CB-839 increases glutamine concentration and decreases
glutamine metabolites in NSCLC cell lines, with minimal
impact on T-cell activation or division
CB-839 shows synergistic inhibition of tumor growth with
anti-PD-1 or anti-PD-L1 inhibition in vivo

Gross Cancer Res
2016 (23)

GLS CB-839, anti-CTLA4,
anti-PD-1

Melanoma: patient derived cell lines &
TILs, A375HG cells,
B16-F10 xenografts
Yummer 1.7 mouse model

CB-839 in tumor cells cocultured with TILs increased
cleaved caspase-3
CB-839 enhanced T-cell proliferation and activation in an
in vivo adoptive T-cell therapy model
CB-839 enhances anti-tumor effect of IO

Varghese Mol
Cancer Ther 2020
(24)

glutamine
metabolism

JHU083, anti-PD-1 mice models: MC38 & CT26 colon
cancer, EL-4 lymphoma, B16 melanoma

decreased tumor growth & improved survival with
JHU083 treatment in all models, with some complete
responses & rejection of tumor re-challenge
JHU083 pushes TILs to a long-lived, memory-like,
proliferative and activated phenotype

Leone Science
2019 (13)

glutamine
metabolism

JHU083 (prodrug of
DON), anti-CTLA4,
anti-PD-1

4T1 triple-negative breast cancer model
EO771 triple-negative breast cancer
model

JHU083 inhibits 4T1 tumor growth and metastasis;
enhanced response to checkpoint blockade
JHU083 reduced MDSCs, decreased secretion of MDSC
recruitment & growth factors, reprogrammed TAMs to
proinflammatory phenotype

Oh J Clin Invest
2020 (25)

glutamine
metabolism

DRP-104 (prodrug of
DON), anti-PD-1, anti-
PD-L1, anti-CTLA4

CT26 & MC38 colon cancer models
H22 hepatocellular cancer model

DRP-104 increased T, NK, NKT cells and M1-TAMs and
decreased MDSCs; also inhibited tumor growth, led to
durable responses and rejection of rechallenge

Yokoyama Mol
Cancer Ther 2022
(26)
Yokoyama J
Immunother
Cancer 2019 (27)
Yokoyama
Cancer Res 2020
(28)

Clinical studies

Target(s) Treatment Diagnosis Status Trial
Number

GLS CB-839 with RT and
temozolomide

IDH-mutant astrocytoma grade II/III Phase 1b trial: Active, not recruiting NCT03528642

GLS RT and cisplatin vs.
CB-839 with RT and
cisplatin

FIGO III-IV cervical cancer Randomized Phase II trial: Not yet recruiting NCT05521997

GLS, PD-1 CB-839 with nivolumab Advanced melanoma, NSCLC with prior
IO; Advanced RCC with or without prior
IO

Phase I/II trial: recruitment completed 04/2020 NCT02771626,
Meric-Bernstam
SITC 2017 (29)
Frontiers in Onco
logy
 04
GLS, glutaminase; CB-839, telaglenastat; BSO, L-buthionine sulfoximine; AUR, Auranofin; RT, radiation therapy; HNSCC, head and neck squamous cell carcinoma; L-ASP, L-asparaginase;
DON, 6-diazo-5-oxo-L-norleucine; NSCLC, non-small cell lung cancer; ALL, acute lymphoblastic leukemia; IO, immunotherapy; TIL, tumor infiltrating lymphocyte; MDSCs, myeloid
derived suppressor cells; TAMs, tumor associated macrophages; DRP-104, sirpiglenastat; FIGO, Federation of Gynecology and Obstetric; RCC, renal cell carcinoma.
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expression of death receptors, MHC class I proteins, and

costimulatory molecules that facilitate T-cell- mediated killing

of tumor cells (40, 44–46). Radiation also enhances PD-L1

expression, which holds T-cell reactivity in check (40, 47).

Radiation can induce differentiation of Tregs and myeloid-

derived suppressor cells (MDSCs), which hinder anti-tumor

immunity (39, 40, 48). Radiation therapy also has mixed

effects on the innate immune response, as it contributes to

M1, pro-inflammatory anti-tumor macrophages, but also to

M2, immunosuppressive and pro-tumor macrophages (39, 40).

Therefore, the ideal metabolic strategy for radiosensitization

would also contribute to the anti-tumor immune response and

ameliorate the immunosuppressive effects of radiation. Recent

evidence suggests that inhibition of glutamine metabolism meets

these objectives. Multiple authors have shown that inhibition of

glutamine metabolism impacts glutamine-dependent tumor cells

and immune cells differently, ultimately bolstering innate and

adaptive anti-tumor response (13, 23–25, 29, 30).

1.3.1 Glutamine and T-cell activation
Glutamine metabolism plays an important role in T-cell

activation and proliferation, as a precursor for biosynthesis and

source of ΑKG for the TCA cycle and ATP production (17, 30,

49). Glutamine induces a dose-dependent increase in

proliferation of stimulated T-cells in vitro (23, 24). On the

surface therefore, it may seem that glutamine inhibition would

frustrate anticancer immunity, but recent investigation

shows otherwise.

Johnson et al. demonstrated that in effector T-cell

populations with transient GLS deficiency, IL2 promotes Th1

phenotype and CD8 T-cell function, suggesting that inhibition

of glutamine metabolism enhances an anti-tumor immune

composition (24, 50). Aberrant tumor metabolism, which also

upregulates glutamine metabolism for biosynthesis and

anaplerosis, depletes glutamine in the tumor environment (13,

24, 30). Inhibition of GLS with CB-839, or of glutamine

metabolism broadly with JHU083 or DRP-104 (Sirpiglenastat,

another pro-drug of DON), restores balance between tumor and

T-cell glutamine utilization. Multiple authors have shown that

CB-839, JHU083 and DRP-104 reduce tumor glutamine

consumption and increase glutamine concentrations

systemically and in the TME, providing T-cells with greater

access to this conditionally essential amino acid (13, 17, 23, 24,

26, 29). CB-839 also has minimal impact on T-cell proliferation

and acceptable toxicity profile, unlike the non-specific inhibitor

DON (23, 24). Leone et al. found that JHU083 increased

proliferation and activation markers in CD8+ T-cells in mice

harboring MC38 colon cancer, and selective activation of this

prodrug in the TME mitigates toxicity observed with DON (13).

Gross et al. demonstrated in a syngeneic CT26 colon cancer

mouse model that combination CB-839 and anti-PD-1 or anti-

PD-L1 therapy enhanced tumor regression and improved

survival compared to control or monotherapy (23). These
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benefits were reversed with depletion of CD8+ T-cells from

the tumors, supporting the hypothesis that GLS inhibition with

CB-839 enhances CD8+ T-cell activity in the TME when

administered with checkpoint inhibitors (23). These results led

to the phase I/II trial CX-839-004; CB-839 with nivolumab in

advanced melanoma, renal cell carcinoma (RCC), or non-small

cell lung cancer. The trial completed recruitment in 2020.

Preliminary results showed no toxicity above nivolumab alone,

and three patients with melanoma and progression on prior

immunotherapy achieved objective response (29).

Building on the potential to revitalize checkpoint inhibitor

response in the pre-treated setting, Varghese et al. report

promising preclinical results in treatment-naïve melanoma

models (24). In mice vaccinated with melanoma-specific CD8+

T-cells and stimulatory molecules, CB-839 increased T-cell

proliferation and activation compared to vehicle control (24). T-

cell vaccination with CB-839 treatment led to the greatest decrease

in B16 xenograft tumor growth vs.monotherapy or control. Mouse

survival was 100% at 35 days in the combination group (24). These

results suggest clinical study of GLS inhibition together with T-cell

vaccines or other T-cell therapies is warranted.

Varghese et al. also tested CB-839 together with immune-

checkpoint inhibitors in a BRAF V600E, high mutational burden

melanoma model. Anti-PD-1 or anti-CTLA4 therapy inhibited

tumor growth, in keeping with prior findings (24, 51). CB-839

monotherapy had no effect on tumor growth, but combination with

anti-PD-1 or anti-CTLA4 showed synergistic effects, with triple

therapy leading to apparent complete response at 29 days (24).

JHU083 has also shown exciting results, with improved tumor

control and survival in mouse models of several tumor types (13).

JHU083 with concurrent anti-PD-1 therapy in a MC38 mice

showed complete response rate of ≥90%, compared to no

complete responses with anti-PD-1 monotherapy (13). Lack of

single-agent activity is a criticism some have leveled against CB-

839 (13, 23, 52). In contrast, in one experiment, 2 of 5 mice with

MC38 tumors had complete response to JHU083 monotherapy

maintained >80 days after tumor injection (13). Additionally, 13

of 15 animals with complete response to JHU083 monotherapy

rejected tumor upon rechallenge. These results indicate JHU083

may have single agent utility. As with the CB-839 experience

above, depletion of T-cells demonstrated that JHU083 efficacy

relied on CD8+ T-cell activity (13). Based on these data, along

with RNA-seq and gene set enrichment analysis (GSEA) of tumor

infiltrating lymphocytes (TILs), Leone et al. concluded that

JHU083 pushes TILs toward a long-lived, memory-like,

proliferative and highly activated effector phenotype (13, 17).

DRP-104 produced similar results in mice harboring colon

and hepatocellular model tumors (26–28, 30). Yokoyama et al.

found that DRP-104 tumor growth inhibition at day 12 in CT26-

bearing mice was 48% with anti-PD-1, 90% with DRP-104 and

94% with combination (26, 27). In MC38-bearing mice, DRP-

104 monotherapy led to growth inhibition of 96-101% and

increase in median survival from 13 days with vehicle control
frontiersin.org
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to 31-38 days with DRP-104 (26). Eight of 16 CT26 mice treated

with combination DRP-104 and anti-PD-L1 were tumor free at

day 77, and all eight rejected tumor rechallenge (27). In mice

with H22 hepatocellular tumors, DRP-104 at low (45 days) or

high dose (47 days) alone and in combination with anti-PD-L1

blockade (76.5 or 94 days) significantly extended survival

compared to vehicle (27.5 days) and anti-PD-L1 (29.5 days)

alone (26, 27). There were 50% durable cures in high dose

combination-treated mice (26, 27).

These data further support GLS and glutamine inhibition in

combination with checkpoint blockade in the clinical,

treatment-naïve setting. Additional study in combination with

radiation also seems promising, since restoration of T-cell

response could turn radioresistance into radiosensitivity.

1.3.2 Glutamine and M2 macrophages
While cancer cell metabolism hoards nutrients such as

glutamine, the TME is further stripped of resources by the

activity of M2 macrophages and MDSCs. Tumor-associated

macrophages (TAMs) contribute to cancer progression and

metastasis by promoting angiogenesis, invasion, motility,

intravasation and extravasation, while also curating an

immunosuppressive environment (25, 39, 53, 54). M2 TAMs

and MDSCs express immune checkpoint molecules like PD-L1

to attenuate T-cell response, and metabolic enzymes which

deplete nutrients and smother T-cell proliferation. Oh et al.

report \ inhibition of glutamine metabolism with JHU083

promoted generation of antitumor, proinflammatory TAMs

and reduced generation and recruitment of MDSCs (25).

Similarly, Yokoyama et al. report that DRP-104 treatment

increased M1-polarized TAMs and decreased MDSCs (26, 28).

4T1 is a triple-negative breast cancer model that is resistant

to immune checkpoint blockade due to abundant suppressive

TAMs and MDSCs (25, 55). JHU083 showed significant

inhibition of 4T1 tumor growth in mice compared with

vehicle, anti-PD1, anti-CTLA4 or combination checkpoint

blockade (25). JHU083 also significantly inhibited lung

metastasis. JHU083 enhanced checkpoint blockade activity in

EO771 immunotherapy-sensitive tumors, and sensitized 4T1

immunotherapy-resistant tumors to checkpoint blockade (25).

Oh et al. demonstrated that modulation of TAMs and

MDSCs is responsible for these effects. JHU083 decreased

MDSCs at the primary tumor site and in the lungs (common

metastatic site). This was accompanied by decreased MDSC

recruitment and growth factors such as M-CSF, GM-CSF and G-

CSF. Finally, Oh et al. found through RNA-seq and GSEA that

JHU083 reprogrammed TAMs promoting an M1, antitumor

phenotype via down regulation of immunosuppressive genes

such as Il10 and Nos2, with upregulation of lysosome, Toll-like

receptor and proinflammatory gene transcription.

These data suggest broad glutamine antagonism with

JHU083 or DRP-104 may increase radiosensitivity by favoring
Frontiers in Oncology 06
an antitumor immune response, but clinical study including

combination with radiation is necessary.

1.3.3 Sequencing of combination therapy
Sequencing of immunotherapy and radiotherapy is an area of

ongoing research; full exploration of this topic is beyond the scope

of this mini-review (56, 57). Optimal timing depends on the

mechanism of immunotherapy agent used and the fraction size of

radiation (57). Notably, secondary analysis of KEYNOTE-001

found a survival benefit with pembrolizumab in patients

previously treated with radiotherapy vs no prior radiotherapy (56,

58). As such, several clinical studies have specified immunotherapy

within 3-84 days after radiation (59–61). Radiation can begin

before, during or after immunotherapy in the ongoing A082002

trial in metastatic NSCLC, as long as it begins within 60 days of

registration (NCT04929041). We hypothesize that radiation

followed by or concurrent with immunotherapy, rather than

starting with immunotherapy, will lead to optimal results by

exposing tumor antigens and utilizing radiation-induced increase

in PD-L1 expression to fuel immunotherapy response (56, 62). This

hypothesis seems to be supported by the survival benefit from

pembrolizumab after radiation in the PEMBRO-RT trial, but only

in patients with negative PD-L1 at baseline, where perhaps PD-L1

expression was induced by radiation (59).

Adding glutamine antagonists leaves additional uncertainty

regarding the best sequence, but Leone et al. report that

“concurrent, not sequential” administration of JHU083 and

anti-PD-1 was most effective (13). Most pre-clinical and

clinical studies have initiated glutamine antagonists

concomitantly with immunotherapy (23–25, 29), others have

used concomitant and sequential approaches without direct

comparison of the two (24, 27, 28). Wicker et al. introduced

CB-839 two days before radiating HNSCC cells (21).
1.4 Personalized medicine: Identifying
glutamine-dependent tumors that may
benefit from inhibition of glutamine
metabolism

Multiple cancer subtypes appear to be sensitive to glutamine

inhibition. Gross et al. show cell death at glutamine deficit and

dose-dependent growth enhancement with increasing glutamine

concentrations in breast cancer, NSCLC, lymphoma, myeloma,

mesothelioma and ALL cell lines (23). Sensitivity to glutamine

metabolism in cervical cancer, melanoma, RCC, IDH-mutant

glioma, HNSCC, colon cancer and hepatocellular cancer has

been demonstrated by other authors discussed in this review

(Table 1) (13, 17–30, 34, 50). One might hypothesize that PTEN-

mutated endometrial cancers and IDH-mutant AML are

sensitive given their genotype (63, 64). However, not all

tumors are addicted to glutamine metabolism, and Yuneva
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et al. point out “the metabolic profile of tumors depends on both

the responsible genetic lesion and tissue type” (65). MYC-driven

liver tumors are dependent on glutamine catabolism, while

MET-driven liver tumors are not dependent on glutamine

catabolism (65). Davidson et al. found that KRAS G12D

NSCLCs were not dependent on glutamine metabolism (52).

Therefore, an understanding of what tumors may be sensitive to

glutamine inhibition must look beyond simply the tissue of

origin. Patient- derived xenograft experiments that incorporate

sequencing or immunohistochemistry may be required to

understand which tumors are ultimately sensitive and provide

personalized cancer care.
2 Discussion

Glutamine metabolism contributes to cancer growth,

progression and resistance to therapy. As a key player in DNA

repair, epigenetic modification and reduction in oxidative stress,

glutamine metabolism in cancer cells also increases

radioresistance. Furthermore, glutamine use in cancer cells,

TAMs and MDSCs contributes to an immunosuppressive

TME which decreases the efficacy of immunotherapy and

radiotherapy. Inhibition of glutamine metabolism increases

oxidative stress in cancer cells, sensitizes radioresistant tumors

to radiation in vitro and in vivo (18–20) and enhances innate and

adaptive anti-tumor immunity (13, 17, 23, 25, 27–29, 50). Recent

reports disclose several avenues for leveraging inhibition of, or

abnormalities in, glutamine metabolism to widen the therapeutic

window for anti-cancer therapy including radiotherapy (13, 17–

21, 23–30, 34, 50). This approach seems most promising in

tumors with: high GLS expression such as some p16-negative

HNSCC (21), DNA repair deficit such as IDH-mutant glioma

(19, 34), or PTEN mutation/PI3K activation (20). Specifically,

we anticipate combination with CB-839 will enhance the efficacy

of standard of care chemoradiation in IDH-mutant GII/III

astrocytoma (19, 34). CB-839 will likely increase DNA damage

from increased oxidative stress and cause further impairment of

DNA repair leading to enhanced tumor killing (19, 35). We also

hypothesize CB-839 in combination with chemoradiation will

improve outcomes in cervical cancer, particarly in PTEN
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mutant/PI3K activated cancers (20). By extension, the

combination of CB-839 and radiation may also improve

outcomes if studied in endometrial cancer, which can also

harbor PTEN mutations (63). There may also be hope for

radiosensitizing classically radioresistant cancers such as RCC

through concurrent radiation and CB839, JHU083 or DRP-104

(29). Enhancing the radiosensitivity of these tumors may allow

for deescalation of radiotherapy dose and reduced toxicity.

Further combination with immunotherapy is also an attractive

avenue, with optimal sequence of therapies an ongoing area of

research (56, 57).

Ultimately, additional clinical research is necessary to

determine feasibility and efficacy in combination with

radiotherapy, and to determine which drug for targeting the

glutamine pathway yields optimal clinical results (17).
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